The Paris Climate Agreement —
grounds for optimism,
or for grim foreboding?

: Prof Roy Thompson FRSE
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“...pursue efforts to limit the temperature increase

to 1.5 °C above pre-industrial levels...”
Article 2.1(a)
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1. Seminal turning point Web-based
reports of

| reactions
2. Meaningful progress to the

Paris

3. Phenomenally expensive Agreement

4. Unfeasible

5. Legal cynicism
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Positive proof of global warming.
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CO, concentration
February 08
406.27 ppm

Ice-core data before 1958. Mauna Loa data after 1958.
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Aerosol optical depth
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Characteristic aerosol properties related to their radiative effects, derived as
the mean of the results from the nine AeroCom models.
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Heat balance in terms of
a time-series analysis

Multiple regression:
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e Water’s high heat capacity provides the ocean
with thermal inertia: which is the ability to
resist temperature changes.
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An empirically based
heat-balance calculation

(non-steady state)

Temperature ~ Greenhouse gases + aerosols + volcanoes + ENSO
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M time series

“Just One Damned
Thing After Another”

Climate sensitivity

Roy Thompson

School of GeoSciences, Crew £

Where f; represents unspecified s
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In practice the parameter(s) of the ARMA process (e.g.,
Equation 4, where p is the lag-1 autocorrelation, and n the
number of observations) can be estimated simultaneously to
the coefficients of Equation 2; or Equation 3, using the R-
function gnls() (see section 7 — Appendix), which fits a non-
linear model using generalised least squares whilst allowing
the errors to be correlated (Pinheiro & Bates 2000).



The aerosol dilemma

Redundancy
Volcano -0.175 -0.179
ENSO 0.048 -0.035 m WMGHG vs Aerosol

Solar 0.102 0.133 -
Thermal Response Time 0.064 0.060 O 456 O 802 -0. 113

Aeroso
Volcano
ENSO

Correlation structure:

Aerosol

Phi 0.51 0.65 0.76
not significant




Heat balance in terms of
a time-series analysis

Multiple regression:
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Land Temperature Anomaly oC

Ocean Temperature Anomaly oC
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Using the Bootstrap as a
Data Analytical Tool

Aerosol scaling factor oC/Wm-2
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Sensitivity to CO2 doubling (oC)
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CMIP5: the most ambitious coordinated multi-

model climate change experiment ever attempted

Climate sensitivity (0C)
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Antarctic ice: the world's air museum

St Current
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Climate Sensitivity Estimated From Earth's Climate History
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CONCLUSIONS (CLIMATE SCIENCE)

The simple heat-balance approach has been validated on GCMs.
WMGHG, Aerosols, Volcanoes an’ENSO are all found to be
significant forcings.

o
While the sum of the anthropogenic forcings sensitivity is well

determined, individual sensitivities are highly correlated and
need to be carefully disentangled.

My ‘purely’ data-driven estimate of climate sensitivity is high,

+4 °C, with 95% confidence intervals of 3.0 to 6.3 °C.

Business-as-usual yields a 7.9 °C rise over land by 2100.

Typical cities (Riga/Minneapolis/Windhoek) will experience 500-
year heatwaves, in most years, by 2100 on a BaU trajectory.

The 1.5 °C Paris guardrail will be breached before 2030.
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Disentangling the Nordhaus/Stern controversy
Lord Stern:

Claims the benefits of strong,
early action outweigh the costs.
Prefers cap and trade.
Champions a low discount rate

Nordhaus:

Strongly favours a carbon tax
(initially around $10/ton), and has
criticised the Stern Review for its
use of a low discount rate.



Cost-benefit analysis

We CosT Of DOING
A COST- BENEFIT




Cost-benefit analysis: the standard

Benefits/costs in $/ton GHG

approach
Avoided incremental Incremental
damage costs abatement costs

Least-cost
Optimum

0%  Reductions of global warming impacts 100%



% change in GNP (USS$78 trillion)

-10

Damage function

B Published
® Unreferenced

—— (Constrained quadratic |
- - -  95% pointwise confidence bands

s

0 1 2 )
Warming (°C)




Percentage GNP cost
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Costs of global emissions reduction

—— Costs after Morris et al., Maddison, & Grubb et al.
= Uncertain higher emission reduction costs

— = Hoped-for future technological advancement
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Rise in global energy production
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Million Metric: Tons of 002

Fossil Fuel CO, Emissions (GiC/y)
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Climbing the energy ladder

Data shown 1970-2005
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Kaya identity and global CO, emissions
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Optimisation of the economic/energy-balance analysis

o == High sensitivity, Business-as-usual
= Medium sensitivity, Business-as-usual
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David G. Wilson:

The unsung
inventor of the
revenue-neutral
energy tax




Carbon Rebate

(A ‘revenue neutral‘ carbon tax)

= All money collected is returne to households.
(None goes to the politicians)

* Innovation and investment in low-carbon technology
stimulated by Adam Smith’s invisible hand.

= Simple and inexpensive to administer.
= Scope for corruption greatly reduced.
= Gradual, so predlctable for business.

Y

= Can receive bipaﬁ‘isan political support.



S-”-;E m:E: L Pl

¢

GAS TAX |




Geoengineering

Space mirrors Sulphate aerosols
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CONCLUSIONS

The basic economic-climate analysis manages to
reproduce the results of.more complex IAMs.
The dominant economic-¢limate parameter is
climate sensitivity.

The 1.5° C Paris guardrail is naive, ambiguous and
unattainable.

Neither the Paris pledges, nor the Paris ratchet,
nor ‘optimal economics’ will suffice to stabilize
global warming.



