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1. INTRODUCTION

Mountain environments support a substantial pro-
portion of the human population, contain a wide range
of ecological variability and are the source of much of
the world’s water systems. Climatic change at high ele-
vation sites can be dramatically amplified by feedback
effects associated with the albedos of snow and ice.
Consequently there is a pressing need to understand
the impacts of interannual variability and extreme
climate conditions on our mountain systems. To exam-
ine climatic change over the last century, long time
series of meteorological observations are required.
These records must be homogeneous such that varia-
tions are purely a result of the weather and climate and
not caused by factors such as changes in instrumenta-

tion, instrument drift, urban warming or relocation of
station. In many parts of the world, such high quality
records are sparsely distributed. In recent years gen-
eral circulation models (GCMs), constrained by histor-
ical meteorological records, have been run to produce
consistent simulations of the state of the atmosphere
over the past 4 decades. These assimilations are
known as reanalysis models. One very useful aspect of
the reanalysis modelling work is that it has the ability
to transport information from data-rich to data-sparse
regions. However, while GCMs can simulate large-
scale upper air circulation fairly accurately, they are
poor at reproducing surface variables on regional and
local scales (Grotch & MacCracken 1991). Therefore,
to examine climate at a sub-grid scale it is necessary to
relate the gridded reanalysis data to an observed

© Inter-Research 2004 · www.int-res.com*Email: h.kettle@ed.ac.uk

Statistical downscaling in European mountains:
verification of reconstructed air temperature

Helen Kettle*, Roy Thompson

School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK

ABSTRACT: General circulation models constrained by past meteorological records have been run as
part of a major community effort, using datasets from 1958 to the present date, to produce consistent
gridded atmospheric databases known as reanalysis data. We derive linear regression models to
transfer reanalysis gridded data to high elevation weather stations in Europe using daily observations
from 1994 to 2001. The models are then used to reconstruct daily mean, minimum and maximum air
temperatures since 1958 at the weather stations. The regression models use principal components of
reanalysis temperature and pressure variables in addition to local (nearest grid point) temperature
and pressure variables. An all-subsets regression technique in conjunction with cross validation is
used to find the best model. The accuracy of the approach is verified using observed monthly data
from 1980 to 1990 at 29 stations, and monthly data since 1958 at 8 stations. The verification results
indicate that retrodiction to 1980 is good at all stations. However, validation at 3 alpine stations shows
large differences between observed and reconstructed temperatures prior to 1970. Nevertheless, the
basic spatio-temporal warming pattern we reconstruct for the European mountains has many simi-
larities to that for the European ‘lowlands’. We find regional climatic trends for the period 1958
to 2001 of typically 0.7°C per 100 yr for minimum temperatures and twice that for maximum temper-
atures. These trends are probably underestimated. Our reconstructions suggest that there has been
an increase in the diurnal temperature range in European mountains in addition to the overall
warming. 

KEY WORDS:  Downscaling · Climate · Mountains · ‘Reanalysis data’

Resale or republication not permitted without written consent of the publisher



Clim Res 26: 97–112, 2004

meteorological variable at a specific location, a process
known as downscaling. Downscaling techniques can
be summarised into 4 categories: regression methods;
weather pattern-based methods; stochastic weather
generators; and limited area modelling (Wilby &
Wigley 1997). In this work we use regression methods
to downscale air temperature. This involves the con-
struction of a linear regression model relating reanaly-
sis variables to observed surface air temperatures.
Reconstruction of an observed variable outside its
observation period relies on the assumption that the
relationship between the large-scale circulation and
the local climate does not change over time. As with all
regression models, application of the model is limited
by the range of data used in its construction. If
observed data covering the full time period of the
reanalysis data were used to construct the model, then
it would be a robust (because it is built over many
decades), but essentially redundant model as it is not
providing any new information. To make real use of
the reanalysis data we need to know whether models
based on relatively short-term surface records can be
used to reconstruct surface temperatures over previous
decades.

Correlations between air temperatures recorded at
several mountain weather stations in a given region
are higher than correlations between air temperatures
recorded at several low-lying stations in the same
region (Weber et al. 1997), implying that mountain sta-
tions are less subject to local effects. Meteorological
variables recorded at mountain stations present an
ideal opportunity for examining climatic change as
they are generally far from large cities and free from
the warming associated with urbanisation. There is
also evidence that the amplitude of temperature
change this century at many high elevation sites is
greater than the observed global change, implying
that impacts of future climatic change will be greater at
high elevations (Beniston et al. 1997). By reconstruct-
ing daily data at these locations it is possible to study
changes in climate trends, variability and extremes. 

The response of the local climate to the large-scale
climate at a particular weather station can differ de-
pending on the siting of the station. For example, if the
station is on the side of a hill, the orientation of the
slope may affect cloud cover and snow lie; stations set
at the bottom of high valleys may experience tempera-
ture inversions; glaciers generate pronounced local
effects and conditions at stations on high plateaus will
differ from those on mountain tops. Small-scale influ-
ences such as local convective activity, orography, veg-
etation and soil characteristics can influence local wind
systems, snow cover or energy exchange with the at-
mosphere, thus uncoupling the variability of individual
weather elements from the large-scale circulation.

However, regional topography and land use at each
station should be implicitly incorporated in the individ-
ual linear regression models used for downscaling.
Due to the lack of human interference at mountain
stations such factors should not have changed over the
last 50 yr.

The aim of this study is to answer the following ques-
tions regarding downscaling in European mountains:

(1) Is there a difference in the accuracy of down-
scaled minimum, maximum and mean daily air tem-
peratures?

(2) Is there a seasonal difference in downscaling
accuracy?

(3) Are temporal and spatial structures in the tem-
perature series correctly downscaled?

(4) Which reanalysis variables are the most impor-
tant predictors?

(5) Can we accurately reconstruct air temperatures
between 1980 and 1990?

(6) Can we accurately reconstruct air temperatures
back to 1958?

(7) How accurate are the long-term climatic trends
derived from reconstructed temperatures?

(8) How do the reconstructed trends compare with
established climate trends?

2. DATASETS

In this work we focus on European mountain obser-
vatories where daily air temperatures since 1994
(which are used to build the regression models) and
mean monthly temperatures from 1980 to 1990 (which
are used for verification of the models) are available.
The daily data provide daily minimum, maximum and
mean temperatures. All of the stations used are well-
maintained, quality-controlled World Meteorological
Organisation (WMO) sites situated 1000 m above sea
level (a.s.l.) in central and southern Europe, and above
700 m in Scandinavia. The height constraint is lower in
Scandinavia because at this more northerly latitude,
surface temperatures are lower so that conditions at
these lower elevations are similar to those in the high
Alps. To help ensure the regression models are fairly
robust and not overfitted, the additional constraint that
at least 5 yr of daily data must be available since 1994
was imposed. Details and locations of the 29 stations
that satisfied our constraints are given in Table 1 and
Fig. 1. For 8 of these stations, namely Sonnblick (Aus-
tria), Jungfrau and Säntis (Switzerland), Lomnicky Stit
(Slovakia), Fokstua II (Norway), Mount Aigoual
(France), Churanov (Czech Republic) and Navacer-
rada Pass (Spain) monthly data extend back several
decades. The reanalysis data were obtained from the
large assimilation datasets produced by the joint pro-
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ject (Kalnay 1996) between the National
Center for Environmental Prediction
(NCEP) and the National Center for
Atmospheric Research (NCAR).

