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Summary. Much research in the Earth Sciences is centred on the search for
similarities in waveforms or amongst sets of observations. For example, in
seismology and palacomagnetism, this matching of records is used to align
several series of observations against one another or to compare one set of
observations against a master series. This paper gives a general mathematical
and statistical formulation of the problem of transforming, linearly or other-
wise, the time-scale or depth-scale of one series of data relative to another.
Existing approaches to this problem, involving visual matching or the use of
correlation coefficients, are shown to have several serious deficiencies, and a
new statistical procedure, using least-squares cubic splines, is presented. The
new method provides not only a best estimate of the ‘stretching function’
defining the relative alignment of the two series of observations, but also a
statement, by means of confidence regions, of the precision of this trans-
formation. The new procedure is illustrated by analyses of artificially
generated data and of palacomagnetic observations from two cores from Lake
Vuokonjarvi, Finland. It may be applied in a wide variety of situations,
wherever the observations satisfy the general underlying mathematical model.

1 Introduction

Measurement of the similarity between waveforms and subsequent record matching is used
in many branches of the Earth Sciences, particularly seismology. Anstey (1964) describes
early uses of correlation techniques applied to diverse subjects including echo ranging, well
logs, record stacking and the determination of apparent velocities across seismormeter arrays.

An example in the well logging field occurs in analysing palaeomagnetic and palaeolimno-
logical data from lake sediments when it is important to compare results from several cores
(Thompson & Berglund 1976). In such a situation, it is sensible to choose one particular core
for which a time-scale is constructed (e.g. by radiocarbon dating), and then to match all
other records against the chosen core, that is, to transform the depth-scale of each core to
that of the chosen master core.
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In this paper, we (1) give a mathematical and statistical formulation of the problem of
‘shifting and stretching’ the depth-scale of one core relative to another, (2) discuss some of
the deficiencies in existing methods for doing this, and (3) describe a new statistical
procedure, which we illustrate on both artificially generated and actual data.

2 Mathematical and statistical formulation

We consider the problem of transforming the depth-scale of a given core (core 1) relative to
that of a proposed master core (core 2) on the basis of measurements on some scalar (e.g.
magnetic susceptibility) which, for generality, we refer to as the ‘response’. The fundamental
assumption is that the variation of the response with time is identical in the two cores,
and can be represented by some function H. Of course, H is not only unknown but un-
observable; what we do observe is the variation of the response with depth in the two cores.
This is related to H as follows. If we assume, as seems reasonable, that the depth in each core
is a strictly monotonic increasing function of time, denoted by ¢, and ¢, for cores 1 and 2
respectively, then the variation of the response with depth d in each core is given by
functions F; and £, respectively, where

Fi(d)=H($:'(@) ¢y
F(d)=H(¢7'@)). )

Here, ¢7%, for example, denotes the inverse of the function ¢y; ¢;(¢) denotes the depth in.
core 1 at time ¢, while ¢7'(d) denotes the time corresponding to depth d (in core 1). Under
our assumptions of monotonicity, both inverse functions ¢7* and ¢5' are well defined and
monotonic increasing.

We now denote by g(d) the depth in core 2 which corresponds to the same time as depth
d in core 1 (see Fig. 1). That is, g(d) = ¢,(2)if and only if d= ¢,(¢) or, equivalently,

2! (8(d) = 7' (@). 3

This implicitly defined function g defines the correct transformation of the depths in core 1
relative to core 2, since it follows, from equations (1), (2) and (3), that

Fy(g(d))=Fy(d) (foralld in core 1). 4)

In other words, the response in core 1, plotted against the transformed depth g(d), is
identical to the response in core 2 plotted against the actual depth d. Our task is to find this
‘stretching’ function g or, equivalently, its inverse g
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Figure 1. Schematic representation of the functions ¢,, ¢, and the stretching function g.
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Two further points need to be made before we proceed to statistical aspects of the
problem. First, the assumed monotonicity of the functions ¢; and ¢, implies that g and its
inverse g™* are both well defined and monotonically increasing. Furthermore, it can be easily
shown that

Fy(d)=Fy(g7 (@) (%)

That is, the stretching of core 1 relative to core 2 is specified, as expected intuitively, by the
inverse of the function specifying the stretching of core 2 relative to core 1. Hence it does
not really matter which core we call core 1.

