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Summary . This paper describes a new method of smoothing noisy data, such
as palacomagnetic directions, in which the optimum degree of smoothing is
determined objectively from the internal evidence of the data alone. As well
as providing a best-fitting smooth curve, the method indicates, by means of
confidence limits, which oscillations or fluctuations in the fitted curve are
real. The procedure, which is illustrated by an analysis of palacomagnetic
declination directions from Lake Windermere, has potential applications
throughout the Earth Sciences. It may be used in any investigation requiring
the estimation of a smooth function from noisy data, provided certain basic
assumptions are reasonably satisfied.

1 Intreduction

Palaeomagnetic directions are dispersed by geomagnetic secular changes and random errors,
such as orientation and measurement errors, and secondary magnetizations. Time-averaged
directions of the ancient geomagnetic field have been accurately calculated from the mean
directions of large collections of several hundred samples. Early palacomagnetic results
produced a time-average geocentric axial dipole field model. However, as palaecomagnetic
results have increased in quality and quantity a number of small deviations from the geo-
centric axial dipole model have been consistently found. Cox (1975) has recently outlined
the persistence, symmetry and importance of these geomagnetic nondipole components as
deduced from studies of continental lava flows. Lake sediments offer an environment for
obtaining ordered records of these geomagnetic features on a timescale of 10°—~10°yr. On
account of the inherent scatter of palacomagnetic directions some averaging is needed to
estimate reliably the ancient geomagnetic field directions. However, too much smoothing of
the time series obscures the secular changes of the geomagnetic field which the investigator
is striving to elucidate. Smoothing supposedly equivalent palacomagnetic direction data
sets, with unequal signal-to-noise ratios, is a particularly common problem which becomes
highly subjective. For example, the lower limit of detectibility of geomagnetic inclination
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variation in Lake Windermere has been placed at the low-amplitude (3°) variations at 340
and 360 cm depth (Thompson 1973, Fig. 2) by Creer & Kopper (1974), whereas Thompson
(1975) suggests a variation of over 6° amplitude, such as between 100 and 140 cm, was a
more realistic lower limit. A more extreme example stems from Swedish sediments where
Noel (1975, Fig. 6) noted ‘A striking feature of the Starno postglacial profile is the presence
of 3% regular cycles in magnetic inclination with a 4° amplitude’. In contrast Thompson
(1976) considers ‘The Starno Post-Glacial (inclination) data are...simply ... scatter’,
implying a lower limit of detectability in excess of 20°, due largely to the paucity of Noel’s
data. An objective statistical treatment based on the continuity of palacomagnetic directions
is clearly needed to establish the best-fitting function.

In this paper, we illustrate such a curve-fitting method, given by Clark (1977), by
applying it to a set of palacomagnetic declination directions (Fig. 1) from Lake Windermere,
measured by Mackereth (1971).
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Figure 1. Declination as a function of depth of sediment at Lake Windermere. Central curve is the best-
fitting smoothed estimate of the true function F relating declination to depth, as derived by the method
described in this paper. The two extreme curves are the 95 per cent prediction limits for future
independent observations of declination; the remaining two curves are the 95 per cent confidence limits
for F.

2 Mathematical model and assumptions

The given sequence of paired measurements (x;,¥;),i=1,...,n of depth and declination
are assumed to satisfy the model

Vi=F(x)+e i=1,....n 1)
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where x; denotes the measured depth of the ith sample from the core and y; the correspond-
ing measured declination. The variable e; represents the overall error of measurement in the
observation y;, that is, the net effect of errors due to instrumental noise, sample orientation
and sedimentological variability. The {e;} are assumed to be independent normally
distributed random variables with zero mean and constant variance o? (initially unknown),
while the {x;} are assumed to be known exactly, with no error of measurement. The
function F represents the underlying idealized functional relationship between declination
and depth for Lake Windermere, describing implicitly the secular variation of the
geomagnetic field. In other words, at each depth x, F(x) denotes the true geomagnetic
declination, relative to the chosen reference direction, at Lake Windermere at the time
corresponding to that depth. Our only assumption concerning the function F is that it is
‘smooth’; our aim is to estimate, and place confidence limits on, this unknown function,
under this minimal assumption.

