
 1

PyOSSE: A python package for

Observation System Simulation

Experiments

Liang Feng and Paul Palmer

University of Edinburgh

June, 2013

I. Overview

II. Installation

III. Directory and module

IV. Appendix

V. References

 2

I. Introduction
 Developing a new space-based observation system represents a substantial financial

investment. Observation System Simulation Experiments (OSSE) are a cost-effective

numerical approach to realistically describe space-borne measurements and to evaluate their

impact on current knowledge as part of preparing a science case for a particular space-borne

mission. For example, in the included reference experiment we quantify the impact of

atmospheric measurements of a trace gas on improving our current prior understanding of

surface fluxes (emission minus uptake) of that gas. The example OSSE, relevant to

atmospheric composition, includes methods to: 1) simulate the 4-D distribution of

atmospheric constituents and sample it as it is observed by the space-borne sensor; and 2)

estimate the magnitude and distribution of surface fluxes by fitting prior model surface

fluxes, which describe physics, chemistry and biology underpinning the surface flux

processes, to the pseudo observations using a data assimilation algorithm, accounting for

model and observation errors. Despite some limitations of OSSEs (Lahoz et al., 2006), self-

consistent numerical experiments have been useful to evaluate newly proposed space-based

instruments. For example, the impact of data from the NASA Orbiting Carbon Observatory

(OCO) was examined by several OSSE systems based on different transport models and

different data assimilation techniques (e.g., Baker et al., 2006; Chevelliar et al, 2007; Feng et

al., 2009).

 It is time-consuming to develop a robust, realistic OSSE for any individual space-borne

sensor, reflecting the challenges associated with combining an atmosphere transport model, a

surface (process or empirical) model, and an instrument observation model with modern data

assimilation techniques. Such a tool should also be flexible, considering all possible

configurations of a proposed instrument and its potential applications, which can evolve

during the design phase. We have developed the software package PyOSSE to help

researchers to build their own OSSE systems with minimum overhead. PyOSSE consists of

modules written in FORTRAN and Python, with emphasis on flexibility and simplicity, so

that the user can easily understand, and apply these modules to their research. We assume

that the user will have at least some rudimentary knowledge of Python and FORTRAN

computer languages.

1.1 Overview of PyOSSE tool

 Figure 1 shows these modules are organized around the two major tasks of one typical

OSSE system:

1. Generating synthetic observations by sampling and screening model atmosphere.

2. Using an Ensemble Kalman Filter (EnKF) (Feng et al., 2009) approach to

assimilate simulated observations to evaluate their impacts.

 Left column of Figure 1 shows the main steps required to simulate satellite observations,

including: 1) generating 4D-distributions of targeted atmospheric components by using a

Chemistry Transport Model (CTM); 2) sampling model profiles along satellite tracks; 3)

screening possible cloud and aerosol contaminations; and 4) convolving clear-sky profiles

with scene-specific sensor averaging kernels, which reflect different instrument sensitivities

at different vertical levels.

 PyOSSE provides several classes as generic containers for observation specifications

including satellite orbit (orbit_m.py) and instrument averaging kernels (avk_m.py) etc. These

 3

classes read in multi-dimensional data tables by using file access modules (i.e.,

orbit_file_m.py and avk_file_m.py), which can be reconfigured or modified for different file

formats. These classes also contain facilities to interpolate these pre-calculated tables to

different observation scenes to reflect changes of instrument sensitivities. Besides the

targeted atmospheric components, PyOSSE has also classes to represent other relevant

atmospheric conditions that may affect observations from space. For example, classes

cloud_cl (cloud_m.py), and aod_cl (aod_m.py) collect climatology on cloud and aerosol

probabilities from different seasons. Randomly sampling these probability distribution

functions help to realistically describe (and remove) cloudy and aerosol contaminated scenes.

These modules can readily be exchanged with files provided by the user.

Figure 1: A schematic describing the PyOSSE Observation System Simulation

Experiment infrastructure, which in this example uses output from the GEOS-

Chem chemistry transport model.

 Right column of Figure 1 demonstrates top-down flux estimation from simulated satellite

observations by using an Ensemble Kalman Filter (EnKF) to: 1) generate an ensemble of

flux perturbations to represent prior uncertainty; 2) use a CTM to project the resulting flux

ensemble to an ensemble of model distributions of the targeted component; 3) use an

observation operator to sample the resulting model concentrations, and convolve model

profiles with instrument averaging kernels; 4) optimally determine posterior estimates by

comparing model observation ensemble with simulated observations (as well as with their

uncertainties).