3. METHODS

3.1. Model construction

Long distance interactions between dif-
ferent parts of the atmosphere (e.g. high
latitudes and low latitudes), known as
teleconnection patterns, can vary with
season (Huth 1997). Since the regression
models incorporate information over a
wide area, these patterns are important.
To allow the model to cope with seasonal
changes in teleconnections, we split the
modelling data into summer (JJA) and a
‘long winter’ (the rest of the year). As
regional climates are forced by global cir-
culation, such that in some locations

almost all of the local variance can
be attributed to large-scale effects
(Wigley et al. 1990), it is important that
a circulation variable is included as a
predictor in the regression models.
Huth (2002) suggests the best down-
scaling models are constructed using
1 temperature-based and 1 circula-
tion-based predictor. In this work,
mean daily temperatures at 850 mb
(T850) and mean daily sea level pres-
sure (SLP) were extracted from a grid
extending over Europe and the east-
ernmost Atlantic Ocean to capture the
large-scale circulations simulated by
the GCM. The reanalysis data grid has
2.5° squares but as there is much spa-
tial homogeneity we extract T850 and
SLP from a sparser grid (5° lat. × 10°
long.) extending from 30 to 80° N and
from 30° W to 40° E. This provides 88
time series for both variables. This
dimensionality is reduced and the lin-
ear dependency removed using prin-
cipal component analysis (PCA) of the
T850 and SLP fields for the summer
and long winter separately. In summer
the first 14 PCs of T850 (which explain
81% of the variance) and the first 9 of
SLP (78% of the variance) are taken as
potential predictors. In winter, the first
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Fig. 1. Location of WMO stations. Stations are split into 5 regions: western
Europe (n), central Alps (M), northeast Europe (e), eastern Europe (s) and
Scandinavia (f). See Table 1 for station details. Named stations with symbols 

surrounded by a circle mark those with long-term climate data

ID Name Country Lat. Long. Altitude
(° N) (° E) (m a.s.l)

1 012380 Fokstua II Norway 62.15 9.28 0974
2 028010 Kilpisjarvi Finland 69.05 20.78 0476
3 066800 Säntis Switzerland 47.25 9.35 2500
4 067300 Jungfrau Switzerland 46.55 7.98 3576
5 067500 Guetsch Switzerland 46.65 8.62 2284
6 067530 Piotta Switzerland 46.52 8.68 1016
7 067590 Cimetta Switzerland 46.20 8.80 1648
8 067820 Disentis Switzerland 46.70 8.85 1180
9 067910 Corvatsch Switzerland 46.42 9.82 3299
10 067920 Samedan airport Switzerland 46.53 9.89 1706
11 075600 Mount Aigoual France 44.12 3.58 1565
12 082150 Navacerrada Pass Spain 40.78 –4.02 1888
13 111460 Sonnblick Austria 47.05 12.95 3107
14 111550 Feuerkogel Austria 47.82 13.73 1621
15 112120 Villacheralpe Austria 46.60 13.67 2160
16 112140 Preitenegg Austria 46.93 14.92 1055
17 114570 Churanov Czech Rep. 49.07 13.62 1126
18 117870 Lysa Hora Czech Rep. 49.55 18.45 1327
19 119300 Lomnicky Stit Slovakia 49.20 20.22 2635
20 125100 Sniezka Poland 50.73 15.73 1613
21 150520 Rarau Romania 47.45 25.57 1541
22 151080 Ceahlau Toaca Romania 46.93 25.92 1898
23 152800 Omu Romania 45.45 25.45 2509
24 153020 Predeal Romania 45.50 25.58 1093
25 160080 S. Valentino alla Italy 45.75 10.53 1461
26 160210 Rolle Pass Italy 46.30 11.78 2006
27 160220 Paganella Italy 46.15 11.03 2129
28 161240 Cisa Pass Italy 44.43 9.93 1040
29 161340 Cimone Italy 44.20 10.70 2173

Table 1. Details of daily data (1994 to 2001) used in this study. Bold values indi-
cate stations for which there is also long-term (from 1958) monthly data. m a.s.l.: 

metres above sea level
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13 (89% of the variance) of T850 and first 10 (88% of
the variance) of SLP are retained. Although it is desir-
able to retain more principal components, practical
restraints on computing time limit the number of
potential predictors. In addition to these circulation
variables, at each surface site considered, we also use
the following data from the nearest reanalysis grid
point: air temperatures at pressure levels 200, 500 and
850 mb (T200, T500 and T850, respectively); minimum,
maximum and mean surface temperatures and SLP.
These combined with the PCA scores give a total of 30
potential predictors. 

The downscaling models were derived by following
a procedure that can be broken down into 6 steps:

Step 1. All time series were split into summer and
long winter components. Steps 2 to 5 were then
applied to data from the 2 seasons separately.

Step 2. All time series were normalised by subtract-
ing the mean and dividing by the standard deviation
following Huth (1999).

Step 3. A process known as ‘leaps and bounds’ or ‘all
subsets regression’ was used to choose the best down-
scaling model in terms of cross validation root mean
squared error (RMSE). For m predictors this method
fits all 2m possible subsets of predictors to the predic-
tand. The fit criterion is Mallow’s Cp:

(1)

where n is number of observations, RSS is the sum of
squared errors, MSE is the residual mean square
error and p is the number of model parameters. A
model that fits well will have a computed Cp value
close to p. If there are several, the model with the
smallest value of Cp is chosen. For each size of sub-
set, the best subset of predictors (in terms of Cp) was
retained leaving 30 possible subsets (models) to
choose between. 

Step 4. The best subset size was found using cross
validation. Data from 1 yr are set aside from the
model building process. The model is constructed
using only the remaining data and then used to pre-
dict the year of data that had been held aside. This
validation process is repeated for every year for
which there are data. Thus for 8 yr of data there are 8
cross validation models built per subset size. The
minimum of the average RMSE values over all of the
validation periods is used to choose the best subset
size.

Step 5. The final fit is produced using all of the data
(no data set aside) with the number of predictors
defined by the best subset size in the cross validation
of Step 4. The best model (in terms of Cp) for this num-
ber of predictors was derived and used to reconstruct
daily temperatures since 1958.

Step 6. The 2 reconstructions of summers/long win-
ters were then combined to provide daily temperatures
from 1 January 1958 to 31 December 2001.

