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Abstract

Sequence slotting is an objective numerical method which allows stratigraphic records to be compared
and matched. Quantitative core correlation can be easily performed using sequence slotting on many types
of paleolimnological and geological data. Dynamic programming algorithms have greatly enhanced the
speed with which sequence slotting can be carried out.

We have further modified the sequence slotting method to limit or even to prevent the formation of
long blocks in the slotted sequences. Such blocking or clumping has previously restricted the application
of sequence slotting in many practical situations. We have applied the modified dynamic sequence slotting
technique, based on common path length summation of Euclidean distances, to magnetic susceptibility

data, to isotopic measurements and to palacomagnetic directions on the sphere.

Introduction

The sequence slotting method permits matching
and comparison of records which lack precise
dating information but which are internally
ordered. Such ordered records, in which the data
sequence is known unambiguously, are obtained
from many stratigraphic successions such as
marine, lake and cave sediments.

When geological marker horizons, for example
ash beds, are available, stratigraphic correlations
can be made between successions without undue
difficulty. In most circumstances, however, such
clear geological information is scarce or unavaila-

ble. Stratigraphic comparison between records
then tends to be made either (i) ‘by eye’ by looking
for features which appear similar ~ the technique
of ‘bump matching’, or else (ii) by resorting to time
series analysis, such as the calculation of lagged
cross correlation coefficients, even though the
data on which the calculations are performed are
rarely independently dated or equally spaced, or
(ii1) by erecting a simple model of the depositional
relationship between the sequences e.g. a linear
stretching. In this paper we investigate a range of
stratigraphic sitvations in which a fourth
approach, sequence slotting, may be of value.

A convenient method for visualizing these four

* Thisis the tenth of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized
by R.B. Davis for the X11th Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa,
Canada in August 1987. Dr Davis is serving as guest editor of this series.
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Fig. 1. Core correlation methods. Depth-depth plots at right

hand side

a. Correlation by eye - ‘bump matching’.

b. Simple linear deposition model e.g. time series cross cor-
relation.

c. Sequence slotting.

approaches is in terms of depth-depth plots
(Fig. 1). Visual matching of maxima and minima
fixes isolated points on a depth-depth plot
(Fig. 1a), whereas the linear relationship of a
simple depositional model appears in Figure 1b.
Cross correlation using time series analysis also
leads to a linear relationship as depicted in
Fig. 1b. Sequence slotting produces a step-like
plot for the depositional relationship (Fig. 1c).

All four approaches involve a ‘search’ for a
‘good’ fit. Such searches necessarily yield appeal-
ing fits or high correlation coefficients, because
poor fits and low coefficients are rejected in the
search procedures. High correlation coefficients
discovered in such analyses may be of little signifi-
cance on account of the excessive searching and
data manipulation that may have gone into pro-
ducing the optimal fits.

We have investigated a variety of approaches to
the method of sequence slotting and considered
ways in which earlier versions of the technique
may be improved or modified for them to handle
geological and geophysical data. The most impor-
tant of these modifications concerns removing the
characteristic disjoint-blocking pattern produced
by sequence slotting. This annoying effect has
previously hindered practical application of the
technique. We have applied our modified slotting
method to three types of data — isotopic, suscepti-
bility and palacomagnetic directions — and then
discussed the results of these analyses. Finally we
examined the quality of match of stratigraphic
records caused by search procedures. In particu-
lar, we examined the quality of fit of palacomag-
netic records by making use of a slotting statistic
and a simulation study.

Sequence slotting

The sequence slotting procedure involves com-
bining two sequences to form a single joint se-
quence such that similar objects are placed
together from the two sequences, while the origi-
nal ordering within each sequence is preserved
(Gordon, 1973). Dynamic programming methods
allow all possible slottings to be assessed in an
efficient manner, so that the dissimilarity between
the sequences is minimized subject, of course, to
the constraints of the original orderings
(Delgoigne & Hansen, 1975).