Secondly, while the rates of sedimentation ¢4(¢) and #,() in the two cores would have
varied, in general, with time ¢, it may not be unreasonable, in certain cases, to assume that
the sedimentation rates have been proportional to one another. In other words, one might
assume, as a special case, that

6, () = B1 (1) (6)
for some constant f. It then follows that ¢,(¢) = « + ¢,(f) and, furthermore, that
gld)=a+fd. )

Thus the stretching function g is simply a linear function, with slope equal to the parameter
B in equation (6). Conversely, it can be shown that equation (7) holds only if equation (6)
holds. In short, linearity of g implies proportionality of the derivatives ¢4, ¢, and vice versa.
The assumption (6) of proportional rates of sedimentation would not appear to be un-
reasonable when the two cores in question come from the same lake, and has the appealing
consequence that the stretching function g can be specified completely by its two
parameters o and B. In this special case of linear stretching, we refer subsequently to a as the
lag and B as the stretching factor (for core 1 relative to core 2).

In practice, all of the aforementioned functions are unknown. We have no direct informa-
tion on the implicitly defined functions ¢, ¢,, H and g, but we do have a relatively large
number of measurements of the response (¥y;, ¥2;) at various depths (dy;, do;) in the two
cores. Since these observed responses are subject to inevitable errors of measurement, we
therefore assume that our two sets of paired measurements {(dy, ¥y)} and {(das, Y2i)}
satisfy the model

yu=Fdy)tey, i=1,2,....m ®

y2i=F2(d2i)+eZi7 i=1,2"'-’n2'

Here, dj; denotes the measured depth of the ith sample in core j, and yj; the corresponding
observed ‘response’. The {e;} denote random variables representing the overall error of
measurement in the response, including instrumental noise, sample orientation and sediment
variability. As in Clark & Thompson (1978), we assume that the depths {d]-,-} are known
exactly, with no errors of measurement. Subsequently, it will be assumed that the errors
{e]-,-} are independent and normally distributed with zero mean and some constant variance
2. (The validity of our various assumptions is discussed in Section 7.)

The functions F; and F, are still of unknown form, but it seems not unreasonable that
both functions will be ‘smooth’ in some sense, e.g. at least differentiable. Our task, then, is
given the observations satisfying model (8), to estimate the stretching function g defined
implicitly by the relationship (4) between the two unknown but ‘smooth’ functions Fy
and F. 2.
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3 Criteria for a core-stretching method

Before considering any specific methods for doing this, it is salutary to consider what
properties we should expect or demand of any core-stretching procedure. We propose the
following fairly self-evident criteria:

(1) Although the method may involve certain arbitrary decisions (e.g. our decision in
Section 5 to use spline functions), the method should be objective and reproducible.

(2) It should make as few assumptions as possible, and those assumptions which are
made should be capable of verification from the available data.

(3) It should not matter which core is labelled as ‘core 1’ and which as ‘core 2°,

(4) As well as giving a best estimate of the stretching function g, the method should give
a statistically valid estimate of the precision of the estimate. That is, we should know to
what extent our estimate of g is likely to differ from the correct function.

(5) The statistical procedure should not only be valid but efficient.

(6) The method should not require knowledge of the error variance ¢ although an
independent estimate of it may be necessary in order to check some of the assumptions.

Not all of these criteria are of equal importance. For example, a method which violates
criteria 1 and 3 may still be acceptable in practice, if the dependence on the labelling of
cores or on subjective judgements is negligible in practical terms. Criterion 4 is clearly
crucial; there is little point in having an estimate at all unless we have a reliable assessment
of its accuracy. Our desire to satisfy this criterion led us to reject the two existing methods
described in the next section, and to develop our alternative procedure described in
Section 5.

4 Existing methods

We now discuss two existing methods of estimating the stretching function g, namely (1)
visual matching, and (2) cross-correlation.

4.1 VISUAL MATCHING

In this method, the plots of response versus depth for each core are scanned visually, and
key features (such as local extrema) common to both plots are identified. Since these
common features are due presumably to corresponding features in the underlying function
H, the function g may be estimated directly by plotting against one another the estimated
depths in each core corresponding to successive features (Stober & Thompson 1977).

This method is clearly subjective and not reproducible. On the other hand, it has much
intuitive appeal, since g is estimated directly from its definition. We recommend that, despite
its obvious limitations, this method should be used as a preliminary analysis to our more
complicated method, for three reasons. First, the relative ease with which the common
features can be identified will give an indication of the precision to which g is capable of
being estimated by any method. Secondly, visual matching may indicate whether the
function g is linear and, thirdly, it provides a valuable check on possible errors in computer
programing.