This whole procedure (Steps 1 through 6) was
repeated separately for the daily minimum, maximum
and mean air temperature at each of the 29 stations.

Although the yearly cycle is not explicitly removed
from the data, it is captured in the first principal com-
ponents of the temperature and pressure datasets. It is
thus handled naturally as an integral part of our mod-
elling procedure. 

3.2. Cross validation statistics

Average cross validation statistics were calculated
for the best summer and winter models so that there
were 2 RMSE, mean absolute error (MAE), bias and
skill values for each station. The MAE shows the aver-
age error in the prediction without the disproportion-
ate weighting the RMSE gives to occasional very large
errors. The bias, which is the mean prediction error, is
positive if the model is systematically overestimating
air temperatures (and vice versa). The forecast skill is
defined as:

(2)

by Lorenz (1956) in which xi and x̂i are the actual and
estimated air temperatures in the verification season
for each data point i, and x -c is the mean of the actual
air temperatures in the calibration seasons. The closer
the skill is to 100% the better the prediction.

4. EVALUATION OF MODELS

4.1. Predictors

At each station we have 30 variables (predictors)
derived from the reanalysis assimilation datasets that
can be used for downscaling. Some of these predictors
will be used more frequently than others. To establish
which are the important predictors for downscaling in
European mountains, the number of stations using
each predictor was calculated. The results, in Table 2,
show that when downscaling to surface mean, maxi-
mum and minimum daily air temperatures the T850 at
the local reanalysis grid point is the most used vari-
able with the 1 exception of the minimum daily tem-
perature in winter, which uses the local surface mini-
mum temperature. In general, the summer models use
local grid point data rather than the principal compo-
nents of T850 and SLP. In contrast the winter models
always select at least one of the principal component
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scores to be included in the top 3 predictors. This may
reflect the increased strength of teleconnections in
winter. The summer models typically require only half
the number of predictors used by the winter models,
which could be a function of the relatively small num-
ber of data points available in summer (3 mo com-
pared to the 9 mo used in winter). Since all the mod-
els are thoroughly cross validated, there is no gross
over-fitting even when a large number of predictors
are retained.

4.2. Cross validation statistics

As described in Section 3.1, part of the model build-
ing process at each station involves cross validation.
This allows the predictive accuracy of the model to be
assessed without reducing the amount of data avail-
able for deriving the final model. The error statistics for
the omitted seasons are averaged separately, provid-
ing summer and winter cross validation statistics at
each station. Table 3 summarises these results for daily
mean, minimum and maximum temperatures aver-
aged over all of the stations. The cross validation sta-
tistics quoted for both models are averaged over the
summer and winter models with a time weighting of
3/12 for summer and 9/12 for winter. The MAE and
RMSE values indicate that the summer mean daily
temperature and the winter daily maximum tempera-
ture are the most and least accurately downscaled vari-

ables respectively. In general, the skill of the down-
scaling appears much better in summer than winter.
This is possibly because there is much greater natural
variability in the winter months. For example, average
standard deviations at Jungfrau mountain since 1994
are 3.1°C in summer and 4.4°C in winter. Because the
cross validation skill takes into account the deviation of
the observed data from its mean in the calibration
period, it is possible for a high downscaling skill to be
associated with a high RMSE (e.g. maximum tempera-
tures in the summer model, Table 3). In our work, the
cross validation skill cannot be used to compare
between the summer and long winter models as the
annual cycle in the data distorts the relative values.
The skill is only useful for comparing between stations,
but the RMSE can be used to compare between
seasons.

4.3. Temporal and spatial structure

The accuracy of the temporal structure of the recon-
structions is found by comparing the persistence (lag-1
autocorrelation) of the reconstructions with that of the
observed time series. The persistence of the recon-
structions is calculated over the time period of the sur-
face observations. The results for the mean, maximum
and minimum daily temperatures are shown in Fig. 2.
The mean daily temperature reconstructions have a
temporal structure closer to the observed series (bias
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Variable 1st 2nd 3rd Average no. of
predictors

Mean (summer) Local T850 Local SLP Local T500 12
Mean (long winter) Local T850 PC1 of T850 PC6 of SLP 24
Max. (summer) Local T850 Local surface min. Local T500 13
Max. (long winter) Local T850 PC3 of SLP Local surface min. 22
Min. (summer) Local T850 Local surface min. Local T500 12
Min. (long winter) Local surface min. T850 PC3 of SLP 22

Table 2. Frequency of use of predictors in daily air temperature regression models in order of usage with 1st indicating the pre-
dictor used by the largest number of stations, 2nd by the next largest number and so on. T850 and T500: mean daily temperatures

at 850 and 500 mb, respectively; SLP: mean daily sea level pressure; PC: principal component

Winter model Summer model Both models
Skill RMSE MAE Skill RMSE MAE Skill RMSE MAE

Mean 94.96 1.56 1.21 97.51 1.24 0.96 95.60 1.48 1.15
Min. 92.47 2.00 1.55 94.33 1.49 1.13 92.93 1.87 1.44
Max. 92.62 2.12 1.62 97.03 1.86 1.44 93.72 2.05 1.58

Table 3. Cross validation statistics averaged over all the stations listed in Table 1. Skill: see Section 3.2 Eq. (2); RMSE: root mean 
squared error; MAE: mean absolute error
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0.025°C) than either the minimum or maximum tem-
perature series (biases of 0.048 and 0.065°C, respec-
tively). In all cases, the persistence of the modelled
series is higher than that of the observed. This is unsur-
prising since the reconstructions are produced by lin-
ear regression models that have the effect of damping
any extreme values (caused by local effects) and so
increasing the autocorrelation. The mean daily tem-
perature is less affected than the minimum or maxi-
mum since it has already been damped to some extent
in the averaging process. 

The accuracy of the spatial structure of the re-
constructions is found by examining the inter-station
correlations. This can be performed for all 29 stations
for mean, minimum and maximum temperatures. The
results are so similar that correlations with the mean
temperatures at Lomnicky Stit (identification no.
119300) serve as an indicative example. The contour
plots in Fig. 3 show the correlations of mean air tem-
peratures at each station with those at Lomnicky Stit.

The form of the basic spatial pattern is the same for
observed and reconstructed data, showing an east-
west elongated maximum. However, the spatial
correlations between the reconstructed time series are
significantly overestimated so that the reconstructed
series show higher correlations. For example the corre-
lation contour that runs through the northern Gulf of
Bothnia is 0.8 in our reconstructed series but only 0.75
for the original observations. 

These results show that while the downscaling
reconstructions may have small daily errors they have
significant errors in persistence and spatial structure.
This must be taken into account if these series are used
to determine local climate regimes. 

