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I. Introduction  
   Developing a new space-based observation system represents a substantial financial 

investment. Observation System Simulation Experiments (OSSE) are a cost-effective 

numerical approach to realistically describe space-borne measurements and to evaluate their 

impact on current knowledge as part of preparing a science case for a particular space-borne 

mission. For example,  in the included reference experiment we quantify the impact of 

atmospheric measurements of a trace gas on improving our current prior understanding of 

surface fluxes (emission minus uptake) of that gas. The example OSSE, relevant to 

atmospheric composition, includes methods to: 1) simulate the 4-D distribution of 

atmospheric constituents and sample it as it is observed by the space-borne sensor; and 2) 

estimate the magnitude and distribution of surface fluxes by fitting prior model surface 

fluxes, which describe physics, chemistry and biology underpinning the surface flux 

processes, to the pseudo observations using a data assimilation algorithm, accounting for 

model and observation errors. Despite some limitations of OSSEs (Lahoz et al., 2006), self-

consistent numerical experiments have been useful to evaluate newly proposed space-based 

instruments.  For example, the impact of data from the NASA Orbiting Carbon Observatory 

(OCO) was examined by several OSSE systems based on different transport models and 

different data assimilation techniques (e.g., Baker et al., 2006; Chevelliar et al, 2007; Feng et 

al., 2009).  

  

  It is time-consuming to develop a robust, realistic OSSE for any individual space-borne 

sensor, reflecting the challenges associated with combining an atmosphere transport model, a 

surface (process or empirical) model, and an instrument observation model with modern data 

assimilation techniques.  Such a tool should also be flexible, considering all possible 

configurations of a proposed instrument and its potential applications, which can evolve 

during the design phase. We have developed the software package PyOSSE to help 

researchers to build their own OSSE systems with minimum overhead. PyOSSE consists of 

modules written in FORTRAN and Python, with emphasis on flexibility and simplicity, so 

that the user can easily understand, and apply these modules to their research.  We assume 

that the user will have at least some rudimentary knowledge of Python and FORTRAN 

computer languages. 

 

1.1 Overview of PyOSSE tool 

 

   Figure 1 shows these modules are organized around the two major tasks of one typical 

OSSE system: 

 

1. Generating synthetic observations by sampling and screening model atmosphere.  

2. Using an Ensemble Kalman Filter (EnKF) (Feng et al., 2009) approach to 

assimilate simulated observations to evaluate their impacts.  

   

  Left column of Figure 1 shows the main steps required to  simulate satellite observations, 

including: 1) generating 4D-distributions of targeted atmospheric components by using a 

Chemistry Transport Model (CTM); 2) sampling model profiles along satellite tracks; 3) 

screening possible cloud and aerosol contaminations; and 4) convolving clear-sky profiles 

with scene-specific sensor averaging kernels, which reflect different instrument sensitivities 

at different vertical levels.   

 

   PyOSSE provides several classes as generic containers for observation specifications 

including satellite orbit (orbit_m.py) and instrument averaging kernels (avk_m.py) etc.  These 
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classes read in multi-dimensional data tables by using file access modules (i.e., 

orbit_file_m.py and avk_file_m.py), which can be reconfigured or modified for different file 

formats. These classes also contain facilities to interpolate these pre-calculated tables to 

different observation scenes to reflect changes of instrument sensitivities.  Besides the 

targeted atmospheric components, PyOSSE has also classes to represent other relevant 

atmospheric conditions that may affect observations from space. For example, classes 

cloud_cl (cloud_m.py), and aod_cl (aod_m.py) collect climatology on cloud and aerosol 

probabilities from different seasons. Randomly sampling these probability distribution 

functions help to realistically describe (and remove) cloudy and aerosol contaminated scenes.  

These modules can readily be exchanged with files provided by the user. 

 
Figure 1:  A schematic describing the PyOSSE Observation System Simulation 

Experiment infrastructure,  which in this example uses output from the GEOS-

Chem chemistry transport model.  

    

    

  Right column of Figure 1 demonstrates top-down flux estimation from simulated satellite 

observations by using an Ensemble Kalman Filter (EnKF) to:  1) generate an ensemble of 

flux perturbations to represent prior uncertainty; 2) use a CTM to project the resulting flux 

ensemble to an ensemble of model distributions of the targeted component; 3) use an 

observation operator to sample the resulting model concentrations, and convolve model 

profiles with instrument averaging kernels; 4) optimally determine posterior estimates by 

comparing model observation ensemble with simulated observations (as well as with their 

uncertainties).    

 

1.2 EnKF approach 

 

  PyOSSE uses an EnKF approach (described by Feng et al, 2009) to estimate surface fluxes 

from simulated observations. The EnKF approach does not require any adjoint model 

specified for certain atmospheric transport model and observation operator so it can easily be 

applied to various experiments for top-down flux estimates.  The EnKF approach also 
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provides a direct estimate of posterior error covariance, which is critical for properly 

quantifying impacts of a new instrument.    

