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A formalized method of constructing a best-fitting smooth curve, with confidence limits, to sequential data on a
sphere is proposed and a method of least-squares alignment of two time series on a sphere is discussed. The procedure,
developed from Gould’s regression technique for angular variates (corresponding to multiple regression analysis for
normally distributed variates), involves fitting cubic splines using a weighted (robust) least-squares approximation.
Paths of apparent polar wander (APW) are defined continuously, have continuous first and second derivatives and
always lie on the sphere. The cross-validation mean square deviation is used to determine the degree of smoothing.
North Anerican and European APW paths, their 95% confidence bands and apparent polar accelerations for the last

500 Ma have been calculated.

1. Intreduction

The palacomagnetic record for any lithospheric
plate may be considered as a noisy, unequally
spaced time-series of points on a unit sphere.
Because of this, workers have preferred to smooth
the data by calculating disjoint Fisherian means or
running Fisherian means and joining the means by
a freehand curve. Such curve-fitting relies heavily
on the subjective assessment of the individual, and
so cannot be reliably assessed objectively. Instead,
we propose a formalized method of constructing a
best-fitting smooth curve, which involves a minimal
amount of subjective assessment. The procedure
involves least-squares fitting of cubic splines to the
angular coordinates, the degree of smoothing being
determined objectively from the data alone, using
the cross-validation criterion. The reliability of the
resulting curve is readily assessed by means of its
corresponding confidence limits. As an illustration
of these statistical methods we calculate:

(1) the North American and Buropean (Baltic
Shield) apparent polar wander (APW) paths and
their 95% confidence bands for the last 500 Ma;

(2) their apparent polar accelerations.

Our procedure can also be used to solve the
forward modelling problem of relative palaeo-
longitude, i.e. to obtain a unique continental reas-
sembly from palacomagnetic data. We plan to
discuss this aspect of our procedure in a future
paper along with the implications of the details of
our APW paths, but to concentrate in this paper
on the approach and assumptions of our method.

2. Mathematical approach

We treat the palacomagnetic data as a time
sequence of unit vectors defining a sequence of
points on the unit sphere, to which we fit a smooth
curve by fitting cubic splines by weighted least
squares to the corresponding angular coordinates.
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We assume that we have n independent ob-
servations {(6;,¢;)} of co-latitude and longitude,
respectively, relative to some chosen coordinate
system, such that the ith observation (6;,¢;) may
be regarded as a realization of a random variable
having the Fisher (1953) distribution with mean
direction (8,;,¢,;) and concentration parameter .
The angles {(6,;,9,;)} specify discrete points on
the required APW path, but are unknown. We
assume that these points lie on a smooth curve on
the unit sphere, i.e.

o, = F(1,) i=12,...,n
$o; = G(1;)

where F and G are smooth functions of ‘time’, and
t; denotes the age corresponding to the ith ob-
servation. Our problem is to estimate and place
confidence limits on the smooth APW path de-
fined jointly by F and G.

Our first step is to approximate the assumed
Fisher distribution of (6,,¢;). Our calculations
show that, provided that « is fairly large and 6§, is
not too close to either 0 or 180°, §, is approxi-
mately normally distributed with mean 6, and
variance 1/, while ¢, is approximately normally
distributed with mean ¢, and variance 1/x sin’
6,,;- Furthermore, 6, and ¢, are approximately inde-
pendent in probability distribution.

Secondly, we assume that F and G can each be
represented by a cubic spline with suitable knots.
Cubic splines (De Boor, 1978) are piecewise cubic
polynomials with smooth joins at the join points
or knots, such that their first and second deriva-
tives are continuous everywhere. Cubic splines are
known to be extremely successful and adaptable
functions for representing empirical relationships
(Greville, 1969; Wold, 1974). In particular, they
are to be preferred to polynomials or trigonomet-
ric functions, which have the property that their
behaviour in any small region determines their
behaviour everywhere. In contrast, empirical func-
tions (such as F and G) may be expected to have
just the opposite property, as do cubic splines, by
their piecewise nature.