These assumptions, although an approximation to the real world, are readily justified, and
seem reasonable in practical terms. For example, although there would be some error of
measurement, however small, in the observed depths {x;}, any such errors would be
negligible compared with the overall errors in the declinations, and so the former may be
safely ignored. Similarly, while it is most unlikely that the {e;} are exactly normally
distributed, it is likely, essentially because of the Central Limit Theorem (Cramér 1946,
p. 231), that their probability distribution would be a very close approximation to the
normal distribution. The assumption of normality, or equivalently, of a Fisherian distribu-
tion (Fisher 1953) with high concentration parameter, has been considered acceptable for
typical palacomagnetic data (e.g. Collinson, Creer & Runcorn 1967; McElhinny 1973).

In general, the precision of the declination measurements, or equivalently, the variance
of the residual errors {e;}, need not necessarily be the same for all samples from a given
core. For instance, sedimentological processes such as micro-slumping, differential com-
paction or diagenesis need not be uniform along the core, implying that errors due to these
factors alone may be greater in some parts of the core than others. In such cases, the
smoothing procedure described below may be readily modified to account for these or
similar effects, provided the ratios of the error variances to one another are known, or can
be reasonably estimated. In the present case of the Windermere declination record, there was
no ¢ priori reason to suggest that any particular measurements of the declination would be
less precise than others. Subsequently statistical analyses confirmed that the assumption of
constant error variance was indeed justifiable for this particular set of data.

We make no assumptions concerning the form of F, the underlying empirical function or
curve relating declination to depth. For instance, we do not assume that F is a polynomial,
or a sum of exponential terms. Our assumption that F is ‘smooth’, i.e. differentiable, reflects
a basic tenet of geophysics, namely that past secular variations in geophysical parameters
(such as geomagnetic directions) have been smooth and gradual.

3 Smoothing procedure

When smoothing a given set of data, one must decide on (i) the method of smoothing and
(ii) the degree or extent of smoothing. We consider these issues separately.

3.1 METHOD OF SMOOTHING

We consider four possible methods of smoothing, namely, by fitting (i) a polynomial of
appropriate degree by least-squares, (ii) an interpolating cubic spline to smoothed points
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obtained by Fourier-filtering (Thompson & Kelts 1974), (iii) an approximating cubic spline
directly (Reinsch 1971; Greville 1969; Schoenberg 1964), and (iv) the estimator developed
by Clark (1977). The first method was rejected principally because polynomials are generally
unsatisfactory as approximations to empirical functions (Rice 1969, p. 123). The second
method is intuitively appealing, but has the disadvantage that the choice of the parameters
in the Fourier-filtering was arbitrary. Further, it would appear that this method would not
have the optimal properties of method @(ﬁ‘u‘).

Although there are strong theoretical arguments in favour of the third method, we in
fact used the fourth method, based on convolution-smoothing of a first-order interpolating
spline. The properties of this method are similar to those of the & approximating cubic
spline of Reinsch & Schoenberg, particularly for moderate degrees of smoothing, but the
new method is simpler and quicker computationally. This reduction in computing effort
can be considerable, especially when a large number of smoothed curves must be derived in a
trial-and-error process, as in the cross-validation method described below.

The smoothing formula given by Clark (1977) may also be regarded as a special type of
moving average, as it can be written as

fG) =3 uilx)y; @

where f(x) is the smoothed estimate of F((x), the ‘theoretical’ declination at depth x, and the
{u;} are known (piecewise polynomial) functions of x. The extent of the smoothing is
determined by a single parameter called the bandwidth. In general, the only non-zero terms
in the summation (2) are those corresponding to observations within roughly one band-
width of the current depth x;in short, the larger the bandwidth, the heavier the smoothing.