 

  For this example, the state vector, describing the subject of interest, is estimated by the 

EnKF as scaling factor coefficients for a set of user-defined basis functions, representing a 

unique (temporal and) spatial pattern of surface fluxes at a given time period.  By choosing 

basis function sets, the user can test the ability of the new instrument to determine the 

magnitude and distribution of fluxes. PyOSSE provides modules that help to define basis 

functions either by dividing continental-scale geographical regions (divide_region.py) or by 

decomposing error covariance for prior flux estimates to a set of major eigen-states   

(svd_region_flux.py).  

 

  Module gen_ensemble_flux.py uses sampling routines in sample_reg_flux.py to construct an 

ensemble for a full (sample_by_reg) or partial (random_sample_reg) representation of prior 

error covariance of the state vector (i.e., coefficients for the basis function set).  It generates 

an ensemble of flux perturbations, which are subsequently used as surface boundary 

conditions for CTM simulations for projecting perturbation ensemble for model observations. 

The user can change the menus in configuration file, flux_ensemble_def.cfg, to read their own 

basis functions and sampling routines for flux perturbation ensembles.  

 

  The user is responsible for converting the netcdf file generated for the flux perturbation 

ensemble from gen_ensemble_flux.py to a format that is readable by their CTM. PyOSSE 

provides example code, convert_netcdf_flux_bpch.py, to convert the ensemble of perturbed 

fluxes to a binary format used by the GEOS-Chem CTM (see wiki.seas.harvard.edu/geos-

chem for more details). PyOSSE also includes a prototype module called 

ensemble_run_drive.py to schedule individual ensemble model runs and to generate a text file 

run_desc.dat (or user-chosen name) for descriptions on emission inputs and model outputs 

etc, which will be used by construct_state_vector.py to set up state vector and configure the 

projection from coefficients to surface fluxes.    

 

  PyOSSE uses functions in satellite_operator.py to sample model profiles at the time and 

location of observed scenes and convolve them with the sensor scene-dependent averaging 

kernels that describe the vertical sensitivity of the sensor.  Its default file IO functions can be 

re-configured or be replaced to access model fields from a user-defined CTM.   PyOSSE then 

uses module etkf_half.py or etkf_cor.py as a numeric solver for the Ensemble Transform 

Kalman Filter (ETKF) algorithm (See Appenix A) to calculate the corresponding analysis 

increment and to estimate transform matrices by comparing model observation ensemble with 

(simulated) satellite observations and the associated error covariance. Module etkf_half.py is 

based on singular value decomposition (SVD), and is most efficient when no observation 

error correlations (due to correlated model transport errors etc) are taken into account (Feng 

et al., 2009). etkf_cor.py uses an LU-solver that can handle observation error correlations  

(Palmer et al., 2011).  

 

1.3 OSSE example system 

 

  We have also provided a complete example OSSE system for an instrument based loosely 

on the specification of the NASA Orbiting Carbon Observatory that measured column-

integrated dry-air CO2 mole fraction XCO2.  This example system can be extended or 

modified to describe other similar instruments. We have used the GEOS-Chem CTM as the 

default CTM to simulate the temporal and spatial distributions of atmospheric constituents, 



 5 

but the user is able to replace it with their own CTM without extensive changes to the 

existing python modules that describe the simulated observations simulation or the data 

assimilation method. In our example OSSE, we first generate virtual observations by 

sampling a dummy atmosphere distribution with fixed vertical profiles (gen_dummy_obs.py). 

The user can insert their own instrument specification, and observation screening data and 

algorithm for cloud and aerosol contaminations by changing definitions in menu file 

vob_def.cfg.  The virtual observation files provide information which is not directly linked to 

component distributions simulated by CTM, such as time and locations of clear scenes and 

sensor averaging kernel and uncertainties for these clear scenes.  By default, gen_sat_obs.py 

converts dummy observations to model observation by convolving model CO2 profiles 

sampled from actual GEOS-Chem model outputs to dry-air columns. This step can be readily 

reconfigured to use outputs from other CTMs by changing menu defined in sob_def.cfg.   

 

  To digest simulated OCO observations, we have defined 144 basis functions for monthly 

fluxes over 144 global regions using split_t3_region.py, and then constructed a full 

representation of prior error covariance using gen_ensemble_flux.py. We are using a 

sequential approach to assimilate observations, and have introduced a lag window of 5 

months to reduce computational costs (Appendix A).  The resulting flux perturbations are 

converted from netcdf format to a binary format using convert_netcdf_flux_bpch.py to drive 

tagged GEOS-Chem simulations. The EnKF  algorithm is then used to update flux estimates 

by digesting simulated OCO observations step by step.   

 

  PyOSSE is developed by the University of Edinburgh as part of the ESA Data Assimilation 

Project (www.esa-da.org), contract no ESRIN/RFQ/3-13354/11/I-LG.  It is free for academic 

research. This document describes structure of the package.  Detailed interfaces of individual 

modules can be found in its documentation sub-directory otool/ESA/doc/ or from 

xweb.geos.ed.ac.uk/~lfeng/reference.  