Under these two assumptions, the data can be
expressed by two independent multiple regressions
(one for 8, one for ¢); in each case the regressors
are the corresponding values of the B-splines

(Wold, 1974; De Boor, 1978) used to define the
cubic spline in question. We first fit the cubic
spline F to the data {(6,,,)} on co-latitudes, using
the method of least squares (or, equivalently, max-
imum likelihood) to estimate the necessary coeffi-
cients. We then fit a separate cubic spline G, with
possibly different knots, to the longitudes, using
weighted least squares, i.e. by minimizing 3w, (¢;
— G(1,))?, where w, = sin? F(1,).

Gould (1969), in considering a similar problem
of regression with angular variates, used a differ-
ent method involving a complex iterative proce-
dure that does not provide confidence bands for
the fitted curve. In contrast, our method is
straightforward and yields valid confidence bands
directly, as long as our normal approximation to
the Fisher distribution is reasonable. When 6, is
close to either 0 or 180° this approximation cannot
hold, even for very large x. However, theoretical
calculations and numerical integration show that
the approximation improves rapidly as 6, tends to
90° and as « increases. For example, when 6, is
50°, the approximation is excellent for « greater
than 40, and is tolerable for « as small as 15.

These difficulties associated with extreme lati-
tudes can be avoided by positioning the unit vec-
tors so that the latitudes are reasonably small. We
did this for the palacomagnetic data by first rotat-
ing the data set so that its mean and trend lay near
the equator. After curve fitting and the computa-
tion of associated confidence limits, the corre-
sponding fitted curves and confidence limits were
rotated back to the original coordinate system.

In practice, the degree of smoothing, de-
termined in this case by the number and location
of knots for the two curves F and G, is more
crucial than the actual method of smoothing. If
smoothing is too heavy, fine details of the APW
path may be lost, while too little smoothing may
produce spurious kinks or loops. We prefer to
assess the level of smoothness using the internal
evidence of the data, rather than by assuming a
priori a particular level. The cross-validation
method (Stone, 1974) is a remarkably adaptable
and successful technique for objectively determin-
ing the appropriate degree of smoothing and can
be applied to our problem. The method is tempor-
arily to set aside data (a validation sample) and



construct a curve, with a certain degree of smooth-
ing, to the remaining data. The performance of the
curve is then assessed by the deviations, from the
curve, of the data set aside. An oversmoothed
curve will be a poor estimation of the validation
data, as it will not have followed the main data set
sufficiently closely. An undersmoothed curve will
also be a poor estimation as it will have followed
the random noise rather than approximating the
true underlying function. In the full cross-
validation method, which we employed, one data
point is set aside at a time and its deviation from
the fitted curve calculated. This process is repeated
for every data point and a cross-validation mean
square deviation is computed from all the devia-
tions. The whole procedure is repeated for other
levels of smoothness to give a cross-validation
mean square deviation for each level. The mini-
mum mean square deviation determines the ap-
propriate level of smoothness, and the final best-
fitting curve is computed, at this level of smooth-
ness, using the full data set. The entire procedure
is carried out with the co-latitudes and longitudes
separately, since F and G do not necessarily have
the same degree of smoothing or the same knots.

In our initial formulation of the problem, the
concentration parameter k was assumed implicitly
to be constant and, in particular, independent of
the age ¢, of the ith observation. Inspection of the
data indicates, however, that the older measure-
ments are more variable than the younger. The
initial assumption of constant k is not crucial; our
method can be easily modified in the usual way
(Seber, 1977) if, for example, « is assumed to be a
simple, slowly varying function of time, of known
form. An alternative and equivalent method of
dealing with data of unequal precision is to per-
form weighted least-squares estimation, each ob-
servation being weighted separately and indepen-
dently according to its perceived precision. The
bi-square weighing method of Mosteller and Tukey
(1977) is a robust and resistant way of doing this.
It has the added advantage that extreme or outly-
ing observations are automatically allowed for, by
being given low weight.

We shall now illustrate our method by applying
it to real data before discussing further (Section 5)
the underlying assumptions and comparing alter-
native smoothing methods.