4.2 CROSS-CORRELATION

This method is based on the observation that, if there were no errors of measurement, the
responses at corresponding depths in the two cores, when plotted against one another, would



A new approach to time-series alignment 597

lie exactly on the straight line ¥ = X. Thus if the function g defining the correspondence
between depths is correct, the correlation coefficient of the corresponding paired responses
should be very close to 1.

In practice, this simple idea is complicated by the need to estimate the response at certain
depths, because of unequal spacing and the arbitrary nature of the stretching function g.
To fix ideas, suppose that instead of estimating g, we want to test whether or not the data
are compatible with some given pre-assigned stretching function go. We start by defining, for
each observed depth d;; in core 1, the corresponding depth da; = go(dy;) in core 2, noting
that this depth will not necessarily equal any of the actual depths {d;}. If ya; denotes
the estimated response at depth dj; in core 2, derived presumably by some form of inter-
polation of the observed responses {y,;}, the paired responses {(¥y;, ya),i=1,2,...,n}
satisfy the equations

y_"'"F‘(d‘;)”: i=1,2,...,m ©)
y3i=Fa(dy) t+ e
where e3; is an appropriate error term.

Now if the given stretching function g, is correct, it follows from equation (4) that
Fa(d3) = F2(g0(d1)) = F1(dy;) = 6; say, for i=1, 2,..., n;. Hence y,; and y3: should be
identical, if it were not for errors of measurement. The ordinary product-moment correla-
tion coefficient of the observations {(3;, ya)}, which we denote by r(go), should then be
very close to 1.

In principle, we may compute the correlation coefficient 7(go) for a large number of trial
stretching functions go, and take, as our best estimate of the actual function g, that trial
function for which r(go) is a maximum. In the special case of linear stretching, this
procedure is quite straightforward, since go is specified contpletely by the two parameters
« and B of equation (7).

While this method is also intuitively appealing, it has two serious deficiencies. First, we
recall that the correlation between any two sets of observations is ! whenever those
observations lie on any straight line; however, our aim is to test whether the observations
{1, yf,-)} lie on (or are close to) the particular line y,=y3. Thus, a high correlation
coefficient for the observations {(¥y;, y3;)! does not necessarily mean that the
corresponding gy is correct, or even approximately correct. As a rather extreme example, if
there were no errors of measurement, and if the function F; were linear, the correlation
between {y,;} and {y3;} would be identically 1 for every possible linear stretching function
go i.e.forany aand 8.

Secondly, despite the fairly strong assumptions concerning the error-terms {e,;} and
{e,;} in equation (8), it is not possible to construct a statistical test to test whether the
observed correlation coefficient, #(go), is significantly different from the hypothetical
correlation (p) of 1. The familiar ¢-test (Kendall & Stuart 1969, section 16.28) and z-test
(Kendall & Stuart 1969, section 16.33) cannot be applied, since the former is designed to
test the hypothesis p = 0 while the latter is undefined when p = 1. More importantly, both of
these tests assume that the correlation coefficient is computed from a random sample from
a single bivariate normal distribution. Instead, our observations {(yy;, yf,-)} satisfy a linear
functional relationship (Kendall & Stuart 1973, chapter 29) in which successive pairs
O y’zk,-) come from different bivariate distributions, whose means lie on a straight line.
Although Kendall & Stuart (1973, section 29.21) give an alternative ¢-test for this situation,
this cannot be applied in our case. This modified 7-test assumes that both sets of error-terms
are uncorrelated, with equal variances, whereas our {y3;}, being interpolated from the
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{y2:i}, will be correlated amongst themselves, and have unequal variances. Thus, to sum up,
it is not possible to decide statistically whether 7(g,) is sufficiently close to 1 and, even if
r{go) were equal to 1, this would not necessarily guarantee that the corresponding go was
correct.

Three further points should be noted. First, if the above trial-and-error method is used to
estimate g, the corresponding maximized correlation coefficient is bound to be large, simply
because we have searched for a maximum. Box & Newbold (1971, fig. 1 and table 2) give
examples in which the maximum correlation coefficient (maximized over various lags o,
after de-trending) between two completely random series of 50 observations, is typically
about 0.5. Secondly, for any given go, the correlation between {yy;} and {yg*,-} is not
necessarily the same as that between {3 20, i=1,2,..., n,), where y3; denotes the
estimated response at the depth dyi; =g5" (dy;) in core 1 corresponding to depth ds; in core
2. Hence the method depends on the labelling of the cores. Thirdly, the method used to
interpolate the {y,;} to find each estimated y3; will affect both the numerical value of
r(go) and the correlation structure of the {y3;}. In some cases, it may not be possible to give
a reasonable estimate y3;, if, for example, the transformed depth go(dy;) lies outside the
range of the {d,;}.