 

  Section II describes procedures for installing and testing PyOSSE. Section III is an overview 

of the structure and concepts of the package. It also discusses the most important modules 

and data files in each subdirectory. Appendix A provides a detailed description of the EnKF 

algorithm. Appendix B details the complete OSSE system for OCO-like instruments.     

 

II. Installation 
 

2.1 Download 

 

  The package is freely available from website  xweb.geos.ed.ac.uk/~lfeng as a tar.gz archive 

file.   

 

2.2 Prerequisites 
 

  This package is developed for a Linux operation system. As it involves running a 3-D 

chemistry transport model with multiple tracers, we assume that the user has access to a 

workstation with sufficient internal memory (>4 Gb) and free disk space (>300 Gb).  

 

  Many modules in this package have been built over other freely distributed packages and 

libraries. Before installing this package, following software packages are needed: 

 

 Python interpreter (>version 2.4), freely available at www.python.org 

http://www.esa-da.org/
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 Numeric extensions to the Python (numpy), freely available at: 

http://sourceforge.net/projects/numpy.  

 Scientific Python, available at: 

http://dirac.cnrsorleans.fr/plone/software/scientificpython 

 Python plotting library, available at http://matplotlib.sourceforge.net/ 

 Intel fortran compiler and Intel kernel math library, which academic users can freely 

downloaded via http://software.intel.com/en-us/articles/intel-education-offerings/. 

 NetCDF library, freely available at: http://www.unidata.ucar.edu 

 HDF library, freely available at: http://www.hdfgroup.org.  

 

  To avoid installing the individual python packages, we recommend to download and install 

the pre-compiled Enthought python installation of EPD 7.0 (or higher) from 

www.enthough.com. This Python distribution is free for academic users, and has already 

included the common python extensions needed by PyOSSE.   

 

  PyOSSE contains a complete example OSSE system for OCO-like instruments. The 

example experiment is based on the GEOS-Chem community CTM (v8.02) for which more 

information is available at wiki.seas.harvard.edu/geos-chem. For PyOSSE, we have provided 

GEOS-Chem outputs to demonstrate the example.  If you want to use GEOS-Chem directly 

please consult the wiki for further details on how to download and install the model. If you 

choose to download the model the relevant modifications are listed in 

otool/ESA/example/enkf_oco/geos_chem.   

 

2.3 Unpacking and compiling 

 

2.3.1 Unpacking 
 

  After downloading the file archive otool.tar.gz into your workstation, you can extract the 

files by using Linux  command: 

 

  tar -zxvf otool.tar.gz 

 

There will be 8 sub-directories built under otool/ESA/:  

 

 atmosphere 

 doc 

 enkf 

 example 

 instrument 

 observation 

 surface  

 util 

 

  The contents and purpose of these sub-directories are explained in Section III.   

 

  In order to let the user easily read, apply or even change existing modules, we have not 

developed PyOSSE with any particular version of Python. The user is expected to change 

python searching path to load this package manually and then build the required shared 

libraries, following instructions in 2.3.2 and 2.3.3 

http://sourceforge.net/projects/numpy
http://dirac.cnrsorleans.fr/plone/software/scientificpython
http://software.intel.com/en-us/articles/intel-education-offerings/
http://www.unidata.ucar.edu/
http://www.hdfgroup.org/
http://www.enthough.com/
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2.3.2 Setting python searching path 

  

  You can add PyOSSE to python searching path by inserting the following line into your 

.bashrc file 

 

 export PYTHONPATH=$PYTHONPATH:/your_PyOSSE_directory/ 

  

  For some systems, it is also necessary to include runtime libraries for python installation 

into LD_RUN_PATH  by adding:   

 

 export  LD_RUN_PATH=$LD_RUN_PATH:/your_python_root/lib 

 

2.3.3 Build shared libraries 
 

  First, go to subdirectory otool/ESA/util, and change one shell script called ‘f2py_ifort’, by 

inserting the locations of your python installation and FORTRAN compilers: 

  

F90=<your_f90_compiler> 

FPY=<f2py of your python installation> 

LIBPATH=< path for fortran lib>  

LIBS=<your fortran libraries> 

 

   Second, build the FORTRAN shared libraries by running the shell script 

‘build_share_lib.sh’.  If compilations are successful, there will be 11 shared libraries under 

sub-directory PyOSSE/ESA/util/: 

bpch2_rw_py.so 

flux_regrid.so 

flib.so 

interpolate_f.so 

sigma_pres_mod.so 

process_nf_array.so 

sampl_model_field.so 

vertical_column.so 

vertical_profile.so 

read_data.so 

great_circle_distance.so  

 

Contents of these libraries can be found in Section 3 for important modules. You can test 

these libraries by running python scripts test_interpolate.py and test_sigma_pres.py.  