3. Palaeomagnetic data

North American and European palacomagnetic
data from rocks younger than 500 My were chosen
for analysis. The data were taken from GJRAS
compilations (McElhinny, 1972, 1973; McElhinny
and Cowley, 1977, 1978, 1980), which include data
published prior to 1979, and later additional
European data from Briden and Duff (1981). The
European palacomagnetic data were taken from
sampling localities west of the Ural mountains and
north of the Alpine mountains. The minimum
selection criteria of McElhinny (1973) and the
minimum criteria (2) of Irving et al. (1976) for
A-class poles were used in a sorting programme,
written by B. Goleby, “to provide a first-stage
filter, by which those results which can on com-
mon sense ground be considered of little use in
tracing the past history of the field...can...be sep-
arated from the main body of the data” (Irving et
al., 1976). Further data noted in McElhinny’s cata-
logue as being remagnetized or of intermediate
direction or from areas of recent tectonic activity
(e.g. the Alpine belt, Spain, the Western Cordillera
of North America) were also rejected. Ages in My
were assigned to the palaecomagnetic pole positions
by converting the geological age in McElhinny’s
catalogue according to the Geological Society of
London time scale (Harland et al., 1964). Finally,
the polarities of the magnetizations were de-
termined from continuity considerations.

After data selection using our minimum criteria
the North American data set consisted of 209
ordered unit vectors and the European set 326.

4. Apparent polar wander paths

The degree of smoothing of the data is speci-
fied, in our curve-fitting procedure, by the number
of internal knots, or equivalently, the number of
spline pieces. The initial cross-validation computa-
tions showed a clear optimum of four spline pieces
for the North American data and six for the
European data, for both co-latitude and longitude.
We then applied the bi-square weighting technique
to take account of both the unequal variability in
the observations and the presence of outliers. This
method is iterative, but it stabilised after only one



Fig. 1. North American apparent polar wander (APW) path for
the last 500 Ma, with 95% confidence limits drawn at 10 Ma
intervals. The tight grouping of confidence ellipses near 400 Ma
corresponds to a period of slow APW. The .inset shows the
North American APW path from 200 to 10 Ma as a tight loop.

iteration on all four data sets. A thorough analysis
of the residuals (Seber, 1977) showed that, with
one exception, the subsequent fitted curves were a
satisfactory fit to the data, taking account of the
relative weights assigned to the observations. The
exception was the curve for the European co-
latitudes. Inspection and a runs test on the residu-
als showed it to be misfitted near 400 Ma at the
Siluro-Devonian polar shift. We therefore used
NEWNOT, De Boor’s (1978) knot placement algo-
rithm, adding one knot at a time to achieve a
satisfactory fit to these data, using ultimately seven
spline pieces (i.e. one additional internal knot).
Our best-fitting APW paths are shown in Figs. 1
and 2, with their 95% confidence limits drawn at
10 Ma intervals. These confidence ellipses were
computed using the fact that, under our assump-
tions in Section 2, the estimated co-latitude F(z,)
and longitude G(to) at any arbitrary time ¢, are
independently, normally distributed with variances
computed by the usual formulae (Seber, 1977)
from multiple regression. Our interpretation of
these limits is that we can be 95% sure that the

Fig. 2. European APW path for the last 500 Ma, with 95%
confidence limits drawn at 10 Ma intervals. The inset shows the
APW path from 180 to 10 Ma.

actual angular coordinates (F(z,), G(1,)) of the
apparent palacomagnetic pole at time ¢, lie some-
where within the corresponding confidence ellipse
for that time. As expected, the sizes of the confi-
dence regions vary along the path. In general, they
are larger where the data are sparse and /or varia-
ble, and smaller where the data are more abundant
and /or precise.

