

The Holocene 2008 18: 95-104. Thompson & Clark

Growing-degree-day parameters and standard errors for Clark-Thompson phenological model (2008) for four plant species.									
Taxon	d.o.f	Thermal threshold Degree day requirement					ment		
		α	std.	к	std.	β*	std.	λ	std.
			error		error		error		error
		((°C/	day)	(°C.	days)	(°C/	day
Prunus	676	3.0	0.021	-0.003	0.0006	7.5	0.38	-0.026	0.002
avium									
Bovenden									
Prunus	574	3.0	0.020	-0.007	0.0004	6.7	0.29	-0.034	0.002
avium									

-0.003

-0.005

0.0007 5.6 0.42

0.0012

10.1 0.51

681 corda

481

3.1 0.022

2.7 0.029

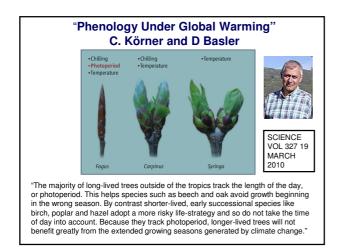
dot Degrees of freedor

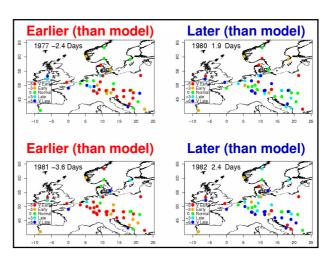
Lutter

Sorb

Tilia

aucupari

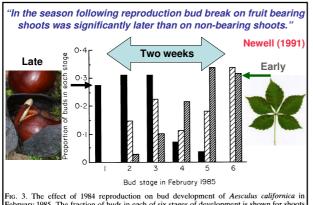
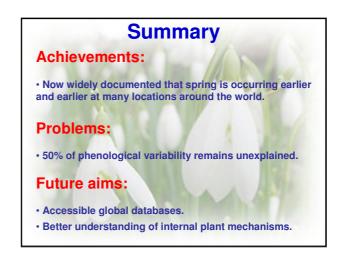
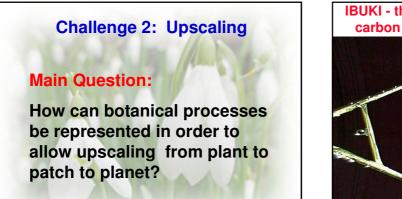
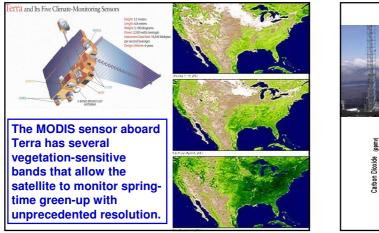

Thermal threshold Inhibitor on thermal threshold

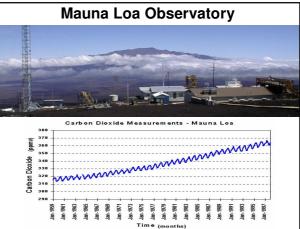

Degree-day requirement ß Degree-day inhibitor

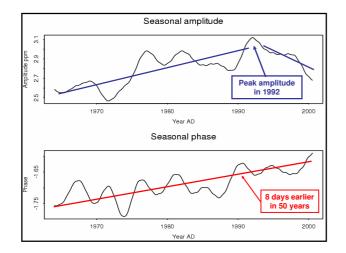
Square root of the degree-day requirement (β)

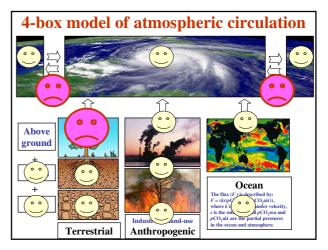
-0.027 0.003

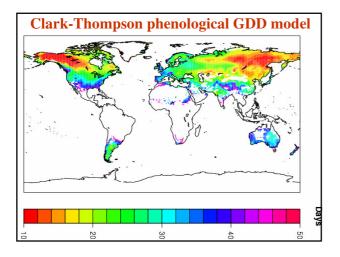
-0.021 0.009

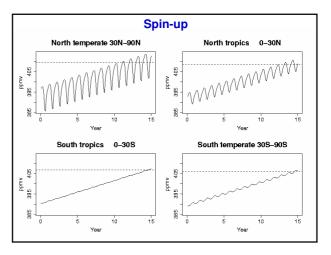





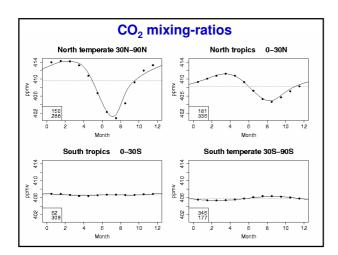

FIG. 3. The effect of 1984 reproduction on bud development of Aesculus californica in February 1985. The fraction of buds in each of six stages of development is shown for shoots maturing fruit in 1984 (a), shoots aborting all fruit in 1984 (b), and for shoots non-flowering in 1984 (a). Buds in stage 1 were tightly closed, buds in stage 4 had just opened, and buds in

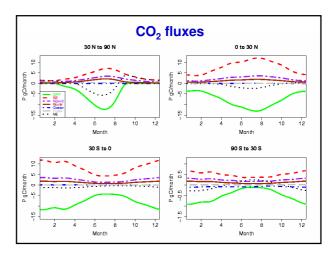










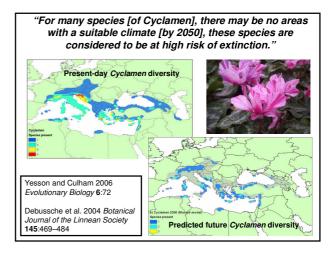


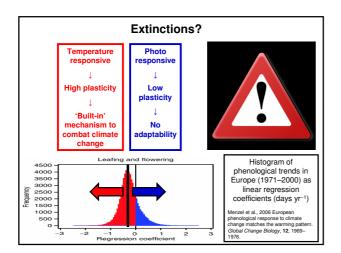
Summary

Successes:

GDD models allow up-scaling from plant to planet.