5 An alternative method

The idea behind our alternative method is quite simple. Suppose for the moment that our
aim is to test whether or not the data are compatible with some given stretching function
go. Imagine, then, that we superimpose the two observed records of response versus depth,
but with the depths in one core (say core 1) converted to the corresponding depth-scale for
the other core, as given by g. If the given stretching function g is correct, both sets of data,
{(go(d1y), ¥1:)} and {(dai, ¥2:)}, should lie on the same curve, because of equation (4).
If go is incorrect, the two plots will exhibit two separate curves. We can use a standard
statistical test for testing whether or not the underlying curve is the same for both sets of
data by making the two additional assumptions described below.

We assume, first, that for a suitable choice of p functions My, M, ..., My, the function
F, can be written

p
Fo()= ¥ M) (10)
=1

where the unknown coefficients {A;} will be subsequently estimated by least-squares. If go
is correct, then combining equations (4), (8) and (10), the superimposed data {(d3;, y1:),
(d2i, ¥2;)} must satisfy the equations

Y1 =Fa(godu)) ey = Y iji(d;‘i)"'eli, i=1,2,...,m
j

(1)
Vaui=Faldy) ey =3 NjM;(dy) + e, i=1,2,...,my
i

where ds; = go(d;). (For reasons given below, it may be necessary to use subsets of only
m, and m, observations from cores 1 and 2 respectively.) If, on the other hand, g is
incorrect, and there are two separate curves, we assume, secondly, that both of these curves
are of the same form as equation (10), but with possibly different coefficients. Hence an
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alternative model for the data would be
Yu~= Z)\lej(d;i)'*'eli’ i=1,2,....,m
i

12)
J’2i=z)\2jMi(d21)+e"’ i=l,2,...,m2.

The essential point to note is that equation (11) is the special case of equation (12) in which
)\1]'—')\2,':)\], ji= 1,2,...,Dp.

We now estimate the parameters of equations (11) and (12) by least-squares, denoting the
corresponding Residual S.S.’s by R} and R} respectively. If go is correct, both equations
(11) and (12) should fit the data equally well, so that the difference (R — R3) should be
fairly small. If g, is incorrect, equation (12) should fit very much better than equation 11,
so that the difference (R? —R3) will be large’. The crucial question is, how large? Since
both equations (11) and (12) are linear models, it follows by standard statistical theory
(Searle 1971, section 3.6; Seber 1977, section 4.1) that, under our assumptions, the F.
statistic

- R}-R3)Ip
R%/(my+m, —2p)

(13)

has the F-distribution on p, m, + m, — 2p df. Thus the data are compatible with the given
stretching function g if the observed F-ratio is not significant.

The above argument holds for any hypothetical stretching function go, whether linear or
not. Furthermore, the method can be readily extended to provide joint confidence limits for
the lag « and stretch B in the special case of linear stretching. One simply computes the
Fatio (13) for a whole series of trial values of (a, §). By a standard statistical argument
(Kendall & Stuart 1973, section 23.26), it follows that a joint 95 per cent confidence region
for (e, B) is given simply by the set of values (&, §) for which the observed F-ratio (13)is
not significant at the 5 per cent level. This confidence region provides a reliable assessment
of the accuracy to which the linear stretching can be estimated from the available data, thus
satisfying our most important criterion.

While the formal linear model structure of equations (11) and (12) holds whatever
functions {M;} are used, our procedure is justified only if Fy and F, can be expressed in the
form (10). All that we know about F; and F,, apart from the relationships discussed in
Section 2, are that they are likely to be ‘smooth’ in some sense, e.g. differentiable. This
suggests that they may be closely approximated by cubic splines. (For readers unfamiliar
with cubic splines, they may be thought of as a series of piecewise cubic polynomials. These
are carefully joined at points, known as knots, so that the function and its first and second
derivatives are continuous. The four coefficients of each section are derived uniquely from
the data. In this case of cubic B-splines, a least-squares minimization of goodness of fit is
used.) Cubic splines are known to be the most successful and adaptable approximating
functions for empirical functions such as F; and F, and, in particular, are preferable to poly-
nomials (Wold 1974; Greville 1969). Accordingly, we recommend that the functions {M,-}
be taken as cubic B-splines defined on certain specified knots, so that F; and F, are
effectively approximated by least-squares cubic splines with given knots. The user is now
left with the choice of the number and location of the knots; this question is discussed in
Section 7 and by Wold (1974). Note that the same knots must be used in both equations
(11) and (12). Most subroutines for fitting cubic splines, such as the NAG subroutine
E02BAF, require the knots to be internal to the data, and consequently it will be necessary,
in such cases, to use only a subset of the observations, preferably the maximal subset
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corresponding to the ‘intersection’ or overlap of the sets {d,;} and {ds;}. The parameter p
in equations (11), (12) and (13) must be set equal to the number of internal knots plus 4
(Cox 1972).