The European APW path (Fig. 2) is more com-
plicated than the North American path (Fig. 1). Its
longitudinal sweeps are the result of a clockwise
rotation of Europe during the Ordovician and
Silurian and a subsequent anticlockwise rotation.
The central part of the path is dominated by the
Permo-Triassic drift of Europe northward. Sharp
changes in the direction of the European APW
path occur in the mid-Cretaceous and mid-Tertiary
(Fig. 2 inset). The North American APW path is
markedly different in shape from the European
path before 400 Ma, because of the relative move-
ments between Europe and North America during
the formation of the Iapetus Ocean. A trend corre-
sponding to northerly drift similar to that of the
European path is visible in the central section. For
the last 150 Ma the North American path again



has a different shape from that of the European
path (compare insets of Figs.1 and 2), owing to
the recent phase of continental drift between North
America and Europe.

The rate and acceleration of APW are also
defined continuously for each path. The typical
(median) absolute rates are 0.31 and 0.22° Ma™!
for North America and Europe, respectively. A
maximum acceleration of 0.12° Ma~? is found at
400 Ma on the European APW path. It is physi-
cally more interesting to estimate continental
velocities than APW path velocities. Gordon et al.
(1979) presented a technique for estimating
minimum absolute continental velocities from
APW paths and have applied their technique to
Irving’s (1977) APW paths. They noted the restric-
tion imposed on their technique by the high degree
of smoothing in the running Fisherian mean anal-
ysis, and the consequent loss of information, par-
ticularly when the direction of plate motion is
changing rapidly. This restriction is minimized
with our approach. The technique of Gordon et al.
(1979) could also be used to estimate minimum
continental accelerations from our APW paths.

5. Discussion

We shall now examine further the assumptions
and properties of our method, and compare it with
two alternative methods for smoothing a time se-
quence of noisy unit vectors.

5.1. Assumptions

Our method starts with the assumption that our
observations follow the Fisher distribution with
the mean direction (and possibly the concentration
parameter) varying with time, and that this distrib-
ution can be adequately approximated by a partic-
ular normal distribution in the angular coordinates
(8,4). However, it is likely (Onstott, 1980) that the
original observations would have been only ap-
proximately Fisher-distributed in the first place.
Nevertheless, we can expect our final curve and
confidence limits to be robust to departures from
the assumed normality of the data, by an exten-
sion of the results of Cochran (1947). In particular,
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the usually serious effects of outliers would be
nullified by the use of bi-square weighting.

An implicit but important second assumption
of our method is that the ages 7, assigned to the
observations are known to within 10 Ma. Clearly,
this is not so with palaeomagnetic data. To ex-
amine the effect of age uncertainties, we con-
ducted several numerical experiments in which we
modified the assumed ages by adding pseudoran-
dom age errors with standard deviations of up to
15% of the assumed ages. These random perturba-
tions had a negligible effect on the resulting APW
path and its confidence limits.

A desirable property of any procedure for
smoothing a sequence of unit vectors is invariance
under rotation, i.e. the operations of smoothing
and rotation should be commutative. Equivalently,
the resulting smooth curve on the unit sphere
should be independent of the choice of coordinate
axes used in defining both the input data and the
resulting curve. By smoothing the angular coordi-
nates relative to an arbitrary coordinate system,
our method unfortunately is not invariant under
rotation as required. We chose to sacrifice this
property so that we could derive confidence limits
for our fitted curve, by formulating the problem as
one of multiple regression with approximately nor-
mally distributed errors. However, with these par-
ticular data, the departure from invariance is
negligible in practical terms. Numerical experi-
ments showed that, because of the relatively high
variability of our data and the flexibility of cubic
splines, there was little practical difference be-
tween smoothing first and then rotating, and rotat-
ing followed by smoothing.

5.2. Alternative methods

When few palacomagnetic data points were
available an appropriate and extremely successful
approach was freehand construction of APW paths
(Creer et al,, 1954). With the production of further
data the most common smoothing methods have
been to compute disjoint Fisherian mean vectors
(Irving, 1964; McElhinny, 1973) and more re-
cently, with the proliferation of palacomagnetic
data, to compute running Fisherian mean vectors
(Irving, 1977) using the observations in successive,
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generally overlapping time intervals, and then to
draw a freehand curve through these successive
means after plotting them on some suitable graph.
The successive Fisherian means are of course in-
variant under rotation, but the final freehand
smoothing may well depend on the coordinate
system used to plot the means, as well as on the
subjective judgement involved in freehand smooth-
ing. The final curve, like ours, always lies on the
unit sphere, and would be only marginally affected
by minor perturbations in the assumed ages.