5. VERIFICATION OF MODELS

Although all our models are cross validated so that
reconstructions with low predictive skill are treated

with caution, there still remains the
problem that for many stations daily
data are only available from 1994. If
the link between the large-scale circu-
lation and the local climate has
changed from 1958 to 2001, then our
models will not necessarily be valid for
this entire time period. Ideally, down-
scaling models should be built using
several decades of data so that they
cover most climatic situations (Zorita &
von Storch 1999). To verify the accu-
racy of our technique the reconstruc-
tions have been compared with
observed monthly data wherever they
are available. The observed monthly
mean data is given as the average of
the mean minimum and mean maxi-

102

Fig. 2. Comparison of persistence (lag-1 autocorrelations) at all stations for mean, minimum and maximum daily air temperature. 
Straight lines: equal persistence in observed and reconstructed time series

Fig. 3. Spatial correlations using the station Lomnicky Stit (119300) for observations 
and reconstructions of daily mean temperatures
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mum daily temperatures over the month rather than
the average of the mean daily temperatures. This
means that verification of reconstructions can only
apply to the daily minimum and maximum tempera-
tures and not to the daily mean as they are not used in
the monthly mean calculation. 

5.1. Verification (1980 to 1990)

Data from the beginning of 1980 to the end of 1990 at
all 29 stations allow validation of our technique for
reconstructing monthly means. For each station, the
error statistics (RMSE, MAE and bias) are calculated
for the summer and long winters separately. In addi-
tion to this, the skills of the reconstructions are calcu-
lated using Eq. (2) (in which the calibration mean is
substituted with the value found using an estimation of
the annual cycle) so that the skill represents the
improvement the model affords with respect to the
annual cycle. Unlike the daily cross validation skill,
which includes the annual cycle, this criterion can be

used for intercomparison between the summer and
long winter models. Error trends are also calculated
using least squares linear regression. The results, in
Table 4, show that our winter models have higher ver-
ification skills than our summer models, which is the
opposite result to that found in the daily cross valida-
tion. The error trends, are either negligible compared
with 0.01.5°C yr–1 for the global average surface tem-
perature rise since 1979 (IPCC 2001), or insignificant
(p > 0.05) at all of these stations. There is a small lag-1
autocorrelation (~0.2) in the errors so that the signifi-
cance of the trends may be slightly overestimated (von
Storch & Navarra 1999). The autocorrelation in the
errors implies a weakness in the model whereby local
short-term weather events are not being reproduced
by the downscaling. 

During the 11 yr period 1980 to 1990 strongly in-
creasing temperatures were observed (Fig 4). The
trends of these surface observations range from 4°C
per 100 yr (at Sniezka in Poland) to 39°C per 100 yr
(at Villacheralpe in Austria) with an average of 23°C
per 100 yr for the European mountains as a whole.
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Stn Skill (%) MAE (°C) RMSE (°C) Bias (°C) Trend in errors
name Winter Summer Winter Summer Winter Summer Winter Summer (°C per 100 yr)

Fokstua II 85.9 80.9 0.69 0.47 0.85 0.59 –0.22 –0.27 –0.0007
Kilpisjarvi 75.9 82.8 1.11 0.57 1.45 0.67 0.66 0.38 –0.0027
Säntis 93.4 75.9 0.45 0.61 0.56 0.68 0.19 0.60 –0.0005
Jungfrau 88.8 68.5 0.51 0.51 0.67 0.61 0.14 0.49 0.0012
Guetsch 92.1 79.6 0.49 0.48 0.62 0.63 –0.02 0.07 –0.0014
Piotta 69.7 74.2 0.76 0.43 0.91 0.55 0.38 0.31 –0.0009
Cimetta 91.3 73.6 0.49 0.46 0.64 0.63 –0.04 –0.08 0.0008
Disentis 84.9 73.8 0.65 0.53 0.82 0.66 0.43 0.43 –0.0021
Corvatsch 87.3 85.4 0.55 0.40 0.71 0.49 –0.45 –0.27 0.0015
Samedan airport 59.8 53.7 1.02 0.68 1.20 0.78 0.38 0.57 –0.0025
Mount Aigoual 95.4 92.3 0.36 0.39 0.45 0.45 0.08 0.03 –0.0003
Navacerrada Pass 94.9 88.3 0.43 0.54 0.53 0.66 0.31 0.49 –0.0004
Sonnblick 93.7 79.7 0.44 0.44 0.54 0.54 0.04 0.41 –0.0005
Feuerkogel 96.1 88.0 0.36 0.36 0.44 0.44 0.08 0.22 0.0016
Villacheralpe 92.7 71.5 0.48 0.58 0.59 0.66 0.35 0.55 –0.0002
Preitenegg 82.7 73.2 0.70 0.49 0.87 0.57 0.52 0.45 –0.0013
Churanov 93.1 91.4 0.48 0.27 0.61 0.35 0.12 0.18 –0.0007
Lysa Hora 94.7 94.3 0.40 0.26 0.53 0.34 0.15 0.15 –0.0006
Lomnicky Stit 93.8 76.1 0.40 0.53 0.53 0.62 0.11 0.50 –0.0001
Sniezka 95.8 95.1 0.38 0.24 0.48 0.29 0.11 0.06 0.0007
Rarau 91.2 70.0 0.53 0.74 0.67 0.80 –0.48 –0.74 –0.0001
Ceahlau Toaca 90.6 93.4 0.60 0.31 0.73 0.40 –0.38 –0.05 0.0001
Omu 87.7 83.7 0.60 0.45 0.78 0.56 –0.23 –0.39 0.0009
Predeal 93.3 87.7 0.42 0.42 0.53 0.49 –0.20 –0.36 –0.0007
S. Valention alla 78.3 54.3 0.71 0.61 0.91 0.73 –0.08 –0.45 –0.0021
Rolle Pass 89.6 70.9 0.53 0.53 0.66 0.65 0.24 0.45 –0.0014
Paganella 94.4 84.0 0.43 0.47 0.52 0.55 –0.04 0.35 –0.0011
Cisa Pass 71.3 75.2 0.74 0.48 0.92 0.63 0.59 0.32 0
Cimone 88.9 84.9 0.52 0.50 0.64 0.57 0.00 0.47 0
Mean 87.8 79.4 0.56 0.47 0.70 0.57 0.09 0.22 –0.0004

Table 4. Statistics of validation errors (reconstructed minus observed data) for monthly means. Trends significant at the 0.05 level 
are shown in bold. Skill: see Section 3.2 Eq. (2); MAE: mean absolute error; RMSE: root mean squared error
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We can check whether our reconstruction technique
is able to determine these observed climatic trends
by directly comparing them with the trends in the
average monthly air temperatures in our reconstruc-
tions. A direct comparison is valid because our
reconstructions are based on surface data from only
1994 to 2001, totally independent from the 1980 to
1990 data. The comparisons (Fig. 4) show that the
observed and reconstructed trends are similar but
the reconstructed trends are generally underesti-
mated. The MAE of the trends is 3.3°C 100 yr per
and the bias (reconstructed trends minus observed) is
1.5°C 100 yr per. 

