
ORACLE FUSION
MIDDLEWARE

Oracle Application Server
10g MapViewer

September 2005
Oracle Corporation

Technical Overview

Topics

• Overview
• Main features
• Concepts
• APIs
• Fast start
• Map Definition Tool OTN utility: Enterprise-

level management of map metadata
• Web resources

MapViewer Overview
• Map rendering service in Oracle

Application Server 10g.
• Server component; NOT a client viewer

• Visualizes data managed by Oracle
Spatial and Locator.

• Provides a comprehensive set of APIs:
• XML and Java-based
• Enables easy development of client viewers

• Enterprise-level solution for management
of map content and metadata

MapViewer Overview – Basic Flow of Action
Is a J2EE servlet, MapViewer uses a request/response model.

Mapping Client

Map Viewer

Oracle Spatial

1: Map Request

•Datasource

•Base map

•Center & Size

•Dynamic data

2: Response

•Map Image URL

•Minimum Bounding
Rectangle of the Map

•…

MapViewer Overview – Architecture

MapViewer

Oracle Application Server 10g
(or standalone OC4J)

Mid-tier

Client
Browser/App

HTTP

Oracle
Spatial

Mapping
Metadata

Database

JDBC

MapViewer Overview - Main Characteristics

ClientClient

MapViewer
• Scalable. Stateless.

• All spatial queries are performed in the db by Oracle Spatial

• Makes use of JDBC connection pooling and caching

• Caches Mapping Metadata (basemap/theme/style definitions)

• Caches geometric and image data in the mid-tier.

• Easy to setup and configure (with Oracle AS or standalone
OC4J)

Map Request Map Request ResultResult

Topics

• Overview
• Concepts
• Main features
• APIs
• Fast start
• Map Definition Tool OTN utility: Enterprise-

level management of map metadata
• Web resources

MapViewer Key Concepts
• Datasource
• Map
• Basemap
• Theme
• Style
• Styled GeoFeature

MapViewer Key Concepts
Datasource

• A MapViewer admin defines one or more target databases from
which MapViewer will generate maps. These target databases
are called Datasources.

• A datasource always references to a database schema that contains
some spatial layers or tables.

• Every map request MUST specify a datasource

Map Request

• Client sends a map request to MapViewer…
MapViewer returns a map to client…

MapViewer Concepts
What is a Map?

Map = basemap
+ additional
themes +
additional
features +
legend + title +
footnote…

Title

Themes

Legend

MapViewer Concepts: basemap
A collection of predefined themes

Theme 1: county

Theme 2:
household income

Theme 3: earthquakes

Theme = a collection of Geo-Features

A geo-feature

Theme = a collection of Styled Geo-
Features

A geo-feature

Themes Provide the Data for a Map Request
A map request can contain any combination of the following types of
themes:

• Predefined themes implicitly included in a basemap.
• JDBC themes that provide dynamic SQL queries.
• Explicitly referenced predefined themes whose
definitions are stored in a database.
• User-supplied individual features (grouped into a single
theme at the server-side).

Note: you can have at most 1 basemap per map request.

A Geo-feature = geometry + attributes + styling
information

Lancaster

Vector data
from database or map request

population, sales, …

• Feature style (color, marker,
line/area pattern or advanced)

• Label style (font/color)

Style : There are 6 types of styles in MapViewer

COLOR
(applicable to
any geometry)

MARKER
(points)

LINE
(linestrings)

AREA
(polygons)

TEXT
(labels)

ADVANCED
(thematic mapping)

Style Applies to Individual Geometries
Each geometry can appear differently when rendered using
different styles. For instance:

Line Style 1 Line Style 2 Line Style 3

MapViewer Key Concepts - Metadata

• Basemaps
• Themes
• Styles

The definitions of base maps,
predefined themes and styles are
the metadata for mapping:

All mapping metadata are stored in
the database.
Three views are automatically
created for each database user to
store them:

• user_sdo_maps
• user_sdo_themes
• user_sdo_styles

Topics

• Overview
• Concepts
• Main Features
• APIs
• Fast start
• Map Definition Tool OTN utility: Enterprise-

level management of map metadata
• Web resources

Key Features in This Release

• Enhanced Mapping and Visualization
Capabilities

• Enhanced APIs and JDeveloper Integration
• Enhanced Administrative Functions

Enhanced Mapping and Visualization Capabilities

• Supports complex thematic mapping.
• Integrated visualization of geo-referenced imagery

and vector data.
• GeoRaster theme & Customizable Image Renderer.
• Spatial 10g Network and Topology themes
• Generates maps in SVG and JPEG formats.
• Improved area/polygon label placement algorithm.
• Supports seamless browsing of global data using a

built-in globular projection (experimental in this
release).