1.2 EnKF approach

 PyOSSE uses an EnKF approach (described by Feng et al, 2009) to estimate surface fluxes

from simulated observations. The EnKF approach does not require any adjoint model

specified for certain atmospheric transport model and observation operator so it can easily be

applied to various experiments for top-down flux estimates. The EnKF approach also

 4

provides a direct estimate of posterior error covariance, which is critical for properly

quantifying impacts of a new instrument.

 For this example, the state vector, describing the subject of interest, is estimated by the

EnKF as scaling factor coefficients for a set of user-defined basis functions, representing a

unique (temporal and) spatial pattern of surface fluxes at a given time period. By choosing

basis function sets, the user can test the ability of the new instrument to determine the

magnitude and distribution of fluxes. PyOSSE provides modules that help to define basis

functions either by dividing continental-scale geographical regions (divide_region.py) or by

decomposing error covariance for prior flux estimates to a set of major eigen-states

(svd_region_flux.py).

 Module gen_ensemble_flux.py uses sampling routines in sample_reg_flux.py to construct an

ensemble for a full (sample_by_reg) or partial (random_sample_reg) representation of prior

error covariance of the state vector (i.e., coefficients for the basis function set). It generates

an ensemble of flux perturbations, which are subsequently used as surface boundary

conditions for CTM simulations for projecting perturbation ensemble for model observations.

The user can change the menus in configuration file, flux_ensemble_def.cfg, to read their own

basis functions and sampling routines for flux perturbation ensembles.

 The user is responsible for converting the netcdf file generated for the flux perturbation

ensemble from gen_ensemble_flux.py to a format that is readable by their CTM. PyOSSE

provides example code, convert_netcdf_flux_bpch.py, to convert the ensemble of perturbed

fluxes to a binary format used by the GEOS-Chem CTM (see wiki.seas.harvard.edu/geos-

chem for more details). PyOSSE also includes a prototype module called

ensemble_run_drive.py to schedule individual ensemble model runs and to generate a text file

run_desc.dat (or user-chosen name) for descriptions on emission inputs and model outputs

etc, which will be used by construct_state_vector.py to set up state vector and configure the

projection from coefficients to surface fluxes.

 PyOSSE uses functions in satellite_operator.py to sample model profiles at the time and

location of observed scenes and convolve them with the sensor scene-dependent averaging

kernels that describe the vertical sensitivity of the sensor. Its default file IO functions can be

re-configured or be replaced to access model fields from a user-defined CTM. PyOSSE then

uses module etkf_half.py or etkf_cor.py as a numeric solver for the Ensemble Transform

Kalman Filter (ETKF) algorithm (See Appenix A) to calculate the corresponding analysis

increment and to estimate transform matrices by comparing model observation ensemble with

(simulated) satellite observations and the associated error covariance. Module etkf_half.py is

based on singular value decomposition (SVD), and is most efficient when no observation

error correlations (due to correlated model transport errors etc) are taken into account (Feng

et al., 2009). etkf_cor.py uses an LU-solver that can handle observation error correlations

(Palmer et al., 2011).

1.3 OSSE example system

 We have also provided a complete example OSSE system for an instrument based loosely

on the specification of the NASA Orbiting Carbon Observatory that measured column-

integrated dry-air CO2 mole fraction XCO2. This example system can be extended or

modified to describe other similar instruments. We have used the GEOS-Chem CTM as the

default CTM to simulate the temporal and spatial distributions of atmospheric constituents,

 5

but the user is able to replace it with their own CTM without extensive changes to the

existing python modules that describe the simulated observations simulation or the data

assimilation method. In our example OSSE, we first generate virtual observations by

sampling a dummy atmosphere distribution with fixed vertical profiles (gen_dummy_obs.py).

The user can insert their own instrument specification, and observation screening data and

algorithm for cloud and aerosol contaminations by changing definitions in menu file

vob_def.cfg. The virtual observation files provide information which is not directly linked to

component distributions simulated by CTM, such as time and locations of clear scenes and

sensor averaging kernel and uncertainties for these clear scenes. By default, gen_sat_obs.py

converts dummy observations to model observation by convolving model CO2 profiles

sampled from actual GEOS-Chem model outputs to dry-air columns. This step can be readily

reconfigured to use outputs from other CTMs by changing menu defined in sob_def.cfg.

 To digest simulated OCO observations, we have defined 144 basis functions for monthly

fluxes over 144 global regions using split_t3_region.py, and then constructed a full

representation of prior error covariance using gen_ensemble_flux.py. We are using a

sequential approach to assimilate observations, and have introduced a lag window of 5

months to reduce computational costs (Appendix A). The resulting flux perturbations are

converted from netcdf format to a binary format using convert_netcdf_flux_bpch.py to drive

tagged GEOS-Chem simulations. The EnKF algorithm is then used to update flux estimates

by digesting simulated OCO observations step by step.