 

2.4 Generate HTML files for module interfaces 

 

   Use build_doc.sh in otool/ESA/ to generate one HTML file for each module that describes 

its contents and usage. These html files are stored in otool/ESA/doc for future reference.    

 

2.5 Data set 
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   You can download otool_data.tar.gz from (www.esa-da.org/data/otool_data.tar.gz).  They 

are the default data inputs, mainly for supporting complete OSSE examples.  After unzipping 

the data archive, you have 7 sub-directories under otool_data :    

1. clim_data:  climatology for CO2, CH4 etc profiles 

2. ecmwf:  ecmwf cloud analysis. 

3. enkf_output:  GEOS-Chem outputs from tagged simulations  

4. enkf_rerun:  GEOS-Chem outputs from single tracer run. 

5. LAI: surface vegetation type etc.   

6. oco: satellite orbit and data tables for OCO XCO2 averaging kernel and error. 

7. gc_std: GEOS-Chem outputs from single tracer run forced by standard 

(climatological) emission inventories.   

   

You can now test these data sets, and first generate virtual (‘dummy’) observations for OCO 

satellite, where atmospheric CO2 concentrations are fixed to a CO2 climatology profile, and 

then generate satellite observations by sampling GEOS-Chem outputs by:  

 

    1) changing DATAPATH in vob_def.cfg under otool/ESA/example/obs_simulation/ 

2) running gen_dummy_obs.py there. 

3) changing sob_def.cfg   and running gen_sat_obs.py 

 

  If you want to run GEOS-Chem simulation by yourself,  please consult the wiki for further 

details on how to download and install the model wiki.seas.harvard.edu/geos-chem, and 

download GEOS-5 meteorological data at a horizontal resolution of 4º (latitude)×5º 

(longitude) for 2009. Once the model infrastructure is established, following the guidelines 

associated with GEOS-Chem, you can run the script ‘rungeos.sh’ in 

/ESA/example/enkf_oco/std_run for a control calculation.  As a result, a GEOS-Chem 

forward simulation will be launched to produce daily 3-D CO2 fields, which can be sampled 

to simulate satellite observations as discussed above.  
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III. Directory and module 
   

3.0 Structure 

 

  Figure 2 shows the modules and shared libraries that are stored in 8 sub-directories.  Table 1 

summarises the file types and purposes of these sub-directories. Further more details for each 

sub-directory are discussed in this chapter.  If you want to use any module in your own 

python codes, you can import it by using sentences like: 

 

import ESA.<SUBDIR>.<MODULE>,  

 

where <MODULE> is the name of the module you want, and <SUBDIR> is its location.  

 

 

 

 
 

       
Figure 2: Directory tree of PyOSSE package.  
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Directory File types Contents 

ESA (main) *.py 

*.sh 

1) Shell files for installing and testing the 

package. 

2)  Python files for package initialization.  

 

util *.py  

*.so 

*.f90 

Python modules,  FORTRAN modules and 

shared libraries for: 

  1. object managing 

  2. file IO accessing 

  3. data processing (gridding or interpolation) 

enkf *.py Classes and modules for 

1.  constructing / maintaining state vector  

2. solving ETKF equations for posterior 

increment and  transform matrices by 

assimilating observations.  

example/enkf_oco *.py  

*.sh 

*.cfg 

*.bpch 

 EnKF data assimilation system based on GEOS-

Chem CTM outputs 

instrument *.py 

 

Classes and modules  to  

1) ‘model’ satellite instruments (orbit; averaging 

kernel etc).  

2)  collect climatology or  model outputs.  

3)  sample cloud and aod  PDF. 

4)  screen observation scenes. 

 

atmosphere *.py 

 

Classes to    

1. access and store 3D or 2D  model outputs. 

2. sample model outputs at observation locations.  

3. interpolate/integrate model profiles.  

 

example/obs_simulation *.py 

*.cfg 

 

Modules  to  

1)  generate virtual observations for OCO-like 

satellite  by sampling  fixed atmosphere CO2 

profile along satellite orbits.   

2)  convert virtual observations to model 

observations by sampling GEOS-Chem model 

outputs. 

.  

surface *.py 

*.nc 

*.cfg 

*.dat 

Modules to  

1. set up basis function sets;  

2. sample basis functions to construct flux 

perturbation ensemble.  
 