Consider two sequences A and B, of length m
and n respectively, of ordered observations or
objects at stratigraphic horizons denoted by A,,
A,...A_ and B,, B,...B,. Each observation can
consist of measurements on p variables X,,
X,...X,. A dissimilarity measure is then set up to
assess the resemblance of the observations to one
another. Call the dissimilarity between the jth
object in sequence A and the kth object in
sequence B d(A;, B, ).

One dissimilarity measure (Gordon, 1973) is
then

P

d(A;, By) = Zl w; [ X,;(A) - X (B)|
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where w; are weights on each variable. For data
on the unit sphere the arc length between direc-
tions can be used as a dissimilarity measure
(Embleton ez al., 1983) which yields a formule of

P
d(A;, B,) = ) w,(X;(A) Xy (B))
iml
An alternative measure for points in p dimen-
sional space is the weighted Euclidean distance
between them (Clark, 1985). In this case

12
d(A;, B,) = ( i wi(X;(A) - xik(B))z)
=1

These different dissimilarity measures may
themselves be combined in a variety of ways to
estimate the concordance between the two se-
quences. One assessment of total concordance is
to use the sum of local dissimilarity measures
(Fig. 2b), namely the dissimilarities between a
given point and the immediately preceding and
following points in the other sequence (Gordon,
1973; Gordon & Reyment, 1979). Another calcu-
lation yields a total concordance measure equiva-
lent to the combined path length (CPL) of
Figure 2a. Holmquist (1989) has suggested that
there are advantages in summing the products of
the local dissimilarities about a given point when
forming the total dissimilarity measure, particu-
larly when the correlation between adjacent ob-
jects within the sequences is low. Gordon (1980)
has also taken the minima of the local dis-

A1 Ag_' A3

(Clark 1985)

Al A2 A3
-
\Br 5 2//

(Gordon 1973)

Fig. 2. a. Common path along joint slotting. b. Local dis-
similarities between two sequences.
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similarities. We have followed Embleton e al.,
(1983) and Clark (1985), and minimized the total
combined path length (CPL). Our path lengths
were then based on the Euclidean distances
between adjacent horizons in the combined se-
quence.

The introduction to the sequence slotting
method of the dynamic programming technique,
by making use of optimality principles, has made
sequence slotting extremely efficient. Optimal
slotting of two sets of several hundred objects
requires only a few seconds on a mainframe com-
puter whichever dissimilarity or concordance
measure is adopted. The key to the dynamic pro-
gramming approach is that the total dissimilarity
minimization problem can be broken down into a
series of extremely simple subproblems that can
be solved in a well structured cascade. The
dynamic programming method thus provides a
fast, exact algorithm to solve the total discordance
minimization problem.

Standardization

Data standardization is one extremely important
practical aspect of using any mathematical
approach to match sequences. In almost every
practical application of sequence slotting, some
form of standardization or data scaling needs to
be carried out. Scaling methods developed for
multivariate analyses can be directly applied to
sequence slotting data. Rummel (1970,
p 289-296) for example has reviewed the con-
ventional approaches to scaling in factor ana-
lyses. Zhou et al. (1983) summarize some of the
effects of scaling in factor analysis using both
artificial and real data and point out its crucial
importance in many practical situations.

We have found no universally satisfactory
standardization procedure. Nevertheless, one
approach we find relatively reliable for many
multivariate data sets is that of (i) transforming
the data spread to roughly that of a normal dis-
tribution e.g. by using a logarithmic or square root
transformation, (ii) subtracting the mean of each
sequence individually, (iii) individually setting the
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variance of each sequence to unity, and finally (iv)
giving each variable equal weight. Steps (ii) to (iv)
of this approach correspond to Gordon's (1980)
second standardization procedure. On the sphere
we standardize by rotating the data to make the
mean directions equal. Compositional data need
especially careful scaling (see for example, Clark
et al. (1986)) before sequence slotting is applied.