5.2. Verification (1958 to 2001)

Long-term monthly mean data from 1958 onwards
are available at 8 of the stations. We can use these
stations to examine errors in our
reconstructions since the start of the
NCAR/NCEP reanalysis assimilation.
The minimum and maximum daily
temperatures are filtered with a 30 d
running mean and then averaged in
order to compare with the observed
monthly mean temperatures. Inspec-
tion of the monthly errors (recon-
structed minus observed data) reveals
a time dependency and a positive
bias at some of the stations (Fig. 5).
Fokstua II has a low cross validation
skill (~85%); thus, at this Norwegian

station the errors are large with monthly MAE =
0.63°C. Although there is no strong trend in the
yearly averaged errors, further back in time the sum-
mer and winter errors have an increasingly negative
and positive bias, respectively. At the Alpine stations
of Säntis, Jungfrau and Sonnblick there are signifi-
cant positive biases to our reconstructions before
1990 and very large positive biases prior to 1970. The
bias is most dramatic at Jungfrau mountain, where
average yearly errors are as large as 2°C before 1970.
At Mount Aigoual in France there is no bias until
before 1966, when errors are consistently positive
although still fairly small. This reconstruction is our
most accurate with a monthly MAE of 0.37°C. At
Navacerrada in Spain there is a general positive bias
to the reconstructions prior to the model building
period (1994 to 2001), and monthly MAE = 0.49°C. In
the Czech Republic at Churanov Mountain there is
again a positive bias mostly caused by the winter
model while the summer temperature reconstructions
appear fairly accurate. In contrast, at Lomnicky Stit,
only 500 km to the east, we have large positive errors
in summer. They are balanced by a negative bias in
the winter reconstructions to give no trend in the
yearly average. 

To assess whether these error patterns are localised
or regional the correlation between the errors at each
station was calculated (Table 5). The values clearly
show that the errors at the 3 Alpine stations (Säntis,
Jungfrau and Sonnblick) are highly correlated but dis-
tinct from other stations. Thus the large errors in the
Alps are not station specific but are particular to this
region. This could imply that any of the following have
occurred in this region: (1) incorrect regression models
have been chosen; (2) a change has occurred in the
link between large-scale and local climate which is not
captured by the regression model; (3) inaccuracies
occurred in GCM simulation; (4) there was a change in
measurement techniques at all 3 Alpine stations.
These possibilities are discussed in detail in the follow-
ing sections.
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Fig. 4. Comparison of trends in monthly mean data for
observed and reconstructed time series from 1980 to 1990.
Straight line: perfect correspondence between observed and
reconstructed. (Note: trends are very high over this 11 yr time 

period, indicating rapid warming through the 1980s)

Fokst. Sänt. Jung. Aig. Nava. Sonn. Chur. Lom.

Fokst. 1 –0.12 –0.05– –0.01– 0.02 –0.09– 0.17 0.02
Santis 1 0.55 0.17 0.08 0.54 0.11 0.13
Jung. 1 0.27 0.06 0.62 0.23 0.23
Aig. 1 0.13 0.19 0.20 –0.04–
Nava. 1 0.09 0.11 –0.02–
Sonn. 1 0.16 0.36
Chur. 1 –0.07–
Lom. 1

Table 5. Correlation of validation errors between the 8 long-term stations of
Table 2. (See Table 2 for full station names.) Bold values indicate correlations 

above 0.5
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Fig. 5. Monthly mean validation errors (reconstructions minus observed data). (n) Summer months; (d) winter months; thick lines: 
yearly running mean
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5.2.1. Poor choice of downscaling model

Reconstructions at Jungfrau mountain show the
largest error trends. Therefore, to check that these
error trends are not dependent on the form of the
downscaling model, many regression models were
examined. Rather than choosing the single best sum-
mer and winter models that gave the lowest cross vali-
dation error, 400 models were examined for Jungfrau
mountain. These were random combinations of the 60
maximum temperature models (30 for summer and 30
for winter) and 60 minimum temperature models
selected by the all-subsets regression. These models
were then used to reconstruct mean monthly air tem-
peratures since 1958 and compared with the observed
data. The errors for all 400 models followed an almost
identical pattern, showing large increases prior to
1970. The range of monthly error values for each
model had a maximum value of 0.86°C and an average
value of 0.38°C. These results serve to demonstrate
that the downscaling is not dependent on the exact
choice of predictors. We further note that even if the
T850 and SLP predictors are erroneous the same trend
in errors occurs when using just the surface minimum,
maximum and mean temperatures from the nearest
grid point. In summary, the errors shown in Fig. 5 are
not simply caused by choosing a poor model.

5.2.2. Changes in the mode of circulation not captured
by our 1994 to 2001 regression models

Alpine climate is strongly related to the North At-
lantic Oscillation (NAO) (Wanner et al. 1997). Our
model building period coincides with a period of high
index NAO associated with zonal flow. However, the
1970s are a low index period, associated with merid-
ional flow, so it seems feasible that changes in the NAO
could have caused a change in the link between gen-
eral circulation and local climate. On the other hand,
the NAO is essentially a winter climate mode and errors
in our reconstructions are, in most cases, higher in sum-
mer. To quantify the effect of the NAO on local climates
the NAO index (normalised pressure difference be-
tween the Azores and Iceland) for winter (DJFM) is cor-
related with observed mean winter air temperatures at
each station (Table 6). It is apparent that with the ex-
ception of Lomnicky Stit all the stations are highly cor-
related with the NAO. The next step is to establish
whether the errors between our reconstructions and the
observed data are correlated with the NAO. The results
(Table 6) show that the largest correlations are with the
errors at Lomnicky Stit and Mount Aigoual. Observed
air temperatures at Lomnicky Stit are weakly affected
by the NAO (correlation = 0.23) but the errors are

strongly affected (correlation = 0.43), implying that our
reconstructions at this station are too heavily influenced
by the NAO. This is possibly due to the coarse grid in
the original GCM simulation. However, at Mount
Aigoual the air temperatures are highly correlated
(0.59) and the errors also show an anti-correlation
(–0.32), implying that when the NAO is in its negative
phase our temperature reconstructions are too warm
(and vice versa). To uncover any other links between
our errors and large-scale circulation patterns, 12 other
circulation indices, as defined by the Climate Predic-
tion Center and available at www.cpc.ncep.noaa.
gov/data/teledoc/telecontents.html, were correlated
with the summer and winter retrodiction errors at each
station. In winter all correlations were very low, the
highest correlation out of over a hundred pairs exam-
ined being 0.34 (between Navacerrada and the Pacific
Transition Pattern). This is surprising because the Pa-
cific Transition Pattern is prominent between May and
August, but it is aligned along the 40° N latitude circle
on which Navacerrada lies. Correlations in summer
were very low, with no correlations greater than 0.30.
Overall, the occasional modest correlations between
teleconnection patterns and the errors in our recon-
structions are found. However, these results are unable
to explain the large errors found in the central Alps and
do not support the idea that a change in the influence of
the large-scale circulation on the local climate has oc-
curred. 