3.2 DEGREE OF SMOOTHING

The degree of smoothing of the data is more crucial than the method of smoothing to be
employed. If the smoothing is too heavy, some of the fine detail of F may be lost, while too
little smoothing may produce spurious kinks or undulations as the fitted curve ‘chases’
the random noise in the data. The cross-validation method is a remarkably adaptable and
successful technique for determining objectively the appropriate degree of smoothing,
using only the internal evidence of the data.

To determine the appropriate bandwidth for smoothing the Windermere declination
record, we used a modification, described in Clark (1977), to the cross-validation technique
used for example by Wahba & Wold (1975) and reviewed by Stone (1974). Briefly, the
method is as follows. Ten per cent of the observations, chosen at random by computer are
temporarily deleted from the record, and a smooth curve is fitted to the remaining points,
using (2) and a given bandwidth. One then examines collectively the differences between
the declination predicted by this curve and the actual observed declination at each of the
points originally deleted. This procedure is then repeated for different random selections
and different bandwidths. The optimum bandwidth is then the one which minimizes the
average sum of squares of the differences between ‘observed’ and ‘predicted’ declinations.
Further details are given in Clark (1977, Section 4).

Experiments with artificially-generated data reported by Clark (1977) indicate that this
method is remarkably effective in finding the ‘right’ degree of smoothing in a variety of
situations. If the data are ‘good’, i.e. the signal-to-noise ratio is relatively high and/or the
spacing between abscissae is relatively small, our smoothing procedure (using (2) and the
optimum bandwidth) will recover most of the fine structure of the underlying function F.
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If the data are ‘poor’, only the main trend of F can be recovered, as expected. On the other
hand, the method does not produce spurious kinks, in either situation.

In principle, the method of cross-validation can be used to determine the right degree
of smoothing for any method of smoothing. For example, Wahba & Wold (1975) use cross-
validation to determine the smoothing parameter (their A) of Reinsch’s approximating cubic
spline. Their very extensié simulation experiment gives compelling evidence of the
effectiveness of the cross-validation procedure.

In addition, the method of cross-validation enables one to estimate o2, the variance of the
error terms {e;}, measuring the scatter of the observations about the true curve F (see
Appendix A). As well as being of intrinsic interest, this estimate is essential for the
derivation of confidence limits and prediction limits (see Appendix B).

4 Summary of results

The results of crossvalidation smoothing of the declination measurements from Lake
Windermere are summarized in Figs 1 and 2. The confidence limits and prediction limits
should be interpreted as follows. At any given depth x,, one can be 95 per cent sure that a
future independent observation of declination at that depth will lie within the given
prediction limits. Similarly, the true geomagnetic declination F(x,) at depth x, lies, with
95 per cent probability, within the given confidence limits for that depth. For example, at
a depth of one metre, we can be 95 per cent sure that the true declination lies between 31
and 41° (relative to our arbitrary reference direction), while a future independent measure-
ment of declination at that depth should lie between 25 and 47°, with 95 per cent
probability.
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Figure 2. 95 per cent confidence band for the true functional relationship F between declination and

depth at Lake Windermere.
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This does not necessarily mean that 95 per cent of our original observations should be
within the prediction limits, since these limits only apply to measurements whose random
components are statistically independent of the random error in the original measurements.
Experience with artificially-generated data indicates that on average about 97 or 98 per cent
of the original measurements should lie within these prediction limits. In fact, 241 or 96.4
per cent of our 250 measurements lie within the prediction limits of Fig. 1.

Although the central curve of Fig. 1 is our best point-estimate of the function F in (1),
the unknown function F could lie anywhere within the shaded confidence band of Fig. 2,
with 95 per cent probability. It follows that minor oscillations or kinks, such as those at
190 or 310 cm, are not necessarily real, and may simply be the result of the particular
random errors in our particular observations. However, as judged by the confidence band of
Fig. 2, the major fluctuations at 30, 90, 135, 180, 230, 260 and 340 cm are clearly
reproducible, and may be realistically considered as of geomagnetic origin.