 PyOSSE is developed by the University of Edinburgh as part of the ESA Data Assimilation

Project (www.esa-da.org), contract no ESRIN/RFQ/3-13354/11/I-LG. It is free for academic

research. This document describes structure of the package. Detailed interfaces of individual

modules can be found in its documentation sub-directory otool/ESA/doc/ or from

xweb.geos.ed.ac.uk/~lfeng/reference.

 Section II describes procedures for installing and testing PyOSSE. Section III is an overview

of the structure and concepts of the package. It also discusses the most important modules

and data files in each subdirectory. Appendix A provides a detailed description of the EnKF

algorithm. Appendix B details the complete OSSE system for OCO-like instruments.

II. Installation

2.1 Download

 The package is freely available from website xweb.geos.ed.ac.uk/~lfeng as a tar.gz archive

file.

2.2 Prerequisites

 This package is developed for a Linux operation system. As it involves running a 3-D

chemistry transport model with multiple tracers, we assume that the user has access to a

workstation with sufficient internal memory (>4 Gb) and free disk space (>300 Gb).

 Many modules in this package have been built over other freely distributed packages and

libraries. Before installing this package, following software packages are needed:

 Python interpreter (>version 2.4), freely available at www.python.org

http://www.esa-da.org/

 6

 Numeric extensions to the Python (numpy), freely available at:

http://sourceforge.net/projects/numpy.

 Scientific Python, available at:

http://dirac.cnrsorleans.fr/plone/software/scientificpython

 Python plotting library, available at http://matplotlib.sourceforge.net/

 Intel fortran compiler and Intel kernel math library, which academic users can freely

downloaded via http://software.intel.com/en-us/articles/intel-education-offerings/.

 NetCDF library, freely available at: http://www.unidata.ucar.edu

 HDF library, freely available at: http://www.hdfgroup.org.

 To avoid installing the individual python packages, we recommend to download and install

the pre-compiled Enthought python installation of EPD 7.0 (or higher) from

www.enthough.com. This Python distribution is free for academic users, and has already

included the common python extensions needed by PyOSSE.

 PyOSSE contains a complete example OSSE system for OCO-like instruments. The

example experiment is based on the GEOS-Chem community CTM (v8.02) for which more

information is available at wiki.seas.harvard.edu/geos-chem. For PyOSSE, we have provided

GEOS-Chem outputs to demonstrate the example. If you want to use GEOS-Chem directly

please consult the wiki for further details on how to download and install the model. If you

choose to download the model the relevant modifications are listed in

otool/ESA/example/enkf_oco/geos_chem.

2.3 Unpacking and compiling

2.3.1 Unpacking

 After downloading the file archive otool.tar.gz into your workstation, you can extract the

files by using Linux command:

 tar -zxvf otool.tar.gz

There will be 8 sub-directories built under otool/ESA/:

 atmosphere

 doc

 enkf

 example

 instrument

 observation

 surface

 util

 The contents and purpose of these sub-directories are explained in Section III.

 In order to let the user easily read, apply or even change existing modules, we have not

developed PyOSSE with any particular version of Python. The user is expected to change

python searching path to load this package manually and then build the required shared

libraries, following instructions in 2.3.2 and 2.3.3

http://sourceforge.net/projects/numpy
http://dirac.cnrsorleans.fr/plone/software/scientificpython
http://software.intel.com/en-us/articles/intel-education-offerings/
http://www.unidata.ucar.edu/
http://www.hdfgroup.org/
http://www.enthough.com/

 7

2.3.2 Setting python searching path

 You can add PyOSSE to python searching path by inserting the following line into your

.bashrc file

 export PYTHONPATH=$PYTHONPATH:/your_PyOSSE_directory/

 For some systems, it is also necessary to include runtime libraries for python installation

into LD_RUN_PATH by adding:

 export LD_RUN_PATH=$LD_RUN_PATH:/your_python_root/lib

2.3.3 Build shared libraries

 First, go to subdirectory otool/ESA/util, and change one shell script called ‘f2py_ifort’, by

inserting the locations of your python installation and FORTRAN compilers:

F90=<your_f90_compiler>

FPY=<f2py of your python installation>

LIBPATH=< path for fortran lib>

LIBS=<your fortran libraries>

 Second, build the FORTRAN shared libraries by running the shell script

‘build_share_lib.sh’. If compilations are successful, there will be 11 shared libraries under

sub-directory PyOSSE/ESA/util/:

bpch2_rw_py.so

flux_regrid.so

flib.so

interpolate_f.so

sigma_pres_mod.so

process_nf_array.so

sampl_model_field.so

vertical_column.so

vertical_profile.so

read_data.so

great_circle_distance.so

Contents of these libraries can be found in Section 3 for important modules. You can test

these libraries by running python scripts test_interpolate.py and test_sigma_pres.py.