Table 1:  contents in package directories 

 

 

 

3.1 Classes 
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  PyOSSE uses classes to represent the objects included by a typical OSSE system. They are 

containers for both the data and functions of these objects.  Table 2 lists the major classes 

defined in PyOSSE.  These classes can be used as parents to derive users’ classes. Also, their 

member functions can be changed through inputs during run-time or be overridden within 

derived classes.  In particular, access to pre-defined data or model outputs are through so-

called configurable file IO modules (see 3.2)     

 

Location Module Class Object 

surface bf_m.py bf_cl Basis (or ensemble)  

functions for surface 

fluxes 

    

instrument landcover_m.py landcover_cl Land cover (surface 

type)  

instrument avk_m.py avk_cl Predefined averaging 

kernel 

instrument err_m.py err_cl Predefined Observation 

error 

instrument cloud_m.py cloud_cl Cloud PDF  

Instrument  aod_m.py aod_cl AOD PDF 

instrument orbit_m.py orbit_cl Predefined satellite 

orbit 

    

atmosphere ctm_grid_m.py ctm_grid_cl Generic grid used in 

CTM 

atmosphere ctm_grid_2d.py ctm_grid_2d Grid for 2-D data 

atmosphere ctm_grid_3d.py ctm_grid_3d Grid for 3-D data 

atmosphere ctm_slice_m.py ctm_slice_cl Slice of atmosphere 

atmosphere ctm_profile_m.py ctm_profile_cl Vertical profiles 

atmosphere ctm_world_m.py ctm_world_cl Collection of CTM 

fields.  

    

observation satellite_obs.py satellite_obs_cl Satellite observation 

observation satellite_operator.py satellite_xgp_cl Model satellite dry-air 

column observation 

observation sobs_def_m.py sobs_def_cl Configuration for 

observation simulation 

    

enkf state_vector.py stv_cl State vector used in 

EnKF.  

enkf etkf_half.py etkf_cl SVD solver for ETKF 

equations 

enkf etkf_cor.py etkf_cor_cl LU solver for ETKF 

equations 

enkf run_desc_m.py run_desc_cl Ensemble run 

configuration 

enkf assim_def_m.py assim_def_cl Data assimilation 

configuration 

enkf x2flux_m.py x2flux_cl Projections from 
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coefficients of basis 

functions to surface 

fluxes. 

    

util otool_menu_m.py menu_cl Menu (i,e., 

configurations) 

util gp_axis_m.py gp_axis_cl Axis  

util otool_ncfile_io.py ncfile_desc_cl NetCDF file access 

util otool_txtfile_io.py file_desc_cl Text file access 

util otool_gcfile_io.py diag_info_cl GEOS-Chem diaginfo  

util otool_gcfile_io.py tracer_info_cl GEOS-Chem tracer 

info 

util otool_gcfile_io.py gcfile_desc_cl GEOS-Chem BPCH 

file access 

util horizontal_interp_m.py hinterp_cl Horizontal interpolation 

util vertical_interp_m.py vintpl_cl Vertical interpolation 

util gp_grid_m.py gp_grid_cl Generic Grid 

util otool_grdfile_io.py grdfile_desc_cl File access for gridded 

text table   

util gp_data_m.py gp_data_cl Gridded data 

 

Table 2: major classes defined in PyOSSE 

 

3.2 Configurable IO modules  

 

  OSSE systems rely on pre-defined data on instrument configurations, atmospheric and 

surface condition, etc. They also need to include a method of transferring data to and from a 

CTM.  These data can be given in different format with different variable names. To simplify 

the main PyOSSE classes used to manipulate data, we have developed configurable IO 

modules. Typically, one IO module (for example avk_file_m.py) defines functions to open a 

file and read data to a dictionary or table (recarray) member of a file access class called fdesc.   

Its host (such as class avk_cl in avk_m.py) use fdesc to perform basic disk file IO as well as 

other data retrieval functions such as sampling and interpolation etc.  

 

  In a typical IO module, we define its file structure and one default varname_lst to specify 

the names of variables to be invoked by the host class. We have also defined a default 

dictionary varname_dict which translates variable names used in the host class to the names 

saved in the disk file. The default file structure, varname_dict and to some extent 

varname_lst can be changed in the run time by inputs so that the host class can access similar 

data files by adjusting their inputs. When it is necessary, the user can develop a similar IO 

module to replace the existing one to provide file IO services required by the host classes. 

Currently we have defined 8 such IO modules in PyOSSE:  

 

    

Location Module Host class Data format 

surface bf_file_m.py bf_cl netcdf  

util gc_ts_file_m.py satellite_xgp_cl bpch2 

instrument landcover_file_m.py landcover_cl netcdf  

instrument avk_file_m.py avk_cl Gridded text table 
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instrument err_file_m.py err_cl Gridded text table 

instrument cloud_file_m.py cloud_cl Gridded text table 

Instrument  aod_file_m.py aod_cl Gridded text table 

instrument orbit_file_m.py orbit_cl Text table 

enkf run_desc_file_m.py run_desc_cl Text table 

 

Table 3: configurable IO modules defined in PyOSSE.  

   

 

3.3 Configuration files 

 

  PyOSSE includes two types of text files for the user to control processes. The first type is 

the description file for information on process output (for example, the size of flux ensemble 

generated by gen_ensemble_flux.py), which can be used by other module as inputs. The 

second type is the menu file. A typical menu file contains several menus. For example, in 

vob_def.cfg, we have 6 menus, one of which is called ‘orbit’.  