The overall random scatter of the declination measurements about the true curve F
corresponds to a standard deviation estimated as in Appendix A to be 5° (approximately).
As noted previously, these overall errors of measurement, represented by {e;} in (1), are due
to instrumental noise, variations in sample orientation, and variations in the sediment.
Instrumental error is small compared with other sources of variation and in this example
can be taken as having a standard deviation of 1° (Gough 1967; Collinson 1975). Orientation
errors are more difficult to estimate, but will be less than in conventional palaeomagnetic
investigations and the standard deviation should not exceed 3° (Collinson 1975; Gough
1967). 1t follows that sedimentological variability corresponds to a standard deviation of
approximately 4° (assuming that these three factors are statistically independent of one
another).

5 Prospect

The Lake Windermere palacomagnetic directions provide the longest, most continuous
and well-dated record in Europe and are consequently used as a ‘master dating curve’. The
cross-validation curve-fitting, as well as providing the best-fitting master curve, indicates
which oscillations are ‘real’. Significant oscillations, when found in separate cores, can be
realistically interpreted as of geomagnetic origin. The cross-validation best-fitting curve can
be used as a master curve to which other undated data groups can be correlated and hence
dated. The corresponding confidence limits clearly show that at the 95 per cent probability
level certain local minor fluctuations cannot be justified by the data set, and so cannot be
used for modelling past changes of the geomagnetic field or as a dating tool.

To specify completely the direction in space of the geomagnetic field, both the
declination and inclination must be given. Measurements of the inclination at Lake
Windermere are available (Thompson 1973), covering the same period of time as the
declination data of Fig. 1. At first glance, it seems not unreasonable to smooth these inclina-
tion measurements independently of, but by the same method as, the declinations, and to
use the smoothed curves for declination and inclination jointly as master curves describing
past variation in magnetic direction. However, recent work (to be reported elsewhere) has
shown that such separate smoothing can be very misleading, since the final results may
depend critically on the choice of reference directions. Since the basic measurements are of a
direction in space, that is, a vector, the data should be treated as such, and the declinations
and inclinations should be smoothed simultaneously. Work is currently in hand on the
necessary modifications to the smoothing procedures of this paper to do this. Unfortunately,
the measurements of declination and inclination presently available from Lake Windermere
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cannot be paired with one another, as these were obtained independently. Simultaneous
smoothing is thus not possible with the available data from Lake Windermere, but investiga-
tions are in progress to obtain the relevant paired measurements of declination and
inclination.

As more data become available, we intend to develop the smoothing method of this paper
(i) to test whether two or more independent data sets are recording the same signal, and (ii)
to match an undated sequence of lacustrine declinations and inclinations against a master
curve, allowing for possible differences in sedimentation rates, thereby dating the unknown
sequence. With these objective methods of smoothing and comparing groups of noisy data,
we will thus be able further to refine our descriptive model of past geomagnetic field changes
and to check the underlying geophysical assumptions.

Many investigations in the Earth Sciences, such as palacomagnetism, involve the
estimation of some unknown smooth function from noisy data satisfying the model (1).
We believe that these investigations could benefit significantly from the smoothing
procedures outlined in this paper.
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Appendix A: estimation of the error variance ¢>

We use the same notation as Clark (1977). For a given bandwidth b, consider a particular
random partition P of the data into an estimation sample of n, observations (re-numbered
(cws yu), i=1, 2,..., ny) and a validation sample of n, observations (re-numbered
(%21, ¥2i), i=1,2,..., ny), with n; + n,=n, and in our case, n,= 0.17. The corresponding
estimate of F'is

=5 uy)yy (A1)
=1

where the subscript 1 on the u functions denotes that these functions (and consequently
f*) are computed from the estimation sample only. The aim of the cross-validation
procedure is to minimize (as a function of b) C(b), the average over m partitions P of

1 2
CB,P)= = Y (v —F(x2))> (A2)