Enhanced Mapping and Visualization Capabilities – continued

• Multi-threaded geometry loading from database.
• Automatic caching of geometry and imagery data in

MapViewer.
• Pre-caching of entire themes in memory (eliminates

geometry fetching from database for fixed geometry
layers)

• Map legend support
• Dynamic theme support through JDBC themes.
• Multiple datasource support.
• Sticky label support: force a label to appear

regardless of conflicts.

Enhanced Administrative Functions

• Restart MapViewer without restarting the container itself.
• Administrative functions are now secured through a login
page.
• Supports invalidation of cached data by theme.
• More options/controls in the mapViewerConfig.xml file.
• Permanent data sources with automatically encrypted
passwords can be defined in the mapViewerConfig.xml
file.

Topics

• Overview
• Main features
• Concepts
• APIs
• Fast start
• Map Definition Tool OTN utility: Enterprise-

level management of map metadata
• Web resources

MapViewer API

MapViewer supports 3 API flavors:

• XML-based : the ultimate API
• Java thin library : a mapping “bean” (w/o UI)
• JSP custom tags : a subset of functions.

MapViewer XML API

3 types of XML requests:
• Map-Request: requesting a map
• Info-Request: searching for attribute info based on
locations
• Non-Map-Request: for administrative or metadata
requests

The XML API is the native language to
the MapViewer !

The XML DTD, examples and usage notes
are detailed in MapViewer User’s Guide !

MapViewer XML API
- Map-Request

Partial DTD of Map-Request:

<!ELEMENT map_request ((box | center)?, srs?, legend?, themes?, geoFeature*)>
<!ATTLIST map_request

datasource CDATA #REQUIRED
basemap CDATA #IMPLIED
width CDATA #IMPLIED
height CDATA #IMPLIED
antialiasing "FALSE" #IMPLIED
format (GIF_STREAM|GIF_URL|PNG_STREAM|PNG_URL) #IMPLIED
title CDATA #IMPLIED
bgcolor CDATA #IMPLIED
bgimage CDATA #IMPLIED >

For complete DTD please refer to MapViewer User’s guide.

MapViewer XML API
- Map-Request

In XML jargon:
A <map_request> element must define a datasource as
one of its attributes, and can optionally include a
<basemap>, a <center>, list of <theme>s, <style>s and
individual <GeoFeature>s as its child-nodes. It may also
include a <legend> element.

MapViewer XML API

MapViewer XML API
- Sample Map Response

Note that a map named omsmap64.png has been created as result of the
map request, and it can be viewed using the URL returned in the map
response above.

MapViewer XML API
- Map-Request for legend only

You can request just a legend image using a Map Request
that embeds a legend specification only.

MapViewer XML API
- Response for legend-only map request

MapViewer XML API
- Info-Request

Search/identify non-spatial attributes

• Search using direct SQL query
• Search Within Radius
• Search At Point
• Search Within Area
• Search Within Rectangle
• Search Nearest Neighbor

MapViewer XML API

- Info-Request : sample

Direct SQL query

MapViewer XML API

- Info-Response

MapViewer returns
XSQL-like response.

MapViewer XML API

- Info-Request : sample

Search Within
Radius

MapViewer XML API
- When Info Request and Map Request are combined:

MapViewer XML API
- Non-Map-Requests

MapViewer supports following types of admin/metadata
requests:

•Managing Data Sources (add/remove/list/redefine datasources)
•Listing All predefined base Maps in a datasource
•Listing predefined Themes (in a datasource, and are part of a
base Map)
•Managing Styles (adding/listing styles)
•Clearing Metadata Cache for a Data Source
•Clearing Cache for a predefined theme
•Restarting the MapViewer instance

For details and DTDs please refer to the MapViewer User’s Guide.