However, these methods too have disad-
vantages. Firstly, the degree of smoothing is de-
termined primarily by the time span over which
the successive mean vectors are computed. In the
past, the choice of time span has been arbitrary
and subjective, although in principle the method
of cross-validation could be employed here also. If
this time span is too large, the data are over-
smoothed, and the concentration parameter k can
be considerably underestimated, since the sys-
tematic trend in the data would not have been
completely removed. Consequently, some fine de-
tails of the APW path could be lost, and confi-
dence cones for successive points on the path
would be generally too wide. Secondly, all ob-
servations within any given time span are given
equal weight when the corresponding Fisherian
mean direction is computed. However, since the
aim is to estimate the APW path at the midpoint
of each time span, those observations farther from
the midpoint should be given less weight. In addi-
tion, observations with less intrinsic precision
should receive less weight, independent of their
age relative to the midpoint age. This method is
thus particularly sensitive to outlying observations.
In contrast, both types of weights are handled
automatically in our method.

Parker and Denham (1979) have outlined an
alternative mathematical method for smoothing
that is invariant under rotation. The method is an
extension to spherical data of the smoothing cubic
spline of Reinsch (1967, 1971) and Schoenberg
(1964) which has the property of providing the
best compromise between smoothness and good-
ness of fit, in a certain mathematical sense. Their
procedure has a number of disadvantages, how-
ever. First, their cubic spline requires a knot at

every point ¢;, and so could be sensitive to errors
in the assumed ages of the observations. Secondly,
since this curve fitting does not correspond to
either least-squares or maximum-likelihood esti-
mation, it does not seem possible to perform other
statistical analyses and, in particular, to construct
confidence intervals. Thirdly, it has the theoretical
drawback that the resulting curve is not con-
strained to lie on the sphere. In practical terms,
however, we would expect their method to lead to
smooth curves similar to those given by our
method.

3.3. Prospects

A useful development, which in principle is
straightforward, might be to combine more de-
tailed data selection techniques with our least-
squares fitting procedure by using a weighting
technique. Paleomagnetic poles could be graded,
as for example in the schemes of McElhinny and
Embleton (1976) and of Briden and Duff (1981),
and then weights associated with each grade for
use in the regression calculation.

Our procedure can be adapted to help obtain a
quantitative and mathematically reproducible con-
tinental reassembly using only palacomagnetic
data. The problem involves aligning two time series
on a sphere. We have previously described a
method of aligning two time series (Clark and
Thompson, 1979) by examining the residual mean
square error about a single curve fitted to the
pooled data set of the two series. A search tech-
nique is used to find the minimum residual mean
square error and hence the best alignment. In
order to align two time series on a sphere we have
to modify our method to deal with unit vectors
rather than scalars, so we fit curves to the pooled
palacomagnetic data set for various reconstruc-
tions with the procedure outlined in this paper.
Then the best alignment is found by minimizing
the sum of the squares of the solid angle residuals
about the APW path, instead of minimizing the R?
of eq. 13 of Clark and Thompson (1979).

5.4. Summary

There is as yet no ideal method with all the
necessary desirable properties for smoothing on a



sphere. Clearly some compromise is necessary. We
believe that there is little point in constructing a
smooth curve unless one can make valid and ob-
jective statements, using confidence limits, about
its reliability or precision. Accordingly, we have
sacrificed invariance under rotation for simplicity
and the ability to compute confidence limits, by
reformulating the problem as a standard one of
multiple regression. For the North American and
European palaeomagnetic data, the lack of invari-
ance turned out to be negligible in practical terms.
By using a formal mathematical method, we have
kept subjective assessments to a minimum, and it
has been easy to conduct numerical experiments to
examine the sensitivity of our results to our initial
assumptions.
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