2.4 Generate HTML files for module interfaces

 Use build_doc.sh in otool/ESA/ to generate one HTML file for each module that describes

its contents and usage. These html files are stored in otool/ESA/doc for future reference.

2.5 Data set

 8

 You can download otool_data.tar.gz from (www.esa-da.org/data/otool_data.tar.gz). They

are the default data inputs, mainly for supporting complete OSSE examples. After unzipping

the data archive, you have 7 sub-directories under otool_data :

1. clim_data: climatology for CO2, CH4 etc profiles

2. ecmwf: ecmwf cloud analysis.

3. enkf_output: GEOS-Chem outputs from tagged simulations

4. enkf_rerun: GEOS-Chem outputs from single tracer run.

5. LAI: surface vegetation type etc.

6. oco: satellite orbit and data tables for OCO XCO2 averaging kernel and error.

7. gc_std: GEOS-Chem outputs from single tracer run forced by standard

(climatological) emission inventories.

You can now test these data sets, and first generate virtual (‘dummy’) observations for OCO

satellite, where atmospheric CO2 concentrations are fixed to a CO2 climatology profile, and

then generate satellite observations by sampling GEOS-Chem outputs by:

 1) changing DATAPATH in vob_def.cfg under otool/ESA/example/obs_simulation/

2) running gen_dummy_obs.py there.

3) changing sob_def.cfg and running gen_sat_obs.py

 If you want to run GEOS-Chem simulation by yourself, please consult the wiki for further

details on how to download and install the model wiki.seas.harvard.edu/geos-chem, and

download GEOS-5 meteorological data at a horizontal resolution of 4º (latitude)×5º

(longitude) for 2009. Once the model infrastructure is established, following the guidelines

associated with GEOS-Chem, you can run the script ‘rungeos.sh’ in

/ESA/example/enkf_oco/std_run for a control calculation. As a result, a GEOS-Chem

forward simulation will be launched to produce daily 3-D CO2 fields, which can be sampled

to simulate satellite observations as discussed above.

 9

III. Directory and module

3.0 Structure

 Figure 2 shows the modules and shared libraries that are stored in 8 sub-directories. Table 1

summarises the file types and purposes of these sub-directories. Further more details for each

sub-directory are discussed in this chapter. If you want to use any module in your own

python codes, you can import it by using sentences like:

import ESA.<SUBDIR>.<MODULE>,

where <MODULE> is the name of the module you want, and <SUBDIR> is its location.

Figure 2: Directory tree of PyOSSE package.

 10

Directory File types Contents

ESA (main) *.py

*.sh

1) Shell files for installing and testing the

package.

2) Python files for package initialization.

util *.py

*.so

*.f90

Python modules, FORTRAN modules and

shared libraries for:

 1. object managing

 2. file IO accessing

 3. data processing (gridding or interpolation)

enkf *.py Classes and modules for

1. constructing / maintaining state vector

2. solving ETKF equations for posterior

increment and transform matrices by

assimilating observations.

example/enkf_oco *.py

*.sh

*.cfg

*.bpch

 EnKF data assimilation system based on GEOS-

Chem CTM outputs

instrument *.py

Classes and modules to

1) ‘model’ satellite instruments (orbit; averaging

kernel etc).

2) collect climatology or model outputs.

3) sample cloud and aod PDF.

4) screen observation scenes.

atmosphere *.py

Classes to

1. access and store 3D or 2D model outputs.

2. sample model outputs at observation locations.

3. interpolate/integrate model profiles.

example/obs_simulation *.py

*.cfg

Modules to

1) generate virtual observations for OCO-like

satellite by sampling fixed atmosphere CO2

profile along satellite orbits.

2) convert virtual observations to model

observations by sampling GEOS-Chem model

outputs.

.

surface *.py

*.nc

*.cfg

*.dat

Modules to

1. set up basis function sets;

2. sample basis functions to construct flux

perturbation ensemble.