In certain situations, a single ‘best’ estimate of g will be required as well as confidence
limits. In the case of linear stretching, we suggest that the best estimate of (, §) be taken as
that minimizing R}. (This use of a least-squares criterion can be justified on general
theoretical and statistical grounds.) Since « and 8 appear in equation (11) in an implicit
non-linear manner (through d,;), there is no simple equation for their least-squares estimates.
However, given that confidence limits are to be found anyway, R? can be computed, at no
extra effort, on the same grid of trial values (a, 8), and R? can then be minimized by usual
methods.

6 Applications
6.1 ARTIFICIALLY GENERATED DATA

In order to check the performance of our method, we generated several sets of data in which
both the response curve F, and the actual stretching function g were known. To avoid the
possibility of cheating, the sets of data were generated in random order, and the code
identifying the various sets was not broken until the whole simulation experiment was
completed. Only linear stretching was considered, and our main concern was the construc-
tion of confidence regions for (a, §) using equation (13). For brevity, we discuss three
related cases, in which the stretching function was the same, namely

g(d)=20+1.2d (14)

Each of three cases comprised two sets of observations {(dy;,¥17), (dai>V2:)} (correspond-
ing to two ‘cores’) satisfying equations (1), (2), (4) and (14), with

F1(x)=5.0+sin (0.12x + 1.5) + 0.25 sin(0.56 x) (15)

and n, = n, = 120. The ‘depths’ were approximately equally spaced over the range (1, 120)
in ‘core’ 1 and (11, 142) in ‘core’ 2. The error-terms {e,;, e;;} were generated as indepen-
dent, pseudo-normal random variables with zero mean and equal standard deviation within
each case, namely 0.15, 0.25 and 0.35 in cases 1, 2, 3 respectively. Thus the three cases
corresponded to ‘high’, ‘medium’ and low’ signal/noise ratios, in the sense that the standard
deviation was respectively 0.6, 1.0 and 1.4 times the amplitude of the high-frequency com-
ponent of F; and F,. The pooled data for case 2 are shown, with the correct stretching, in
Fig. 4.

Joint confidence regions for the lag o and stretch 8 of an assumed linear stretching
function were obtained as described in the preceding section, using the NAG subroutine
E02BAF to fit the required cubic splines by least-squares. The number of knots was chosen
after some initial experiments using the methods described in the next section. Within each
case, the same number of equally spaced internal knots was used for all trial values of « and
8, while only those data points in the overlapping sections of the two cores were used. The
resulting 95 per cent confidence regions are plotted in Fig. 2. As expected, the confidence
region is smaller where the signal/noise ratio is higher, and all three confidence regions cover
the point a = 20, §= 1.2 defining the stretching function actually used.

Figs 4 and 5 demonstrate the remarkable sensitivity of our procedure to quite small
departures from the correct stretching. These diagrams show respectively the superimposed
data {(ds:, ¥11), (dai, ¥2)} for the correct linear stretching (o= 20, §=1.2) and a slightly
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Figure 2. Joint 95 per cent confidence regions and best estimates a, b for «, § of artificial data. Circle
marks ‘correct match’ stretching function of equation (14). Best estimate for case 1, triangle; case 2,
diamond; and case 3, square.
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Figure 3. Joint 95 per cent confidence regions and best estimates a, b for Vuokonjarvi real data. Diamond
marks «, 8 given by linear regression of d, versus d, graph of Stober & Thompson (1977). Best estimate for
full set (F), triangle; upper set (U), square; and lower set (L), circle.

incorrect stretching (=17, §=1.2), together with the two least-squares cubic splines
corresponding to equation (12). Clearly, if the two fitted splines had not been plotted, it
would have been extremely difficult to decide by inspection of the plotted points which, if
either, of the diagrams corresponded to the correct stretching. However, closer inspection
of Fig. 5 shows that the curve corresponding to core 1 (knots plotted as squares) is almost
everywhere a short distance to the left of the curve for core 2, implying that the transformed
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3.