5.2.3. Inaccuracies in the reanalysis output data 
pre-1970

Biases in the reanalysis data pre-1970 could be caused
by paucity of observed data in this region to input to the
reanalysis model during this time. Reanalysis assimila-
tions are a composite of many different datasets such as
land-based and ship-based measurements, upper air
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Stn NAO and observed NAO and
name air temperatures errors

Fokstua II 0.65 –0.29
Säntis 0.49 –0.12
Jungfrau 0.53 +0.10
Mount Aigoual 0.59 –0.32
Navacerrada Pass 0.64 –0.15
Sonnblick 0.52 0.00
Churanov 0.66 –0.04
Lomnicky Stit 0.23 +0.43

Table 6. Correlation coefficients of air temperatures and
reconstruction errors with the North Atlantc Oscillation
(NAO) for the winter months (DJFM). Bold values indicates 

correlations above 0.5
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data, satellite observations and numerical weather
forecast output, but are obtained through the use of a
consistent circulation model. Very different weightings
can be given to these datasets. For example, surface
measurements over land, with strong local biases, are
often given little or no weight. Changes, through the
reanalysis period, in the distribution, types and quality of
the observations such as those of radiosonde and satellite
can potentially lead to substantial inhomogeneities (Up-
pala 1997). Trenberth et al. (2001) give an example for
the tropics with jumps to warmer values below 500 mb in
1986 and 1989. Other analyses point to jumps around
November 1978 between the pre- and post-satellite
periods at the 100 mb level. Shifts in the reanalysis
moisture fields (Trenberth & Guillemot 1998, Poccard et
al. 2000) have similarly been noted in the mid-1970s and
mid-1980s. Problems have also been recorded for
surface pressure fields in the North Atlantic before 1968,
where all observed pressure data below 1000 mb occur-
ring during extra tropical cyclones were not input to the
reanalysis model due to an error (Bob Kistler, http://
wwwt.emc.ncep.noaa.gov/gmb/bkistler/psfc/psfc.html).
However, it is unlikely that these discrete events could
cause the general error trend we observe for the Alpine
stations.

5.2.4. Changes in measurement technique or changes
to the type and location of the stations

Another cause of the large errors we find prior to
1970 could be changes in measurement technique or
changes to the type and location of the mountain sta-
tions. According to Weber (1993), between 1978 and
1981 some of the Swiss stations were completely
changed to automatic measurement systems with elec-
tronic thermometers and a nearly continuous record-
ing of data every 10 min. In 1961 the station at Säntis
changed from a small metallic shelter attached to the
north wall of a building to a standard Stevenson screen
(Weber 1993). The time of reading was also changed in
Switzerland around 1970 (Weber 1993) with the big
difference that the reading of the maximum tempera-
ture was changed from evening to morning. As
described by Karl et al. (1986), this can have a large
effect on daily minimum and maximum values. Thus, it
is possible that a bias in the daily mean temperature
(the arithmetic mean of the maximum and minimum)
occurs around 1970 at the Swiss stations, which coin-
cides with the errors found in our reconstructions. To
investigate this source of error further we made 3 types
of check. Firstly, we used Alexandersson’s (1986)
method to recheck the homogeneity of the long-term
mountain station data. Secondly, we compared the
trends in our reconstruction with those described by

Weber et al. (1997) and Beniston et al. (1994) for the
Alps. Thirdly we compared our reconstructions with
the observed monthly data from the gridded homo-
genised dataset, CRUTEM1 (Jones 1994). 

Alexandersson’s (1986) method reveals no major
homogeneities, discrepancies, or sharp breaks in the
records of the 3 Alpine stations of Jungfrau, Säntis or
Sonnblick, when they are taken in comparison to one
another and to a lowland reference series based on
Basel, Geneva, Milan and Vienna. However, we note
that the trends in mean temperature at Jungfrau (1958
to 1990) are the most extreme (most positive) of all 7 of
these series, by a factor of almost 2. We find many sim-
ilarities between our reconstructions and the trends
reported by Weber et al. (1997) and Beniston et al.
(1994). For example in the Alps the strongest warming
trends in our reconstructions (Table 7) are for the
winter season, especially in maximum temperatures.
Weber et al. (1997, their Table IV) and Beniston et al.
(1994, their Figs. 18 & 19) find exactly the same. Fur-
thermore, Weber et al. (1997, their Table IV) report
that the strongest cooling trends in the Alpine area
took place in the eastern Alps, particularly in summer
(JJA) and autumn (SON) months at mountain sites. We
similarly reconstruct the most negative trends in the
autumn at our mountain sites in the NE Alps (Table 7).
Thus, even in the 1 region (Alps), and 1 time period
(pre-1970), where the bias in our reconstructions is
somewhat higher than might have been hoped for (see
Säntis, Jungfrau and Sonnblick in Fig. 5), we never-
theless correctly deduce the main features not only of
the inter-annual variability but also of the long-term
trends. One difference between our mountain site
reconstructions and the trends reported by other work-
ers is for autumn temperatures in the central Alps. We
deduce (Table 7) an average cooling trend of –1.33°C
per 100 yr; however, in contrast Weber et al. (1997),
Beniston et al. (1994) and CRUTEM1 all report a
warming. Turning our attention more closely to the
CRUTEM1 gridded homogenised dataset, the grid
square which contains Jungfrau mountain does not
contain any data but the adjacent square (45–50° N ×
10–15° E) contains nearly continuous monthly data
over 1958 to 2001. The correlation between the grid
square CRUTEM1 temperatures and our reconstructed
temperatures at Jungfrau mountain is 0.65 (annual
cycles removed), indicating that this comparison is
valid. The difference between our reconstructions at
Jungfrau mountain and the mean temperature in the
grid square is shown in Fig. 6. The difference between
these 2 time series remains approximately constant
over the whole time period. The same result was found
for both Sonnblick and Säntis. We note in Table 8 that
the main negative temperature trends in CRUTEM1
(1958 to 2001) are for the autumn, in east Europe and
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NE Alps. Otherwise, CRUTEM1 trends are positive, or
negligible. Our one discrepancy with CRUTEM1 (1958
to 2001), and with Weber et al. (1997) and Beniston et
al. (1994), is for the central Alps in autumn, where we
incorrectly reconstruct a cooling that mainly occurred
further to the east.

In summary, verification of our downscaling models
is generally very good. However, high bias is found
pre-1970, especially at Jungfrau mountain and to a
lesser extent Sonnblick and Säntis. These discrepan-
cies can be mainly explained by difficulties with the
early observations at Jungfrau, and to a certain extent

by problems with our pre-1970 autumn downscaling in
the central Alps. 