Table 1: contents in package directories

3.1 Classes

 11

 PyOSSE uses classes to represent the objects included by a typical OSSE system. They are

containers for both the data and functions of these objects. Table 2 lists the major classes

defined in PyOSSE. These classes can be used as parents to derive users’ classes. Also, their

member functions can be changed through inputs during run-time or be overridden within

derived classes. In particular, access to pre-defined data or model outputs are through so-

called configurable file IO modules (see 3.2)

Location Module Class Object

surface bf_m.py bf_cl Basis (or ensemble)

functions for surface

fluxes

instrument landcover_m.py landcover_cl Land cover (surface

type)

instrument avk_m.py avk_cl Predefined averaging

kernel

instrument err_m.py err_cl Predefined Observation

error

instrument cloud_m.py cloud_cl Cloud PDF

Instrument aod_m.py aod_cl AOD PDF

instrument orbit_m.py orbit_cl Predefined satellite

orbit

atmosphere ctm_grid_m.py ctm_grid_cl Generic grid used in

CTM

atmosphere ctm_grid_2d.py ctm_grid_2d Grid for 2-D data

atmosphere ctm_grid_3d.py ctm_grid_3d Grid for 3-D data

atmosphere ctm_slice_m.py ctm_slice_cl Slice of atmosphere

atmosphere ctm_profile_m.py ctm_profile_cl Vertical profiles

atmosphere ctm_world_m.py ctm_world_cl Collection of CTM

fields.

observation satellite_obs.py satellite_obs_cl Satellite observation

observation satellite_operator.py satellite_xgp_cl Model satellite dry-air

column observation

observation sobs_def_m.py sobs_def_cl Configuration for

observation simulation

enkf state_vector.py stv_cl State vector used in

EnKF.

enkf etkf_half.py etkf_cl SVD solver for ETKF

equations

enkf etkf_cor.py etkf_cor_cl LU solver for ETKF

equations

enkf run_desc_m.py run_desc_cl Ensemble run

configuration

enkf assim_def_m.py assim_def_cl Data assimilation

configuration

enkf x2flux_m.py x2flux_cl Projections from

 12

coefficients of basis

functions to surface

fluxes.

util otool_menu_m.py menu_cl Menu (i,e.,

configurations)

util gp_axis_m.py gp_axis_cl Axis

util otool_ncfile_io.py ncfile_desc_cl NetCDF file access

util otool_txtfile_io.py file_desc_cl Text file access

util otool_gcfile_io.py diag_info_cl GEOS-Chem diaginfo

util otool_gcfile_io.py tracer_info_cl GEOS-Chem tracer

info

util otool_gcfile_io.py gcfile_desc_cl GEOS-Chem BPCH

file access

util horizontal_interp_m.py hinterp_cl Horizontal interpolation

util vertical_interp_m.py vintpl_cl Vertical interpolation

util gp_grid_m.py gp_grid_cl Generic Grid

util otool_grdfile_io.py grdfile_desc_cl File access for gridded

text table

util gp_data_m.py gp_data_cl Gridded data

Table 2: major classes defined in PyOSSE

3.2 Configurable IO modules

 OSSE systems rely on pre-defined data on instrument configurations, atmospheric and

surface condition, etc. They also need to include a method of transferring data to and from a

CTM. These data can be given in different format with different variable names. To simplify

the main PyOSSE classes used to manipulate data, we have developed configurable IO

modules. Typically, one IO module (for example avk_file_m.py) defines functions to open a

file and read data to a dictionary or table (recarray) member of a file access class called fdesc.

Its host (such as class avk_cl in avk_m.py) use fdesc to perform basic disk file IO as well as

other data retrieval functions such as sampling and interpolation etc.

 In a typical IO module, we define its file structure and one default varname_lst to specify

the names of variables to be invoked by the host class. We have also defined a default

dictionary varname_dict which translates variable names used in the host class to the names

saved in the disk file. The default file structure, varname_dict and to some extent

varname_lst can be changed in the run time by inputs so that the host class can access similar

data files by adjusting their inputs. When it is necessary, the user can develop a similar IO

module to replace the existing one to provide file IO services required by the host classes.

Currently we have defined 8 such IO modules in PyOSSE:

Location Module Host class Data format

surface bf_file_m.py bf_cl netcdf

util gc_ts_file_m.py satellite_xgp_cl bpch2

instrument landcover_file_m.py landcover_cl netcdf

instrument avk_file_m.py avk_cl Gridded text table

 13

instrument err_file_m.py err_cl Gridded text table

instrument cloud_file_m.py cloud_cl Gridded text table

Instrument aod_file_m.py aod_cl Gridded text table

instrument orbit_file_m.py orbit_cl Text table

enkf run_desc_file_m.py run_desc_cl Text table

Table 3: configurable IO modules defined in PyOSSE.

3.3 Configuration files

 PyOSSE includes two types of text files for the user to control processes. The first type is

the description file for information on process output (for example, the size of flux ensemble

generated by gen_ensemble_flux.py), which can be used by other module as inputs. The

second type is the menu file. A typical menu file contains several menus. For example, in

vob_def.cfg, we have 6 menus, one of which is called ‘orbit’.