15.0  Eqivalent depth in core 2 0=20.00 $41.200 14S.0

Figure 4. Case 2 of artificially generated data, with « = 20, § = 1.2 (correct match). Data for core 2, +;
data for core 1 (after transformation to core 2 depth scale), X. Cubic splines fitted to each set of data
separately. Squares and diamonds mark location of knots (on curves for core 1 and core 2 respectively).

Response

15s.0 Equivalent depth in core 2 Q17.00 B=1.200 145.0

Figure 5. As for Fig. 4 but « = 17 (poor match).

depths d5; have not been moved far enough to the right, i.e. @ is too small. This consistent
error in the trial stretching of Fig. 5 is borne out by the corresponding F-ratios of 1.09 for
Fig. 4 and 3.62 for Fig. 5. This latter figure is extremely significant on the relatively high
df of 36 and 147. In comparison, the cross-correlation method is less sensitive, the correla-
tion coefficient r(go) being 0.907 for Fig. 4 and 0.835 for Fig. 5.

6.2 ACTUAL DATA

The method was then applied to two cores from Lake Vuokonjarvi, Finland (Stober &
Thompson 1977) comprising 127 and 128 observations respectively. The response variable
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chosen was the susceptibility, on the grounds that it was: (1) independent of the palaeo-
magnetic directions under investigation, (2) a scalar and (3) contained physically meaningful
and high-frequency components. Visual matching of 13 features of the susceptibility record
in both cores produced a preliminary estimate (Stober & Thompson 1977, fig. 4) of the
stretching function g. This was obtained by cubic spline interpolation of the 13 plotted
depth-pairs, without assuming that g was linear. Nevertheless, this preliminary estimate
(Fig. 3) was extremely close to the straight line g(d) = 150 + 0.924.

Since both cores were taken close to one another in the same lake, the assumption of
proportional sedimentation rates (6) seemed reasonable. We therefore applied the method of
Section 5, assuming g to be linear, and again approximating F; and F, by cubic splines with
equally spaced knots in the pooled data. The resulting 95 per cent confidence region for o
and B is shown in Fig. 3 and is very tight. To check its reliability the data of core 1 was
divided into an upper and lower set of 4.5 m. The residual variance of the lower set appeared
to be higher than in the upper set. The upper set was roughly twice the length of the lower
set. Core 2 was then separately aligned with the upper and lower groups. The best
alignments (minimum R3?s) and confidence regions for a, § for these two separate cases are
also plotted in Fig. 3. Excellent agreement is found between all the alignment estimates. The
closeness of the alignments of the full and subsets and the smallness of the confidence region
of the full set shows that the necessary transformation of one depth-scale to another can be
determined to an adequate precision for practical purposes, and confirms that palaeo-
magnetic variations are reproducible in these two cores. The initial estimate of (a, ), based
on visual matching, lies outside the full and upper confidence regions, highlighting the
difficulty of correctly identifying, by visual means, the features of a palacomagnetic record
and the depths at which these occur.

7 Discussion of assumptions

Our various assumptions fall into two categories, i.e. those concerning: (1) the model and (2)
the method of analysis. We discuss these separately.

7.1 THE MODEL

Our assumptions concerning the probability distribution of the errors {e;;} and {e;;} in our
basic model (8) are the same as those made and discussed in Clark & Thompson (1978).
Although the response variable y considered in that paper was declination, the same general
comments are likely to hold for other palacomagnetic parameters, such as susceptibility
or intensity. The assumption of normality can be justified by appeal to the Central Limit
Theorem (Cramér 1946, p. 231) and, in any case, it is known (Cochran 1947; Boneau
1960) that the F-test is robust under moderate departures for normality. The distribution of
the Fstatistic (13) is, however, sensitive to heterogeneity of the error variances. If the error
variances are not constant but their ratios are known, this problem is easily overcome by
using weighted least-squares fitting of the cubic splines. (The subroutine EO2BAF has such a
facility.)

Returning to the basic mathematics, the assumption that the functions ¢; and ¢, are
strictly monotonic is essential, for it is only then that the inverse functions (671, ¢31), the
response functions (Fy, F,) and the stretching function g itself can be unambiguously
defined. The functions ¢; and ¢, need not necessarily be smooth. For example, if it
happened that there was no disposition of sediment for several consecutive years, the
functions ¢, and ¢, would have a ‘flat-spot’ at the corresponding time-interval (assuming
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both cores come from the same lake). It would still be possible to define monotonic inverse
functions ¢7' and ¢3°, but these functions, and F; and F,, would have a jump at the depth
at which deposition stopped. These jumps would, in fact, help to pinpoint the stretching
function g, since they would be very obvious features of the palaeomagnetic record.