2 =1

For this partition, we define parameters b;,g;,i =1, 2,...,n,, such that
Var {f*(x2;)} = g:0°
ny
bi=E{f*(x20)} — F(x2:) = Y w1j(x2:) F (x15) — F(x2;)
j':.l

where E denotes expectation and Var denotes variance. The {g;} are easily computed, since
by (Al) and the assumptionsof our model,

&= Zl {120}
=1

The parameters {b;}, representing the bias of {f*(xy;)}, are unknown, as they depend on
the unknown function F.
Since, by the assumptions of model (1), y,; and f* (x,;) are independent,

E[{y2i"f*(x2i)}2] =02(1 +gi)+blg9 i=1’2s-"’n2
giving
E{C(b, P)} =0*{1+g(P)} + B(P), (A3)

where Z(P) and B(P) denote the average for this partition of the {g;} and {b?} respectively.

Finally, averaging (A3) over the m partitions P, we obtain
E{C()} = d*{1 +Z(b)} + B(d) (A4)
where Z(b) and B(b), the averages over P of g(P) and B(P), are implicit functions of the
bandwidth 5.

Equation (A4) expresses the mean or expected value of C(b) as the sum of two initially
unknown factors. The first factor arises from the random scatter in the observations {y;},
while the second allows for possible systematic discrepancies between the fitted curves
J*(x) and the true curve F(x). Even if the {y;} could be measured exactly, that is, the
{e;} in (1) were identically zero, the fitted curve need not necessarily coincide exactly with
the true curve. _

In general, as b decreases, £ increases while B decreases. By Lemma 2 of Clark (1977),
the bias terms {b;} are zero if, roughly speaking, F is linear throughout suitable intervals of
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length approximately 2b. If F is differentiable, as assumed, it may be approximated by
straight lines over sufficiently narrow intervals, and so B will be arbitrarily close to zero if
b is sufficiently small.

Accordingly, we estimate o2 by solving the equation

Cb)=6*{1+3(b)} (AS)

for some suitably ‘small’ value of b. We then estimate the bias factor 5(5) corresponding to
the optimum bandwidth b by solving

C(b)=6*{1+5(5)} + B(). (A6)

Example. For the Lake Windermere declinations, we find, for b= 2.0 cm, C(b) = 37.34 with
g(b)=0.552, giving & =24.06 _from (A5). For the optimum bandwidth b=9.85cm,
C(b)=294,5()=0.151, giving B(6) = 1.71.

Although the mean of the random variable C(b) is known and given by (A4), its sampling
distribution is likely to be rather complex and difficult to evaluate. Simulation experiments
indicate that equation (AS) leads to reasonable estimates of 02, being usually within 20 per
cent of the correct value, provided n, the total number of observations, is at least 100.

Appendix B: construction of confidence intervals

The construction of a confidence interval for the ordinate F(x,) corresponding to a given
abscissa x, is based on the difference

do = f(xo) — F(xo) = 2 ui(xo)yi — F(%0) (B1)

where the functions u;(.) from (2) are computed using the optimum bandwidth 5. Under
our assumptions, do is normally distributed with known variance 03 = 02 Zu? (x,) but with
unknown mean

bo= E{f(x0)} — F(x,). (B2)

Although b, is unknown, its magnitude should be similar on average (averaging over
various choices of xo) to the bias terms {b;} of Appendix A. Using the estimated mean-
square B(b) of these bias terms, we may estimate the mean-square-error of do, that is

2 2
o5+ bo, by

0% = 622u? (xo) + B(H). (B3)

Hence we obtain approximate confidence limits for F(xo) by treating do as normally
distributed with zero mean and effective variance 0%, with 0 and B(b) being estimated from
(AS) and (A6) respectively.

Any error in the resulting 95 per cent confidence interval from treating dy as normally
distributed but with zero mean and variance equal to its mean-square-error is negligible,
provided the ratio of the bias to the standard deviation, that is | bo|/0q, is less than about
0.9. Since for the Windermere declination data the corresponding ratio {B/63} V? lies mostly
within this range, the confidence limits of Figs 1 and 2 should be sufficiently accurate for
all practical purposes.