#MENU (orbit)

#==

name|orbit

path|$DATAPATH$/oco/aqua_0.25x0.25/

flnm|XVIEWTYPEX_num_XVIEWMODEX_XDOYX.dat

dict|__load:$MDPATH$.orbit_file_m:orb_varname_dict

fopen|__load:$MDPATH$.orbit_file_m:open_orbit_file

fread|__load:$MDPATH$.orbit_file_m:read_orbit_file

fclose|__load:$MDPATH$.orbit_file_m:close_orbit_file

fget|__load:$MDPATH$.orbit_file_m:get_orbit_data

keywords|__dict:Nil

fclass|__load:$MDPATH$.orbit_m:orbit_cl

#MEND

 The menu ‘orbit’ not only provides parameters for orbit file name and locations etc, but also

tells gen_dummy_obs.py to use class orbit_cl defined by orbit_m.py as host container and

functions defined in module orbit_file_m.py as IO functions to access these orbit files.

Currently we have defined 5 menu file prototypes in PyOSSE.

Location Name Main module Comment

surface flux_ensemble_def.cfg gen_ensemble_flux.py Generate

ensemble

fluxes

enKF assim_def.cfg assim_daily_obs.py Assimilate

daily

observations

example/obs_simulation vob_def.cfg gen_dummy_obs.py Generate

virtual

observations

example/obs_simulation sob_def.cfg gen_sat_obs.py Generate

model

observations

 14

example/enkf_oco geos_chem_def.cfg run_job.py Assimilate

OCO

observation

Table 4: Menu files in PyOSSE.

3.4 Subdirectory

3.4.1 util

Modules and shared libraries in util are used as library by other PyOSSE module. They can

be categorized as 6 groups:

 1. Object (class) management

 message_m.py

 ot_constant.py

 otool_obj.py

 2. File access

 line_process_m.py

 otool_gcfile_io.py

 otool_grdfile_io.py

 otool_ncfile_io.py

 otool_txtfile_io.py

 otool_var_io.py

 bpch2_rw_smp.py

 gc_ts_file_m.py

 bpch2_rw_py.so

 read_data.so

 3. Grid and data container

 gp_axis_m.py

 gp_data_m.py

 gp_grid_m.py

 flux_regrid.so

 pres_m.py

 sigma_pres_mod.so

 4. Data processing

 horizontal_interp_m.py

 vertical_interp_m.py

 sample_model_field.so

 flib.so

 interpolate_f.so

 process_nf_array.so

 vertical_column.so

 vertical_profile.so

 5. Menu and configuration file

 15

 otool_menu_m.py

 otool_descfile_io.py

 6. Time and visualization

 gen_plots.py

 time_module.py

3.4.2 atmosphere

 Modules in this directory include containers for 2D/3D/4D model outputs. For example

ctm_slice_m.py defines a class ctm_slice_cl.py which can be used to store model profile

ensemble sampled at observation locations. Except for GEOS-Chem (otool_gcdesc_m.py),

we have not explicitly defined IO modules for these container. The user is responsible for

developing IO modules for their CTM outputs, which are usually easy to be implemented.

3.4.3 surface

 Modules in this directory are mainly designed to: 1) define basis function set

(split_t3_region.py or svd_t3_region.py); and 2) generate ensemble fluxes

(gen_ensemble_flux.py). The resulting flux perturbation ensembles will be used to force CTM

ensemble simulations, and construct state vector for the following data assimilation.

3.4.4 instrument

 Classes defined in this directory by modules such as orbit_m.py, avk_m.py, cloud_m.py,

aod_m.py, landcover_m.py represent objects needed for observation simulations, such as

satellite orbit, averaging kernel, cloud coverage, aod climatology, and land cover etc. Their

accesses to pre-defined data sets are through its own IO modules such as orbit_file_m.py,

avk_file_m.py, cloud_file_m.py, aod_file_m.py, landcover_file_m.py

3.4.5 observation

 Modules in this subdirectory are used to: 1) read satellite observations (satellite_obs.py);

and 2) sample model profiles and convolve them into dry air columns (satellite_operator.py

and xgp_jacobian_m.py)

3.4.6 enkf

 Modules in this subdirectory are used to: 1) construct and manage state vector

(construct_state_vector.py and state_vector.py); 2) assimilate observations using ETKF

algorithm (assim_daily_obs.py, etkf_half.py and etkf_cor.py)

IV. Appendix

A. Ensemble Kalman Filter and numerical implementation

 16

In the PyOSSE package, we use an Ensemble Kalman Filter (EnKF) to estimate surface

fluxes by fitting a model to observations of atmospheric constituents. Generally, we assume

the surface fluxes F(x, y, t) is the form of:

 () () ∑

 (), (A1)

where () is flux estimates from either process-based model or simply climatology,

and () is the pulse-like flux perturbations, and is the coefficients to be

estimated. So, the state vector is chosen to be

 , (A2)

As an ensemble approach, we represent uncertainties of the estimates P by using an ensemble

of perturbations

 , (A3)

so that

 () . (A4)

In the above equations, L is the size of the ensemble, which can be smaller than the size of

state vector as an approximation of prior error covariance. Using a proper partial

representation of the error covariance, with an ensemble size L chosen to be much smaller

than the size of state vector N, can significantly reduce computational costs (See for example,

Houtekamer et al., 1998; Peters et al., 2005). At the meantime, as an approximation, partial

representation may also introduce artificial correlations between control variables. To

suppress the effects of those artificial correlations on posterior flux estimates, localization of

impacts from assimilated observations may be necessary. We have included a function called

set_localization_wgt in x2flux_m.py to limit the spatial range of the flux analysis increments

from assimilated satellite observations. However, the user should quantify/estimate

appropriate parameters or even develop new approaches for localization by experiments

according to their assimilation setup and observation characteristics etc.

 After assimilating observation yobs with error covariance R, the posterior state vector x
a
 is

calculated by updating a~prior x
f

via Kalman gain matrx K:

 () , (A5)

where is the system observation operator, which projects the state vector (i.e., coefficients

of the basis function set) to observation space (for example, the dry-air column XCO2

measured by OCO-like instrument). It includes transporting atmospheric components,

sampling model distributions at observation locations, and convolving model profiles using

averaging kernels. The gain matrix K is calculated by

 ()) () () (A6)

where

 () () , (A7)

 17

By using the Ensemble Transform Kalman Filter (ETKF) algorithm (see for example,

Livings et al., 2008), the posterior uncertainty is determined by

 () , (A8)

and the transform matrix T is given by

 ()

 , (A9)

 Module etkf_half.py and etkf_cor.py calculates gain matrix K and transform matrix T by

numerically solving Eqs.8 and 9 using SVD technique (Feng et al., 2009) and LU solver for

sparse matrices (Palmer et al., 2011)

 In the implementation, we have used a sequential data assimilation technique to digest

observations step by step. Also, we have introduced a lag window to reduce computational

costs. Figure A1 schematically shows the concepts of lag window for sequential data

assimilation. For example, observations in step T7 have no contributions from fluxes after

T7. On the other hand, estimates for fluxes long before step T7 (such as those over T1 and

T2) have already been refined by observations in steps from T1 till T7, and hence further

assimilation of T7 observations will not be expected to change them significantly. As a result

we only consider estimates for fluxes inside the lag window as control variables in order to

assimilate observations in step T7.

 Figure A1. Schematic plot for lag window used in sequential data assimilation.

 18

B. OSSE system for OCO-like instrument

 Modules in two sub-directories /obs_simulation/ and /enkf_oco/ under otool/ESA/example/

form a complete OSSE system based on GEOS-Chem CTM to study OCO-like observations.

B.1 Observation simulations

 In otool/ESA/example/obs_simulation/ Observation are simulated in two phases:

I. generating virtual observations by sampling dummy atmosphere (gen_dummy_obs.py

and vob_def.cfg)

II. converting virtual observations to model observations by sampling GEOS-Chem

outputs (gen_sat_obs.py and sob_def.cfg)

In phase I, gen_vob.py 1) reads in satellite orbits; 2) screens cloud and aerosol

contaminations; 3) checks surface type; 4) gets scene-dependent averaging kernel and

observation error; and 5) convolves dummy CO2 profiles using averaging kernel to dry air

columns;

In phase II, gen_sob.py 1) reads in virtual observations; 2) sample GEOS-Chem profiles

at observation locations; 3) convolves model CO2 profiles using averaging kernel to dry air

columns; and 4) generating random errors.

Besides these two python modules, observation simulations also need pre-calculated data

for:

 Satellite orbit

 Satellite Averaging Kernel

 Cloud PDF

 Aerosol PDF

 GEOS-Chem outputs

 If you want to run GEOS-Chem yourself, you also need

 GEOS-5 meteorological analysis

 19

 The user can use plot_obs_map.py to show simulated observations, and compare them with

reference results stored in ./ref_sat_obs. Because of the random sampling etc, the results

simulated by the user could be slightly different from the reference ones.

B2. EnKF data assimilation

 The data flow for estimating surface fluxes using OCO-like XCO2 concentration

observations is summarised as

Figure 1B: Schematic plot for data flow in one EnKF data assimilation step.