The assumption of proportional rates of sedimentation seems reasonable for two cores
from adjacent parts of the same lake. Fortunately, the assumption of linear stretching can be
easily tested. If the actual stretching function g is distinctly non-linear, but we assume that
it is linear, the F-ratio (13) will be significantly large for every possible choice of « and 8,
and so we have an immediate and clear indication that our assumption of linearity is
incorrect. It should be noted that linear stretching is merely a special case, and that our
Fstatistic (13) may be used to test any proposed monotonic stretching function, linear or
not.

On the other hand, it may happen that the correct stretching function g is very close to
a straight line, but not exactly linear. It may then turn out that the F-ratio, computed under
the assumption of linear stretching, is not significant, at least for certain as and fs. The
appropriate interpretation in this case is that the data {y;, y,;} are not sufficiently
numerous or precise for any departure from linearity of g to be detected. In such a case, it
is reasonable to act as if the function g were really linear, since this gives us the simplest
adequate explanation of the data.

7.2 THE METHOD

Provided F; and F, are smooth, their approximation by cubic splines is not unreasonable.
But the choice of knots is important. If there are too many knots, much of the degrees of
freedom will be used up in estimating unnecessary parameters, and it is even possible that
the least-squares equations will have no unique solution (Schoenberg & Whitney 1953). If
there are too few knots, the cubic splines will not be an adequate representation of the
functions F; and F,. For example, some of the fine detail of F; and F,, which may well be
important in defining g, may be lost. Further, the error terms in equations (11) and (12)
may contain systematic as well as random components, thereby changing the null distribu-
tion of equation (13) to a non-central F-distribution.

We recommend therefore that various choices of knots be tried following Wold’s (1974)
guidelines. If one has an estimate of the error variance 0%, it is possible to test the adequacy
of the cubic spline approximation to F; and F, corresponding to any given set of knots. If
s? denotes an independent estimate of ¢, with v df, then the ratio R3/((m, + m, — 2p)s*)
should have the F-distribution on m; +m, — 2p, v df. (In the unlikely event that ¢? is
known exactly, the ratio R3/0? would have the x 2 distribution on m; + m, — 2p df.) Both
these statements hold even if the wrong go is used in equation (12), since R3 is computed by
fitting two separate curves. In the likely event that several sets of knots give an adequate
approximation, as judged by either criterion, one would normally use the smallest such set
of knots, corresponding to the simplest adequate approximation to the data.

If the error variance cannot be estimated independently, one may use the technique of
cross-validation (Stone 1974; Clark 1977) to determine an appropriate set of knots. The aim
here is, effectively, to determine an appropriate value of p in the approximation (10) to
F,, and this choice should be largely independent of the estimation of g. We recommend
that cross-validation be applied to core 2 only, first, for simplicity of computation and,
secondly, because the F-ratio (13) is computed after converting all depths to the core-2
scale. If equally spaced knots are used, the appropriate number of such knots would be that
corresponding to the smallest cross-validation mean-square-error (CVMSE). (If the subse-
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Table 1.

m a b st 52 CVMSE x? df
1 21.0 1.180 0.1826 0.1867 0.392 609.4 204
8 204 1.180 0.0884 0.0909 0.115 276.4 190

16 19.8 1.200 0.0728 0.0728 0.094 202.7 174

20 193 1.213 0.0609 0.0594 0.078 157.7 166

24 19.7 1.204 0.0570 0.0557 0.183 140.8 158

32 19.6 1.207 0.0587 0.0578 0.220 131.3 142

64 20.6 1.190 0.0580 0.0562 0.162 70.1 78

Correct
values 20.0 1.200 0.0625 0.0625 - df -

Cross-
correlation 19.9 1.186 - - - — -

m, number of internal knots. @, best estimate of «. b, best estimate of g. s}, residual mean square
for single spline at (g, b) = R}/(m,+ m, — p). s}, residual mean square for two separate splines at
(@, b)=R32/(m,+m, - 2p). CVMSE, cross-validation mean square. x>, R}/o? df, degrees of
freedom for x>*=m,+m, — 2p.

quent computation of equation (13) uses only a subset of the data, this number of knots
should, of course, be reduced accordingly.)