6. LONG-TERM TRENDS ACROSS EUROPE

One of the main reasons to create long time series
temperature data is to examine trends in regional
climates. Table 7 summarises our reconstructed Euro-
pean trends in terms of 5 mountain regions. All 5
display rising temperatures. Rates of up to 4.42°C per
100 yr for maximum temperatures are found in the
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Summer Winter Autumn Spring Annual 
(°C per 100 yr) (°C per 100 yr) (°C per 100 yr) (°C per 100 yr) (°C per 100 yr)

Western Europe (2)
Min. 3.06 2.79 0.89 2.11 2.16
Max. 4.42 4.09 1.69 3.24 3.34
DTR 1.37 1.31 0.80 1.13 1.18

Central Alps (18) 
Min. 0.95 2.95 –1.57– 0.57 0.51
Max. 2.36 4.18 –1.10– 1.41 1.57
DTR 1.41 1.23 0.47 0.84 1.06

Eastern Europe (4)
Min. 1.40 2.03 –0.26– 0.25 0.32
Max. 2.31 2.95 –1.11– 0.87 0.93
DTR 0.90 0.91 0.15 0.62 0.61

NE Alps (3)
Min. 1.70 4.12 –1.48– 1.64 1.34
Max. 2.14 4.24 –1.58– 2.29 1.63
DTR 0.44 0.14 –0.09– 0.65 0.29

Scandinavia (2)
Min. 0.50 4.26 –1.16– –0.67– 0.83
Max. 0.98 3.18 –1.18– –1.10– 0.63
DTR 0.48 –1.07– –0.03– –0.42– –0.20–

All regions (29)
Min. 1.18 3.02 –1.32– 0.66 0.73
Max. 2.42 3.93 –0.96– 1.39 1.56
DTR 1.24 0.91 0.36 0.73 0.83

Table 7. Linear trends in reconstructed data (1958 to 2001). Bold values indicate trends significant at the 2-tailed 5% level.
Annual trends are taken from yearly averages. Seasonal trends are taken from seasonal averages. Number of stations in each 

region is shown in parentheses. DTR: diurnal temperature range

Summer Winter Autumn Spring Annual 
(°C per 100 yr) (°C per 100 yr) (°C per 100 yr) (°C per 100 yr) (°C per 100 yr)

Western Europe 4.24 1.68 1.52 4.28 2.93
Central Alps 2.56 1.25 0.43 1.56 1.45
Eastern Europe 2.35 1.11 –1.04– 1.19 0.90
NE Alps 1.88 2.80 –0.69– 1.66 1.41
Scandinavia –0.26– 4.25 0.17 0.77 1.23
All regions 2.10 2.27 –0.12– 1.80 1.51

Table 8. Linear trends in lowland mean monthly temperatures from CRUTEM1 (1958 to 2001). Bold values indicate trends sig-
nificant at the 2-tailed 5% level. Annual trends are taken from yearly averages. Seasonal trends are taken from seasonal 

averages
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westernmost region. In order to further check the valid-
ity of our reconstructions over this 44 yr time span we
can compare the reconstructed trends with the obser-
vations at the 8 stations where long records exist. As
noted above, a change occurs around 1970 at 3 alpine
stations and so a comparison of the observed and re-
constructed trends for post 1970 is also useful. The 1958
to 2001 and 1970 to 2001 trends are compared in Fig. 7.
In general, the results indicate that the reconstructed
trends are underestimated. The most extreme underes-
timation is Jungfrau mountain, which shows a recon-
structed trend of only 1.8°C per 100 yr as opposed to the
observed trend of 4.9°C per 100 yr between 1958 and
2001. The observed trend at Jungfrau mountain is
higher than those observed at the other 7 long-term sta-
tions over the period 1958 to 2001 (Fig. 7). The differ-

ence in observed trends could imply that the observed
trend is incorrect and that the errors found before 1970
are due to inhomogeneities in the observed data. Figs. 4
& 7 show that the trend in mean monthly air tempera-
tures has increased with extremely high trends from
1980 to 1990. In this decade the NAO was predomi-
nantly in its high index phase, which is related to lower
temperatures over the Atlantic Ocean and higher tem-
peratures over the European continent (Hurrell 1995). 

6.1. Comparison of reconstructed trends with
established climatic trends in mountains 

Our temperature reconstructions can be compared
with published trends for the globe, for other mountain
regions and for the European lowlands. Global climate
trends are characterised by a faster rate of increase in
minimum temperatures than maximum temperatures,
leading to a decrease in the diurnal temperature range
(DTR) (Karl et al. 1993, Easterling et al. 1997). This is
equivalent to a day-night asymmetry since the daily
minimum temperature usually occurs at night and the
maximum during the day. It has been suggested that
the cause of this asymmetry could be an increase in
cloud cover (Karl et al. 1993). However, in some areas
of the world the pattern has been different. According
to Weber et al. (1994, 1997), one such area is the moun-
tain region of central Europe where low-lying stations
show the same pattern as the global trend but moun-
tain top stations show maximum temperatures have
increased at similar rates to minimum temperatures.
Increased cloud cover concentrated at lower elevations
could cause such an effect. When our downscaled
reconstructions at all 29 stations are averaged to give
an overall temperature trend for the European moun-
tains in the period 1958 to 2001 (Fig. 8), the daily max-
imum temperatures appear to have risen faster than
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Fig. 6. Difference between monthly means of reconstructed temperatures at Jungfrau mountain and the average temperatures in
grid square 45–50° N × 10–15° E in the CRUTEM1 dataset. (d) Monthly values; thick line: yearly running mean; thin (horizontal) 

line: mean difference between the 2 time series

Fig. 7. Comparison of trends in monthly mean data for
observed and reconstructed time series from 1958 to 2001 and
1970 to 2001. Straight line: perfect correspondence between 

observed and reconstructed



Clim Res 26: 97–112, 2004

the daily minimum temperatures. Thus, there has been
an overall increase in the DTR in European mountains,
the opposite of the global trend. 

As described in the verification work of Section 5.2.4,
the main trends, with the exception of Jungfrau, that
we reconstruct are generally in good agreement with
those of other workers (e.g. Beniston et al. 1994, Weber
et al. 1997). However, to examine the trends more
thoroughly our reconstructions have been split into 4
seasons (DJF, MAM, JJA, SON) and 5 regions (western
Europe, central Alps, eastern Europe, northeast Alps
and Scandinavia). The locations of these regions are
shown in Fig. 1. The trends of minimum and maximum
temperatures and DTR for each season (and annually)
in each region are listed in Table 7. Trend calculations
using a regression approach are based on the assump-
tion of independence (non-autocorrelated errors).
Here the data have a yearly separation but examina-
tion of the error structure shows some autocorrelation
(typically only 0.25 or less). This means that while the
trend calculations are correct the significance of the
trends may be slightly overestimated (von Storch &
Navarra 1999). 