 

#MENU (orbit) 

#============================================ 

name|orbit 

path|$DATAPATH$/oco/aqua_0.25x0.25/ 

flnm|XVIEWTYPEX_num_XVIEWMODEX_XDOYX.dat 

dict|__load:$MDPATH$.orbit_file_m:orb_varname_dict 

fopen|__load:$MDPATH$.orbit_file_m:open_orbit_file 

fread|__load:$MDPATH$.orbit_file_m:read_orbit_file 

fclose|__load:$MDPATH$.orbit_file_m:close_orbit_file 

fget|__load:$MDPATH$.orbit_file_m:get_orbit_data 

keywords|__dict:Nil 

fclass|__load:$MDPATH$.orbit_m:orbit_cl 

#MEND 

 

  The menu ‘orbit’ not only provides parameters for orbit file name and locations etc, but also 

tells gen_dummy_obs.py to use class orbit_cl defined by orbit_m.py as host container and 

functions defined in module orbit_file_m.py as IO functions to access these orbit files.   

 

Currently we have defined 5 menu file prototypes in PyOSSE.  

 

Location Name Main module Comment 

surface flux_ensemble_def.cfg gen_ensemble_flux.py Generate 

ensemble 

fluxes 

enKF assim_def.cfg assim_daily_obs.py Assimilate 

daily 

observations 

example/obs_simulation vob_def.cfg gen_dummy_obs.py Generate 

virtual 

observations 

example/obs_simulation sob_def.cfg gen_sat_obs.py Generate 

model 

observations 
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example/enkf_oco geos_chem_def.cfg run_job.py Assimilate 

OCO 

observation 

Table 4:  Menu files in PyOSSE.  

 

3.4 Subdirectory  

 

3.4.1 util 

 

Modules and shared libraries in util are used as library by other PyOSSE module. They can 

be categorized as 6 groups: 

 

  1. Object (class) management  

 message_m.py 

 ot_constant.py 

 otool_obj.py 

 

   2. File access  

 line_process_m.py 

 otool_gcfile_io.py 

 otool_grdfile_io.py 

 otool_ncfile_io.py 

 otool_txtfile_io.py 

 otool_var_io.py 

 bpch2_rw_smp.py 

 gc_ts_file_m.py 

 bpch2_rw_py.so 

 read_data.so 

 

  3. Grid and data container 

 gp_axis_m.py 

 gp_data_m.py 

 gp_grid_m.py 

 flux_regrid.so 

 pres_m.py 

 sigma_pres_mod.so 

 

  4. Data processing  

 horizontal_interp_m.py 

 vertical_interp_m.py 

 sample_model_field.so 

 flib.so 

 interpolate_f.so 

 process_nf_array.so 

 vertical_column.so 

 vertical_profile.so 

 

  5. Menu and configuration file 
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 otool_menu_m.py 

 otool_descfile_io.py 

 

  6. Time and visualization 

 gen_plots.py 

 time_module.py 

 

3.4.2 atmosphere 
 

  Modules in this directory include containers for 2D/3D/4D model outputs.  For example 

ctm_slice_m.py defines a class ctm_slice_cl.py which can be used to store model profile 

ensemble sampled at observation locations. Except for GEOS-Chem (otool_gcdesc_m.py), 

we have not explicitly defined IO modules for these container. The user is responsible for 

developing IO modules for their CTM outputs, which are usually easy to be implemented.  

  

 

3.4.3 surface 

 

  Modules in this directory are mainly designed to: 1) define basis function set 

(split_t3_region.py or svd_t3_region.py); and 2) generate ensemble fluxes 

(gen_ensemble_flux.py). The resulting flux perturbation ensembles will be used to force CTM 

ensemble simulations, and construct state vector for the following data assimilation.  

 

3.4.4 instrument 

 

  Classes defined in this directory by modules such as orbit_m.py, avk_m.py, cloud_m.py, 

aod_m.py, landcover_m.py represent objects needed for observation simulations, such as 

satellite orbit, averaging kernel,  cloud coverage,  aod climatology, and  land cover etc.  Their 

accesses to pre-defined data sets are through its own IO modules such as orbit_file_m.py, 

avk_file_m.py, cloud_file_m.py, aod_file_m.py, landcover_file_m.py 

 

3.4.5 observation 

 

  Modules in this subdirectory are used to: 1)  read satellite observations (satellite_obs.py); 

and 2) sample model profiles and convolve them into dry air columns (satellite_operator.py 

and xgp_jacobian_m.py) 

 

3.4.6 enkf 

 

  Modules in this subdirectory are used to: 1) construct and manage state vector 

(construct_state_vector.py and state_vector.py); 2) assimilate observations using ETKF 

algorithm (assim_daily_obs.py, etkf_half.py and etkf_cor.py) 
 

IV. Appendix 

 
A.  Ensemble Kalman Filter and numerical implementation 
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In the PyOSSE package, we use an Ensemble Kalman Filter (EnKF) to estimate surface 

fluxes by fitting a model to observations of atmospheric constituents. Generally, we assume 

the surface fluxes F(x, y, t) is the form of:  

 

 (     )    (     )  ∑   
 
    (     ),  (A1) 