Table 1 summarizes the effect of changing the number of internal knots for case 2 of our
artificially generated data. The point-estimates (a, b) of (o, ), obtained by minimizing
R32, are all very similar and, for example, the estimate b of the stretching factor differs by
no more than 2 per cent from the correct value. The x2values (based on R}, and using the
known value of ¢2) imply that for these data the minimum number of equally spaced
interval knots to achieve an adequate fit to the data is 20. This figure is confirmed by cross-
validation, as it also corresponds to the minimum CVMSE. Experiments with varying
numbers of knots showed that both the confidence regions for («, §) and the corresponding
least-squares estimate of Fy and F, were affected only slightly by increasing the number of
knots beyond the optimum number of 20. On the other hand, we may expect the
confidence region to increase considerably in size as the number of knots decreases, because
of the increasing scatter of the observations about the fitted curves, as measured by s3.

For case 2 of our artificially generated data, the use of 20 equally spaced knots
corresponds to roughly six data points between knots on average in each core, in good
agreement with the recommendation by Wold (1974) that, all other things being equal, the
number of data points between knots should be at least 4 or 5. In general, the optimum
knot spacing will be different for different data-sets; for the Vuokonjarvi data, cross-
validation suggested a high number of knots, so following Wold (1974) 30 internal knots,
i.e. an average of four data points between knots, were used. In most practical situations, the
ratio R3/o? cannot be evaluated, since the exact value of o will be generally unknown;
the corresponding x2values of Table 1 were computed to demonstrate the good agreement
between cross-validation and the more traditional statistical methods for determining the
number of knots.

Finally, if the functions F, and F, contain jumps (due to jumps in ¢7! or ¢3'), we
recommend that F; and F, be represented by a series of disjoint cubic splines, with as far
as possible the same jumps. This representation is of the same form as equation (10), and so
the preceding theory still applies. Although we have not yet done any experiments on this
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point, our conjecture is that one needs to allow for only those jumps which are large relative
to the standard deviation g, i.e. those which are obvious from a plot of the data.

8 Conclusions

The new statistical approach presented in this paper meets the major criteria listed in Section
3 for a core-stretching method. The new method is clearly reproducible, efficient (since
least-squares curve-fitting is used), and produces valid confidence regions for the stretching
function g. The representation of the function F, by cubic splines would appear to be
reasonable, given the flexibility and adaptability of cubic splines for approximating empirical
functions; the adequacy of this approximation can be tested from the data, provided an
independent estimate of the error variance o is available. If 0 cannot be estimated, cross-
validation may be used to determine an appropriate set of knots for the cubic splines, and a
confidence region for the stretching function g may still be found using the F-statistic
(13). The method may be used to investigate both linear and non-linear stretching functions,
although the computations are simpler and the results easier to interpret if g is assumed to
be linear. In such a case, the labelling of the cores is irrelevant; if F, can be represented by a
cubic spline, so too can F; (with the same relative knot spacing), and vice versa.

Since all these major criteria are met, the new approach is clearly preferable to the
existing methods of visual matching and cross-correlation. A possible disadvantage for some
workers is the amount of computing involved. However, most computer installations wili be
able to supply efficient subroutines for fitting cubic splines by least-squares, and the amount
of computer time needed is not excessive. For example, once the number of knots was
chosen, production of the confidence region in Fig. 3 using the full data set from Lake
Vuokonjarvi required 90 s of central-processor time on the University of Edinburgh System
4/75, at a nominal cost of £4.00.

The comparison of waveforms and the concept of record-matching to align two or more
sequences of observations arises in many fields. For example, the calibration of floating
tree-ring chronologies using radiocarbon dates (Clark & Sowray 1973) and the construction
and extension of tree-ring chronologies (Baillie & Pilcher 1973) both involve observations
satisfying the same basic statistical structure as assumed in this paper. In both these cases,
the aim is to estimate simply the lag, o, between the two sequences; in other words, the
stretching function g is, by definition, simply g(d)=oa+d. It follows that the method
described in this paper may be applied to these problems, and indeed in any situation with
data satisfying equations (4) and (8). In addition, our method can be easily generalized to
perform k stretchings simultaneously.

Application of our new approach to the susceptibility versus depth records of the two
cores from Lake Vuokonjarvi shows that the transformation from one depth-scale to another
can be determined to a high precision. The directional measurements from both cores may
now be superimposed using a common depth-scale, and these pooled data may be used both
to test the repeatability of directional measurements from core to core and to estimate,
more accurately than otherwise, the past variations in the geomagnetic field direction at
Lake Vuokonjarvi. Work on these further problems is currently in progress, and we expect
to report shortly on the results of this further investigation.
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