Springtime advance in global CO₂ matches degreeday phenologies (*if 50% of plants are fully temperature sensitive*).


Future aims:

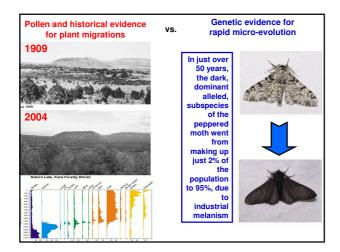

Add remote sensing of NDVI & CO_2 into the global CO_2 model.

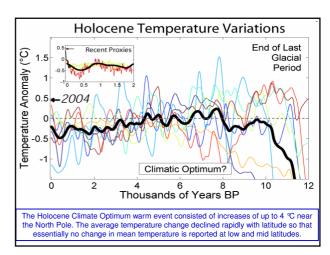
Challenge 3: Phenological extinctions & invasions Main Question: "Where will biota move to and how quickly?" (Gillson et al, 2008)

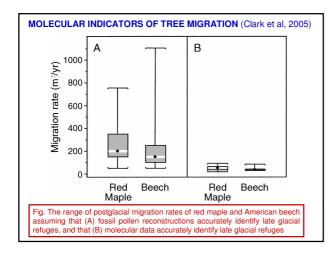
Typical answers 1 & 2:

- 1. "No general 'invasive syndrome' seems to exist ... the idiosyncrasy of each invasion [is] context-dependent" (Petit et al., 2004)
- 2. "There is almost no species for which we know enough relevant ecology, physiology and genetics to predict its evolutionary response to climate change" (Holt, 1990)

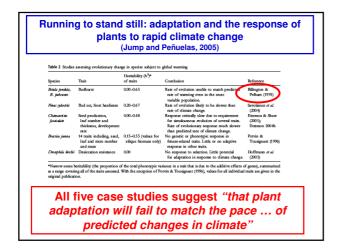


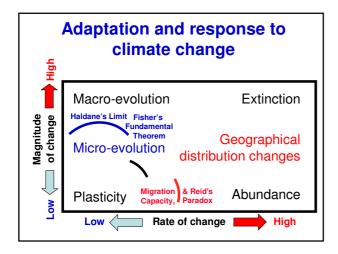

Hence

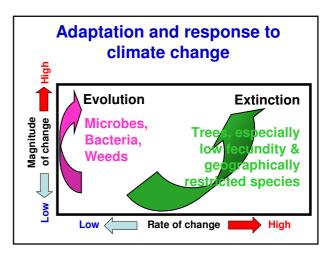

"We should expect considerable numbers of extinctions, unless we take special steps to transfer artificially whole groups of species from one geographic region to another."


(Bradshaw and McNeilly, 1991)

Answer 3:







Origin, Climate, Statistics	Flower onset				
No. 736, Loleta costal redwood, 10m n = 250, N = 25, x = 77.7, CV = 0.120		Many taxa exhibit			
No. 740, Reno snowy forest, 1340m n - 100, N = 17, R = 61.6, CV = 0.144		strong phenological			
No. 742, Careen City snowy forest, 1420m n = 80 , N = 8 , X = 61.6 , CV = 0.128	10	diversity			
No. 749, Sattley anowy foreat, 1500m n = 249, N = 25, x̄ = 61.7, CV = 0.157		urversity			
No. 743, Lake Tahoe snowy forest, 1900m n = 250 , N = 25 , x = 50.0, OV = 0.000	10	B. NEUFFER and H. HURKA			
No. 711, Nico mediterranean warm summer, 460m n = 250 , N = 25 , x = 54.4 , CV = 0.081	10	Colonization history and introduction			
No. 744, Tahoe City anowy forest, 1900m n = 250 , N = 25 , X = 54.2 , CV = 0.052	10	dynamics of <i>Capsella bursa-pastoris</i> (Brassicaceae) in N. America			
No. 716, Mariposa mediterranean warm summer, 610m n = 250, N = 25, V = 52.2, CV = 0.088	10	(Brassicaceae) in N. America			
No. 731, Rodding medilerranean warm summer, 150m n = 250 , N = 25 , X = 47.1 , CV = 0.052	10	Molecular Ecology (1999), 8, 1667-81			
No. 705, Davis mediterranean hot summer, 20m n = 130 , N = 13 , x = 48.6 , CV = 0.089	10	V . 37.			
No. 708, Dixon mediterranean hot summer, 20m n - 120 , N - 12 , R - 48.7 , CV - 0.066	10	Star Ven			
No. 708, Woudland mediarransan hot summar. 20m n $=250$, N $=25$, $\overline{x}=47.0$, CV $=0.062$	10	V V			
No. 725, Mohave hot desert, /1um $n = 250$, N = 25, $\overline{x} = 48.0$, CV = 0.077	10				
No. 721, Shatter hot decert. 150m n = 250 , N = 25 , X = 45.7 , CV = 0.071	50				
	10 40 60 80 [days]	AT A THE A			