One must be careful to guard against excessive
manipulations of the data during standardization
as extreme ordination attempts could lead to
spurious data matchings. Nevertheless an itera-
tive approach to standardization can prove useful
in some circumstances. For example, it can be
used to standardize only over the range of overlap
of the slotted sequences. Alternatively we have
used iterative scaling to produce significantly
better concordance measures through the use of
search technigues based on linear programming
such as simplex optimization.

Additional approaches to data manipulation
that we have experimented with, prior to slotting,
include robust smoothing and the calculation of
first and second differences or gradients. Unfor-
tunately neither of these manipulations was able
to help appreciably with a major difficulty in se-
quence slotting - namely the problem of clumping
or blocking. This blocking problem forms the
theme of the next section.

Unblocking

The heart of the practical problem of adapting
available sequence slotting programmes to cope
with ‘messy geological data’ lies with the necessity
of removing unrealistically long blocks or groups
of horizons from the optimal solutions produced
by sequence-slotting. This recurring problem of
unnaturally long blocks can arise in two distinct
situations. One of these situations is when the
parameters being slotted vary little down the core.
A slight discrepancy between cores in these cir-
cumstances can have a profound influence on the
slotting. It can produce long blocks and have the
effect of making it appear that the sequences
grossly mismatch, when in fact they hardly differ.
The other situation in which geologically un-

justifiable blocks are produced is when one
variable differs markedly, over a short section,
between cores while the other variables exhibit
similar fluctuations in the cores. Optimal, un-
constrained sequence slotting invariably creates
long blocks in this type of situation.

An example of the first of these two mismatch
situations, i.e. that associated with low variability
within the core, arises in connection with the mag-
netic susceptibility data considered in the section
on multicore slotting. A good example of the
second type of blocking mismatch is found in the
study of Anderson (1986). He describes how
some unusually high concentrations of diatomsin
one of his cores have an exaggerated effect on
their slot sequencing.

Some form of unblocking technique is needed
to get around these two common difficulties in
slotting data. Ideally if data standardization could
be carried out perfectly, there would be no need
to include such unblocking procedures in the
sequence slotting algorithms. Without such exact
scaling methods, we have to present sequence
slotting with more flexibility, by including a
parameter which allows the optimal slotting to
vary between that of a smooth monotonic
depth/depth plot as in Fig. Ib and the uncon-
strained slotting of Fig. 1c. We have used two
approaches to achieve this modification to opti-
mal slotting. The first is to set explicitly the
maximum number of consecutive horizons per-
mitted from either sequence. The second is to
encourage horizons from the two sequences to
interleave with one another by downweighting the
between sequence dissimilarities.

An example of the effect of the first explicit
block constraint on sequence slotting is shown in
Fig. 3. Standardized oxygen isotope ratios are
plotted against the position in the joint slotted
sequence for two oceanic sediment cores. The
uppermost plot shows the unconstrained joint
slotting with no restrictions on block length, while
the lowermost plot shows the joint slotting with a
maximum length for interior blocks, in either core,
of three.

Such oxygen isotope records back to around
stage 23 are generally regarded to be of high
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Fig. 3. Standardized oxygen isotope slotting of deep sea cores P6304~9 (squares) and P6408-9 (diamonds). (Data from Emiliani

1966 and 1978).
a. Optimal unconstrainted slotting

b. Slotting constrained by maximum internal block length of three in either core. Isotopic '*0 maxima labelled along horizontal,
common path position axes. Isotopic features match correctly in unblocked analyses of b. See text for discussion of goodness

of match statistic delta.

quality (Lowe & Walker, 1984), relatively easy to
match by eye and to contain several distinctive
features. Twenty-one of these features span
approximately the last one million years. Nine
successive interglacial maxima are labelled by odd
numbers (Fig. 3). The remaining (even numbered)
glacial isotopic minima make up the rest of the
stage features.