   

where    (     ) is flux estimates from either process-based model or simply climatology, 

and     (     ) is the pulse-like flux perturbations, and     is the coefficients to be 

estimated.  So, the state vector   is chosen to be  

 

              ,  (A2) 

 

As an ensemble approach, we represent uncertainties of the estimates P by using an ensemble 

of perturbations  

 

                  , (A3) 

 

so that   

 

    (  ) . (A4) 

 

In the above equations, L is the size of the ensemble, which can be smaller than the size of 

state vector as an approximation of prior error covariance.  Using a proper partial 

representation of the error covariance, with an ensemble size L chosen to be much smaller 

than the size of state vector N, can significantly reduce computational costs (See for example, 

Houtekamer et al., 1998; Peters et al., 2005). At the meantime, as an approximation, partial 

representation may also introduce artificial correlations between control variables. To 

suppress the effects of those artificial correlations on posterior flux estimates, localization of 

impacts from assimilated observations may be necessary.  We have included a function called 

set_localization_wgt in x2flux_m.py to limit the spatial range of the flux analysis increments 

from assimilated satellite observations. However, the user should quantify/estimate 

appropriate parameters or even develop new approaches for localization by experiments 

according to their assimilation setup and observation characteristics etc.  

 

  After assimilating observation yobs with error covariance R, the posterior state vector x
a
 is 

calculated by updating a~prior x
f    

via Kalman gain matrx K:  

 

                    (   ) , (A5) 

 

where   is the system observation operator, which projects the state vector (i.e., coefficients 

of the basis function set) to observation space (for  example, the dry-air column XCO2 

measured by OCO-like instrument). It includes transporting atmospheric components,  

sampling model distributions at observation locations, and convolving model profiles using 

averaging kernels.   The gain matrix K is calculated by  

 

        (  ) ) (  ) (  )          (A6) 

where   

 

     (      )   (  ) , (A7) 
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By using  the Ensemble Transform Kalman Filter (ETKF) algorithm (see for example, 

Livings et al., 2008),  the posterior uncertainty is determined by  

        (    ) , (A8) 

 

and the transform matrix T is given by 

 ( )                 
  

  , (A9) 

 

  Module etkf_half.py and etkf_cor.py calculates gain matrix K and transform matrix T by 

numerically solving Eqs.8 and 9 using SVD technique (Feng et al., 2009) and LU solver for 

sparse matrices (Palmer et al., 2011) 

 

  In the implementation, we have used a sequential data assimilation technique to digest 

observations step by step. Also, we have introduced a lag window to reduce computational 

costs. Figure A1 schematically shows the concepts of lag window for sequential data 

assimilation. For example, observations in step T7 have no contributions from fluxes after 

T7.  On the other hand, estimates for fluxes long before step T7 (such as those over T1 and 

T2) have already been refined by observations in steps from T1 till T7, and hence further 

assimilation of T7 observations will not be expected to change them significantly.  As a result 

we only consider estimates for fluxes inside the lag window as control variables in order to 

assimilate observations in step T7.  

 

   

 
  Figure A1.  Schematic plot for lag window used in sequential data assimilation.  
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B. OSSE system for OCO-like instrument 
 

  Modules in two sub-directories /obs_simulation/ and /enkf_oco/ under  otool/ESA/example/ 

form a complete OSSE system based on GEOS-Chem CTM to study OCO-like observations.   

 

B.1 Observation simulations  

 

 In otool/ESA/example/obs_simulation/ Observation are simulated in two phases:  

 

I.  generating virtual observations by sampling dummy atmosphere (gen_dummy_obs.py 

and vob_def.cfg)  

II. converting virtual observations to model observations by sampling GEOS-Chem 

outputs (gen_sat_obs.py and sob_def.cfg) 

 

In phase I, gen_vob.py 1) reads in satellite orbits; 2) screens cloud and aerosol 

contaminations; 3) checks surface type; 4) gets scene-dependent averaging kernel and 

observation error; and 5) convolves dummy CO2 profiles using averaging kernel to dry air 

columns;  

 

In phase II,  gen_sob.py 1) reads in virtual observations; 2) sample GEOS-Chem profiles 

at observation locations; 3) convolves model CO2 profiles using averaging kernel to dry air 

columns; and 4) generating random errors.  

 

Besides these two python modules, observation simulations also need pre-calculated data 

for:   

 Satellite orbit 

 Satellite Averaging Kernel 

 Cloud PDF 

 Aerosol PDF 

 GEOS-Chem outputs 

 

  If you want to run GEOS-Chem yourself, you also need 

 

 GEOS-5 meteorological analysis 
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 The user can use plot_obs_map.py to show simulated observations, and compare them with 

reference results stored in ./ref_sat_obs. Because of the random sampling etc, the results 

simulated by the user could be slightly different from the reference ones.  

 

 

B2.  EnKF data assimilation 

 

   The data flow for estimating surface fluxes using OCO-like XCO2 concentration 

observations is summarised as 

 
Figure 1B: Schematic plot for data flow in one EnKF data assimilation step.   