In all regions there are no statistically significant
(p < 0.05) trends in autumn. Most of the significant
trends occur in winter with larger trends in maxi-
mum than minimum temperatures everywhere
except Scandinavia. In one sense, this pattern is con-
trary to Weber et al.’s (1994) analyses which indi-
cated that most of the warming in the central Alps

had taken place in the autumn. In western Europe
(Navacerrada and Aigoual) we reconstruct significant
increases in both maximum and minimum tempera-
tures in summer and winter. The maximum tempera-
ture increases at a faster rate leading to increases in
the DTR. This is in contrast to the observations for
Pic du Midi in the French Pyrenees (Dessens &
Bücher 1995), which is situated in between our sta-
tions. At Pic du Midi the minimum temperature
increased at a much faster rate than the maximum.
In the northeast Alps the only significant trends of
maximum and minimum reconstructed temperatures
are in winter, when they are roughly equal and very
pronounced. However, Weber et al. (1997) reported a
strong significant increase of minimum daily temper-
atures in spring for this region, a time when we have
no significant trends. In the central Alps the signifi-
cant trends in reconstructed maximum temperatures
are in summer and winter, leading to an increase in
DTR. Weber at al. (1997) found maximum and mini-
mum temperatures increased mainly in winter and
annual trends of maximum and minimum were
roughly equal with only small changes to DTR over
the period 1951 to 1990. In eastern Europe our
reconstructed trends show a significant increase in
maximum temperatures in summer and significant
increases in DTR in all seasons except autumn.
Weber et al. (1997) report very similar patterns. Our
reconstructions in Scandinavia show different warm-
ing trends to the rest of Europe with no significant
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Fig. 8. Mean yearly maximum, minimum temperatures and diurnal temperature range (DTR) of reconstructions averaged over all
29 stations. Data are shown as anomalies from the mean value over the 1958 to 2001 period (thin horizontal lines). (d) Yearly 

anomalies; thick lines: 5 yr running mean
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seasonal trends, agreeing with Diaz & Bradley
(1997), who found Scandinavia does not show the
recent warming seen elsewhere. 

Overall, our results for high elevation sites suggest
that the strongest warming has occurred in western
Europe with rather weaker warming in eastern Europe
and Scandinavia. All regions except Scandinavia show
a faster increase in maximum temperature than in min-
imum temperature, occurring mainly in winter. Fur-
thermore our reconstructions indicate that on average
the DTR has increased. These results, although contra-
dicting some of Weber et al.’s (1994, 1997) analysis dis-
play the general spatial pattern observed by Diaz &
Bradley (1997) regarding large warming trends in
western Europe and small warming trends in eastern
Europe and Scandinavia. 

6.2. Comparison with lowland trends

It is also possible to compare our reconstructed
trends with trends in mean temperatures determined
from predominantly lowland data. To do this we aver-
aged mean monthly data from the relevant grid
squares in the CRUTEM1 (Jones 1994) dataset. The
comparisons (Table 8) show the CRUTEM1 trends
have much in common with our reanalysis downscal-
ing. Indeed, the broad spatio-temporal patterns of
temperature trends across Europe are very compara-
ble. Here we focus on the similarities. First, the
annual trends are highest for western Europe, and
lowest for eastern Europe and Scandinavia. Secondly,
the seasonal trends also show many common fea-
tures. Trends are strong for the summer months par-
ticularly in western Europe, but with both our recon-
structed mountain trends and the ‘lowland’ trends
showing little or no trend in Scandinavia. In winter,
trends have in general been lower. Once again Scan-
dinavia is the exception with both our upland recon-
structions and the ‘lowland’ trends being higher than
elsewhere in Europe. Autumn trends are low every-
where in both datasets. Finally, in spring, western
Europe and to a lesser extent NE Europe have expe-
rienced the high trends. However, while the spatio-
temporal patterns match well, the magnitudes of the
trends tend to be lower in our reconstructions for
mountain regions. We have an average annual tem-
perature increase, over all regions, of only 1.1°C per
100 yr in comparison to 1.5°C per 100 yr in the ‘low-
lands’. In general, the magnitudes of the trends in
maximum temperature in the mountains are compa-
rable with magnitudes of the trends in mean temper-
ature in the lowlands. Once again Scandinavia
breaks the general rule set by the normal European
situation. 

7. CONCLUSIONS

In this work linear regression models built on short-
term daily data (1994 to 2001) are used to reconstruct
daily mean, minimum and maximum air temperatures
back to 1958 at 29 mountain weather stations. This
study attempts to analyse the accuracy of these down-
scaled air temperatures by answering the 8 questions
raised in the ‘Introduction’. Below is a summary of the
answers: 

(1) Is there a difference in the accuracy of down-
scaled minimum, maximum and mean daily air tem-
peratures? Yes, mean air temperatures are the most
accurately downscaled. Minimum daily temperatures
are the least accurate. 

(2) Is there a seasonal difference in downscaling
accuracy? Yes. The skill is higher in winter. However,
the natural variability is larger in winter so the
absolute errors are generally higher than in summer. 

(3) Are temporal and spatial structures in the tem-
perature series correctly downscaled? No, the persis-
tence (lag-1 correlations) is consistently overestimated,
particularly for the daily minimum and maximum air
temperature reconstructions. The spatial correlations
are also overestimated.

(4) Which reanalysis variables are the most impor-
tant predictors? The air temperature at the 850 mb
pressure level at the reanalysis grid point nearest to
the station of interest is the most used variable. Princi-
pal components of SLP and T850 are more often used
in the winter rather than summer models. In general
the summer models require about half the number of
predictors used by the winter models. 

(5) Can we accurately reconstruct air temperatures
between 1980 and 1990? Over this period there is very
little bias (0.09°C) in the winter reconstructions but
summer temperatures are slightly over estimated
(0.22°C). Individual monthly mean temperatures can
be reproduced to within ~0.5°C, and there are no
trends in the errors.

(6) Can we accurately reconstruct air temperatures
back to 1958? In some locations the reconstructions back
to 1958 are reasonable, but at 3 alpine stations the ap-
parent errors increase prior to 1970. Whether this change
is due to inaccurate downscaling, inaccuracies in the re-
analysis assimilation or inhomogeneities in the observed
climate data remains to be determined. Our validation
and verification studies point to caution in extrapolating
these models further back in time than 1970.

(7) How accurate are the long-term climatic trends
derived from reconstructed temperatures? In general
the long-term trends are underestimated in the recon-
structed data. This underestimation is very pro-
nounced for the time periods 1958 to 2001 and 1970 to
2001, and occurs to a lesser extent in 1980 to 1990. 
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(8) How do the reconstructed trends compare with
established climate trends? Overall, the reconstruc-
tions indicated that maximum temperatures are rising
faster than minimum temperatures, resulting in an
increase in the DTR from 1958 to 2001. This is in dis-
agreement with some published trends (e.g. Weber
1994, 1997) which show maximum and minimum tem-
peratures to be increasing at approximately equal
rates in the European mountains with insignificant
changes in DTR. However, our reconstructed trends for
maximum temperatures are very similar to those for
mean lowland temperatures.
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