Unconstrained sequence slotting of cores
P6304-9 and P6408-9 manages to match the iso-
topic features correctly between stages 1 and 13
but then to mismatch the features 15 to 21
(Fig. 3a). We can observe in the region of mis-
match how long blocks have been created by the
slotting algorithm in order for it to obtain a good
mathematical fit. Explicitly setting the maximum

internal block length to four creates a very slightly
poorer fit, but yields the geologically correct
result.

A depth-depth plot (Fig. 4) summarizes how
the two isotope records fit together. Maximum
internal block lengths of two, three or four all
produce closely similar fits compared with the
incorrect  unconstrained (optimal) slotting
(Fig. 4). We have yet to devise a routine method
of determining the most appropriate maximum
length for the blocks. However, for many earth
science data sets, we have found maximum inter-
nal block lengths of around three or four give good
results.

An example of the use of unblocking through
downweighting of between-core dissimilarities,
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Fig. 4. Depth-depth plot for slottings of cores P6304-9 and
P6408-9 as presented in Fig. 3. The slottings with maximum
internal block lengths of 2.3 and 4 are all very similar.

compared with within-core dissimilarities, is in-
cluded in the next section which deals with multi-
core slotting.

Multicore slofting

The problem of matching several sequences,
rather than just a pair of sequences, can be
approached in several ways. The most common
approach is to reduce the multicore problem into
one involving matching only pairs of cores at a
time. This is a natural approach to take with cores
collected along a transect e.g. from shallow to
deep water. The first sequence is matched with the
second sequence (Fig. 5). Then the second se-
quence is matched to the third, without reference
to the first slotting, and so on for all cores along
the whole transect (Fig. 5a).
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Fig. 5. Multicore slotting strategies
a. Transect

b. Master core

¢. True multicore

d. Optimized iterative

A similar approach is that of selecting a master
core (Fig. 5b). Cores are matched individually to
the master core. Once again only pairs of cores
are dealt with at any one time. A similar drawback
to that of core correlation along a transect is that
the information recorded by some cores, for ex-
ample cores 3 and 4 in Fig. Sb, is not utilized in
the correlation of the remaining cores (e.g. 1 and
2 in Fig. 5b).

Ideally in multicore slotting, all cores should be
matched simultaneously (see Fig. Sc). While such
an approach is theoretically possible it has not so
far proved tractable in the sequence slotting
method. This intractability is because in the
FORTRAN computer coding developed to date,
the main array sizes increase according to the
power of the number of cores to be slotted. Con-
sequently storage space, even on a large
mainframe computer, is totally inadequate for
practical situations involving four or more cores.

An intermediate approach that we have
adopted involves an approximate iterative optimi-
zation. As an example we have investigated
three cores from Lake Kinneret (Fig. 6). Our
multicore slotting method begins by taking two
cores, standardizing the data and slotting the
cores together by minimizing their combined path
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Fig. 6. Standardized Lake Kinneret magnetic susceptibility data from three coring sites. The susceptibility data are plotted

against common path position of the multicore slot.
a. b. and c. show the data from individual cores

d. shows the three core slot. Between core dissimilarities have been down-weighted by a factor of 0.5 compared to within core
dissimilarities as part of the unblocking procedure.

length exactly as in our sequence slotting proce-
dure for two cores. This matched pair is then
treated as one sequence and a third, standardized
core slotted to it to produce a combined, joint
sequence of three cores. We then begin the itera-
tive optimization procedure by removing the first
core but then immediately reslotting it back into
the combined sequence of core two plus core
three. During this iteration we retain the ordering
of core two with core three which remained after
removal of the core one horizons from the joint
slotting of the three cores. Now, because of the
order in which the cores were combined, a dif-
ferent joint slotting will almost certainly have been
produced. We iterate a second time. In this step
we remove core two from the combined sequence

and as before immediately reslot it. This second
iteration step is followed by the same removal and
replacement procedure but now using core three.
We continue performing these three steps itera-
tively until the joint slotting of the three cores
stabilizes. A fourth standardized core can now be
added, and a further set of removal and replace-
ment iterations performed. Our programme is
written in such a way that the coding is able to
handle any number of cores.