 

  However in this OSSE example, we have used a full representation for prior error 

covariance of monthly regional flux estimates over 144 regions.  We define ensemble runs 

that use a pre-defined flux perturbation ensemble, and then rescale to actual prior 

uncertainties during the data assimilation (Feng et al., 2009) (oco_assim_step.py), which 

simplifies the data assimilation procedure shown above.  

   

  We have saved outputs from such an ensemble run into otool_data/enkf_output. The user 

can generate their own forward simulations by using ensemble_run_drive.py in 

ESA/example/enkf_oco/ensemble_run to manage the jobs . Also, bpch files for flux 

perturbation ensembles by gen_flux_ensemble.py and convert_flux_netcdf_bpch.py are 

available in otool_data/surface_flux. These fluxes can be used by making a symbol link to 

your subdirectory surface_flux under the run directory ESA/example/enkf_oco/ensemble_run 

.  

 

  Once the ensemble run outputs are available, the user can use run_job.py as driver to 1) 

create state vector by reading in prior regional fluxes and flux perturbation ensemble; 2) 

sample CO2 profiles for the prior and each of ensemble member at time and locations of 

simulated OCO observations; 3) compare model XCO2 and the perturbation ensemble with 

observations to generate optimal estimates of fluxes (i.e, coefficients) .    

 

  These tasks are mainly done by class members contained in class oco_assim_step_cl. For 

example member object cl_obs is a class for accessing (simulated) observations, and member 

object cl_fc_prof and  cl_enr_prof  for model values. Also, member cl_ctm provides controls 
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on forecast runs. Also the functions of these class members are specified by the configuration 

file osse_def.cfg, so that the user can exchange them with their own functions.  

 

 Finally, the user can compare the prior and posterior flux estimates (or model dry-air CO2 

columns) with the ‘true’ values by using plot_flux.py (or plot_obs_cmp_ts.py and 

plot_obs_map.py for observations).   Also, the user can compare their results with the 

reference experiment stored in ./ref_oco_inv 

  

 

            

      V. References 

 

Baker, D. F., Doney, S. C., and Schimel, D. S.: Variational data assimilation for atmospheric 

CO2, Tellus Ser. B, 58, 359–365, 2006. 

 

Chevallier, F., Br´eon, F.-M., and Rayner, P. J.: Contribution of the Orbiting Carbon 

Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational 

data assimilation framework, J. Geophys. Res., 112, D09307, doi:10.1029/2006JD007375, 

2007a. 

 

Cooperative Atmospheric Data Project-Carbon Dioxide, CD-ROM, NOAA GMD, Boulder, 

Colorado (also available via anonymous FTP to ftp.cmdl.noaa.gov, Path: 

ccg/co2/GLOBALVIEW).  

 

Feng, L., Palmer, P. I., B¨osch, H., and Dance, S.: Estimating surface CO2 fluxes from space-

borne CO2 dry air mole fraction observations using an ensemble Kalman Filter, Atmos. 

Chem. Phys., 9, 2619–2633, doi:10.5194/acp-9-2619-2009, 2009. 

 

Houtekamer, P. L. and Mitchell, H. L.: Data assimilation using an ensemble Kalman filter 

technique, Mon.Weather Rev., 126, 796–811, 1998. 

 

Lahoz, W. A., Brugge, R., Jackson, D. R., Migliorini, S., Swinbank, R., Lary, D., and Lee, 

A.: An observing system simulation experiment to evaluate the scientific merit of wind and 

ozone measurements from the future SWIFT instrument, Q. J. Roy. Meteor. Soc., 131, 503–

523, doi:10.1256/qj.03.109, 2005. 

 

Livings, D. M., Dance, S. L., and Nichols, N. K.: Unbiased ensemble square root filters, 

Physica D., 237/8, 1021–1028, 2008. 

  

Palmer, P. I., Suntharalingam, P., Jones, D. B. A., Jacob, D. J., Streets, D. G., Fu, Q., Vay, S. 

A., and Sachse, G. W.: Using CO2:CO correlations to improve inverse analyses of carbon 

fluxes, J. Geophys. Res., 111, D12318, doi:10.1029/2005JD006697, 2006. 

 



 21 

Palmer, P. I., L. Feng, and H. Boesch, "Spatial resolution of tropical terrestrial CO2 fluxes 

inferred using space-borne CO2 sampled in different Earth orbits: the role of spatial error 

correlations," Atmos. Meas. Tech., 4, 1995-2006, 2011.  

 

Peters, W., Miller, J. B., Whitaker, J., Denning, A. S., Hirsch, A., Krol, M. C., Zupanski, D., 

Bruhwiler, L., and Tans, P. P.: An ensemble data assimilation system to estimate CO2 surface 

fluxes from atmospheric trace gas observations, J. Geophys. Res., 110, D24304, 

doi:10.1029/2005JD006157, 2005. 

 

 