 However in this OSSE example, we have used a full representation for prior error

covariance of monthly regional flux estimates over 144 regions. We define ensemble runs

that use a pre-defined flux perturbation ensemble, and then rescale to actual prior

uncertainties during the data assimilation (Feng et al., 2009) (oco_assim_step.py), which

simplifies the data assimilation procedure shown above.

 We have saved outputs from such an ensemble run into otool_data/enkf_output. The user

can generate their own forward simulations by using ensemble_run_drive.py in

ESA/example/enkf_oco/ensemble_run to manage the jobs . Also, bpch files for flux

perturbation ensembles by gen_flux_ensemble.py and convert_flux_netcdf_bpch.py are

available in otool_data/surface_flux. These fluxes can be used by making a symbol link to

your subdirectory surface_flux under the run directory ESA/example/enkf_oco/ensemble_run

.

 Once the ensemble run outputs are available, the user can use run_job.py as driver to 1)

create state vector by reading in prior regional fluxes and flux perturbation ensemble; 2)

sample CO2 profiles for the prior and each of ensemble member at time and locations of

simulated OCO observations; 3) compare model XCO2 and the perturbation ensemble with

observations to generate optimal estimates of fluxes (i.e, coefficients) .

 These tasks are mainly done by class members contained in class oco_assim_step_cl. For

example member object cl_obs is a class for accessing (simulated) observations, and member

object cl_fc_prof and cl_enr_prof for model values. Also, member cl_ctm provides controls

 20

on forecast runs. Also the functions of these class members are specified by the configuration

file osse_def.cfg, so that the user can exchange them with their own functions.

 Finally, the user can compare the prior and posterior flux estimates (or model dry-air CO2

columns) with the ‘true’ values by using plot_flux.py (or plot_obs_cmp_ts.py and

plot_obs_map.py for observations). Also, the user can compare their results with the

reference experiment stored in ./ref_oco_inv

 V. References

Baker, D. F., Doney, S. C., and Schimel, D. S.: Variational data assimilation for atmospheric

CO2, Tellus Ser. B, 58, 359–365, 2006.

Chevallier, F., Br´eon, F.-M., and Rayner, P. J.: Contribution of the Orbiting Carbon

Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational

data assimilation framework, J. Geophys. Res., 112, D09307, doi:10.1029/2006JD007375,

2007a.

Cooperative Atmospheric Data Project-Carbon Dioxide, CD-ROM, NOAA GMD, Boulder,

Colorado (also available via anonymous FTP to ftp.cmdl.noaa.gov, Path:

ccg/co2/GLOBALVIEW).

Feng, L., Palmer, P. I., B¨osch, H., and Dance, S.: Estimating surface CO2 fluxes from space-

borne CO2 dry air mole fraction observations using an ensemble Kalman Filter, Atmos.

Chem. Phys., 9, 2619–2633, doi:10.5194/acp-9-2619-2009, 2009.

Houtekamer, P. L. and Mitchell, H. L.: Data assimilation using an ensemble Kalman filter

technique, Mon.Weather Rev., 126, 796–811, 1998.

Lahoz, W. A., Brugge, R., Jackson, D. R., Migliorini, S., Swinbank, R., Lary, D., and Lee,

A.: An observing system simulation experiment to evaluate the scientific merit of wind and

ozone measurements from the future SWIFT instrument, Q. J. Roy. Meteor. Soc., 131, 503–

523, doi:10.1256/qj.03.109, 2005.

Livings, D. M., Dance, S. L., and Nichols, N. K.: Unbiased ensemble square root filters,

Physica D., 237/8, 1021–1028, 2008.

Palmer, P. I., Suntharalingam, P., Jones, D. B. A., Jacob, D. J., Streets, D. G., Fu, Q., Vay, S.

A., and Sachse, G. W.: Using CO2:CO correlations to improve inverse analyses of carbon

fluxes, J. Geophys. Res., 111, D12318, doi:10.1029/2005JD006697, 2006.

 21

Palmer, P. I., L. Feng, and H. Boesch, "Spatial resolution of tropical terrestrial CO2 fluxes

inferred using space-borne CO2 sampled in different Earth orbits: the role of spatial error

correlations," Atmos. Meas. Tech., 4, 1995-2006, 2011.

Peters, W., Miller, J. B., Whitaker, J., Denning, A. S., Hirsch, A., Krol, M. C., Zupanski, D.,

Bruhwiler, L., and Tans, P. P.: An ensemble data assimilation system to estimate CO2 surface

fluxes from atmospheric trace gas observations, J. Geophys. Res., 110, D24304,

doi:10.1029/2005JD006157, 2005.