The iterative approach is relatively easy to
program. The main modifications needed to the
two core program concern (i) keeping track of
which horizons in the joint slotting are from which
core and (ii) increasing the array sizes. The key
point here is that since slotting is always per-
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formed pairwise, the array sizes are only mar-
ginally larger than that needed for slotting just two
sequences.

Although slightly different solutions are arrived
at according to the order in which the cores are
slotted, the differences in the final multicore slot
are rather small. Furthermore a perturbation
analysis of the Kinneret susceptibility data
(Fig. 6), performed by A. Gordon (Pers. Comm.),
using a simulated annealing algorithm, could find
no better slotting solution than the best obtained
by our iterative procedure. These two results give
us confidence that our approximate iterative
method produces slottings that are close to the
optimal slotting. Indeed in practical terms, espe-
cially in multicore work, such approximately opti-
mal slottings are quite satisfactory.

The Kinneret susceptibility data of Fig. 6 are
plotted against position in the best combined

slotting. The upper three plots in Fig. 6 show
susceptibility for each of the three cores individu-
ally, while the lowermost plot shows the com-
bined slotting. Unblocking was again found
necessary to achieve a realistic slotting. In this
example, unblocking was obtained by down-
weighting the between-core dissimilarities by a
factor of one half compared to the within core
dissimilarities. Without any unblocking, clear
mismatches could be seen between the cores,
particularly around common path position 400.
This mismatching, in the unconstrained slotting,
was a consequence of relatively low variability
within the cores compared with between-core dif-
ferences in this part of the sediment succession.
However, with the inclusion of downweighting we
see how all the major features in the three cores
align well (Fig. 6).

Table 1. Quality of match statistic for ordered sequences on the unit sphere

Type of sequence Data source Delta R
Identical data 0.00 1.00
Earth’s rotation axis VLBI,LASER 0.29 0.99
Palaecomagnetic demag. NRM/15mT 0.30 0.90
of sediment core

Geomagnetic Observatory Eskdalemuir/Lerwick 0.51 0.98
Annual means

Etna volcano secular Historical/Lava Flows 0.56 0.92
variation

Palaeomagnetic reversals Bessasta/Borgarf) 0.60 0.86
Within lake secular var. Lomond 1/Lomond 3 0.63 0.81
Paleomagnetic secular Windermere 1/ 0.65 0.79
variation within lake Windermere 3

ARIMA 101:100 0.72 0.67
Between lake sec. var. Windermere/Lomond 0.73 0.70
Sec. var. between lake Akivoshi/Kinki 0.77 0.65
and stalactite

No overlapping >1.00 0.00

sections
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Quality of fit

One measure of the quality of fit is the Psi statistic
of Gordon (1973) and Gordon and Birks (1974)
which uses a standardized measure of the total
local dissimilarities. Gordon (1982) suggests a
statistic, delta, for use with the total path length
approach to sequence slotting. The statistic, delta,
is based on the difference between the length of
the common path (CPL) and the lengths of the
individual paths of core A (APL) and core B
(BPL). If Euclidean distance is used as the dis-
similarity measure, then delta measures the ade-
quacy of piecewise linear interpolation within
blocks in the combined sequence. More specifi-
cally,

delta = (2(CPL)/(APL + BPL)) - 1

As an example of the use of such quality of fit
statistics, we have compared slottings of data sets
on the sphere. Our particular interest was to
assess the quality of match of palacomagnetic
secular variation records between lakes (Table 1).
Based on this measure, we find poor agreement of
palaeomagnetic records between lakes compared
with the fits obtained for other types of geo-
physical data. Furthermore we find no better
agreement of palacomagnetic records between
nearby lakes compared with lakes thousands of
kilometres apart, as judged using the statistic
delta. Such a result would not be anticipated
geophysically if lake sediments are good recorders
of both geomagnetic declination and inclination.

We also investigated a simulation procedure of
assessing quality of fit. After some trials we found
that we could generate random autoregressive or
integrated moving average (ARIMA) series which
successfully mimicked the main characteristics of
lake sediment palacomagnetic secular variation
data sets (see Fig. 7). An indication of the success
of the simulation is that in informal questioning a
number of experienced investigators have found
some difficulty in distinguishing such ARIMA
data from their own ‘real’ palacomagnetic
measurements. On slotting our ARIMA series
with each other, we obtained an average delta
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value of 0.67, which is the same delta value that
we obtained for our between lake slottings. Our
conclusion, once again, is that the palacomagnetic
data from different lakes are of poor quality,
indeed of poorer quality than generally judged
subjectively.

A further method of investigating quality of
match is through an interpolated correlation
coefficient, calculated following slotting. The right
hand column of Table 1, tabulates such correla-
tion coefTicients for the data on the sphere that we
have investigated. Low correlation coefficients,
below about 0.7 (as found for randomly generated
ARIMA data), reflect poor matches while the
closer the coefficient to 1.0 the better the overall
fit.

The above analyses do not make use of any
dating information, only the stratigraphic order-
ing. This points to the importance of accurate,
independent dating controls in geophysically
assessing palaeomagnetic data. The analyses
demonstrate how difficult it is to match lake sedi-
ment records using only the shapes of the palaeo-
magnetic secular vanation curves. With such
stratigraphic data, the human eye appears to be
extremely good at ‘picking out® correlations when
they really exist, but to be rather poor at determin-
ing when data sets actually differ. The statistic
delta may thus be particularly useful in quantify-
ing quality of match of ‘poor’ data sets.

Discussion and comparison of alignment methods

Any method for cross-matching two sequences or
series will produce an allegedly ‘optimal’ match-
ing, no matter what data are used. A difficulty
common to all such alignment methods is how to
assess the practical significance of the final
‘optimized correlation’ or match.

In the case of sequence slotting the randomi-
zation test given by Clark (1988) provides a
simple statistical test for assessing how well any
given pair of sequences are matched, based on the
value of delta. In this test, each sequence is split
at random into two sub-sequences, each of which
is then slotted against every other subsequence.
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Fig. 7. ARIMA series. Data sets generated to mimic palacomagnetic secular variation time series on the sphere. The three left

hand examples shown were generated using a combined autoregressive moving average process with coefficients of 0.91 and

~ 041 respectively, while the three right hand examples were produced from a 100 process with an AR coefficient of 0.8. The
cheice of coefficients is not especially critical for generating series which resemble down core palaeomagnetic records.

This procedure is then repeated, say 40 or 50
times. The test then measures how well the
original sequences and the combined sequence
are reconstructed from these random sub-
sequences. If the combined sequence can not be
reconstructed as well as the original sequences
individually, this indicates that the sequences do

not arise from a common signal, i.e., the matching
is spurious.

In principle this test leads to exact significance
levels. It is easy to implement, does not involve
any assumptions regarding the form of the fitted
signal or the stretching function, or any simulation
of data according to some assumed model. The



examples in Clark (1988) show that the test works

well and can be remarkably sensitive.

A variety of techniques have been developed in
connection with the alignment or correlation of
time series that can be applied to stratigraphic
data. We finally briefly discuss the differences
between three such techniques and note some of
their advantages and disadvantages.

1. Clark & Thompson (1978) — linear stretching
with cubic spline smoothing of the observed
data

2. Martinson et al. (1982) — Fourier series esti-
mation of the mapping function with coherence
to be maximised

3 Present Paper — Sequence-slotting with un-
blocking.

These three methods were developed to do
three different things namely:

Method 1 : to estimate a linear stretching function

from noisy discrete data in which both ‘signals’

are distorted versions of some unknown reference
signal;

Method 2 : 1o estimate a general mapping function

from two continuous signals with high signal-to-

noise ratio, with one signal regarded as a known
reference signal;

Method 3: to match two ordered sequences of

observations (with multivariate responses), using

only the relative order of the observations, and
taking account of other stratigraphic constraints.

All three methods require, in their implemen-
tation, a number of more-or-less arbitrary deci-
sions, e.g.,

Method 1 : the number and location of the knots

used to define the cubic splines fitted to the data.

Method 2 : the number of Fourier coefficients, the

constants Delta-a and k in equation 10, the degree

of smoothing or filtering of the data prior to
maximizing the coherence.

Method 3 : the choice of distance measure and of

‘local discordance’, the preliminary standardi-

zation, the weights to be assigned to different

variables.

Methods 1 and 2 require an iterative trial-and-
error approach starting from an initial guess; in
contrast method 3 uses a direct and efficient
algorithm with no iteration (once the maximum
block-length is specified).
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Method 1 has the following advantages:
Being based on well-known and well-understood
least-squares methods, its assumptions can be
readily tested, and confidence limits for both the
stretching function and the fitted signal can be
found. The method treats the sequences sym-
metrically (unlike Method 2), in the sense that
both sequences are treated as distorted versions
of a common unknown signal. The least-squares
criterion is more sensitive than the correlation
coefficient, (see the examples and discussion in
Clark & Thompson, 1978). In principe the method
can test the adequacy of ANY given monotonic
stretching function, but in practice this is difficult
to do.
Its disadvantages are:
1. The choice of knots is arbitrary, although some
guidelines are available to assist this choice.
2. A large number of parameters must be fitted.
3. A trial-and-error approach is needed to find
the best values of alpha and beta (which define
the stretching function).

Method 2 clearly works well in the situation for
which it was designed. Also it is has been claimed
to be superior to earlier versions of sequence
slotting for matching palacomagnetic data. How-
ever, it is not clear how well it would work with
discrete data with a low signal-to-noise ratio or
how it should be modified in order to deal with
multivariate data. It has the following dis-
advantages:

1. Like method 2, it requires several arbitrary
decisions and an iterative approach starting
from an initial guess.

2. It cannot handle (i) cases in which only the
order of the observations is known, (ii) strati-
graphic constraints, and (iii) simultaneous
matching of several sequences.

3. There is no guarantee that the fitted mapping
function will turn out to be monotonic.

4. No statistical test is provided for interpreting
or assessing the final maximised coherence C.

Method 3 has the following advantages:

1. It directly produces the optimum ‘path’ as well
as an estimate of the stretching or mapping
function.
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2. It uses a fast and efficient algorithm, which
requires no iteration, no initial guess, and no
arbitrary prior smoothing of the data.

3. Itcan handle multivariate signals or responses.

4. Additional stratigraphic information is easily
incorporated.

5. Only the order of the points in each sequence
need be known; the corresponding depths or
times are not needed.

6. The randomization test provides a conceptu-
ally-simple and easily-implemented statistical
test of how well the series are matched or
slotted together.

7. In its extended version (see Gordon, Clark &
Thompson, 1988) it is possible to assess which
parts of the slotted sequence are well-deter-
mined (and which parts are not), and to
investigate the influence on the results of delet-
ing single possibly-aberrant observations.

Method 3 has the following disadvantages:

1. The choice of distance function, relative
weighting for different variables (in the multi-
variate case), initial standardization and maxi-
mum block length are arbitrary.

2. Sometimes it is not easy to interpret the final
delta-value.

3. The algorithm requires a lot of computer mem-
ory, and in its extended form would be imprac-
tical on a mainframe computer if the sequences
had more than 1000 points each.

4. It does not produce confidence bands for the
fitted path or the implied stretching function.

5. Continuous signals would have to be digitized
before analysis — so introducing another
unwanted arbitrary choice.
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