MapViewer XML API

The XML API is the most powerful and flexible.
You can manually construct a XML map request, and send it to
MapViewer using the HTTP protocol from any programming
language that supports HTTP connection and messaging. For
instance you can even use PL/SQL from inside an Oracle
Database to send a map request outside to the MapViewer and
have it generate a map.

But it is often difficult to directly manipulate XML
documents in an application. That’s why there is a
Java API!

MapViewer Java API
A code segment using the lib:- Java API

An easier to use API
than XML. Provides a
“bean”-like interface.

Eventually the request
is quietly converted
into an XML doc.

import oracle.spatial.mapclient.MapViewer; // this class is ALL you need.

MapViewer bean = new MapViewer(“http://mapsrus.com:8888/mapviewer/omserver”);

// sets up a request
bean.setDataSource(“ca@spatial”);
bean.setBaseMapName(“us_base”);
bean.setBackgroundColor(Color.white);
bean.setCenterAndSize(-122.4, 37.8, 0.5);
bean.addJDBCTheme(“ca@spatial”, “dynData”, “select location from cities where “+

“pop > 50000”, “location”, “M.STAR”, NULL, NULL, true);
bean.run(); //issues the request

String mapURL = bean.getGeneratedMapImageURL();

// display the map image

bean.zoomIn(100,200, 2.0);
mapURL = bean.getGeneratedMapImageURL();

// display the zoomed in map image.

The library is named
mvclient.jar, and can
be found in the
unpacked directory of
a MapViewer
deployment:
mapviewer/web/WEB-
INF/lib

JavaDoc is @: http://<host>:<port>/mapviewer/mapclient

MapViewer API – JSP taglib
A code segment using the custom tags:- Provides a

simple set of
custom tags
Does not include all
functions in the Java
API or the XML API.
Meant as a fast start for
beginners.

The tag library is also
in mvclient.jar, its
TLD file is MapViewer
deployment:
mapviewer/web/WEB-
INF/lib

Topics

• Overview
• Main features
• Concepts
• APIs
• Fast Start
• Map Definition Tool OTN utility: Enterprise-

level management of map metadata
• Web resources

MapViewer Fast Start
How to start if you have never used MapViewer before:

• Download latest Quick Start kit from the OTN MapViewer page
• Download the Map Definition Tool (mapdef.jar) utility from OTN under
Spatial page.
• Start up Map Definition Tool to “style” your existing spatial data.
• If you do not have any spatial data, download the demo data from OTN,
follow instruction to import it into the your database.
• start up OC4J and navigate to http://<host>:<port>/mapviewer page, and
have fun!

MapViewer Fast Start
• Deliverables

• A J2EE .ear file (includes code, sample config
files et al.) shipped with Oracle Application
Server.

• A map definition tool utility to manage mapping
metadata (download from OTN only)

• Can be deployed in a standalone OC4j
(Oracle Container for J2EE) or full Oracle
Application Server.

• Configured to run out of the box for new
users.

MapViewer Fast Start
Advanced users can configure the MapViewer to:

• save generated maps at a different location, with a customizable
life-cycle. Also define how the maps should be referenced using
URL.

• output different levels/volumes of logging messages.

• use global map parameters such as: map title, copyright notes,
map logo image. Can customize font, position on map.

• customize spatial data cache size or turn it off completely.

• dynamically load custom Image renderers (user classes).

• predefine known data sources.

All by editing the mapViewerConfig.xml file!

Topics

• Overview
• Main features
• Concepts
• APIs
• Fast start
• Map Definition Tool OTN utility: Enterprise-

level management of map metadata
• Web resources

Map Definition Tool OTN Utility
Recall that
Mapping Metadata =
definitions of basemaps, predefined themes & styles

so that

map metadata be shared among many
users in an enterprise.

Map Definition Tool OTN utility enables
enterprise-wide management of map

metadata

Metadata for Mapping

• Three views:
• user_sdo_maps

• user_sdo_themes

• user_sdo_styles

• Users customize their maps by modifying contents in
these three metadata views.

• Users modify/manage these views through the Map
Definition Tool OTN utility (or directly through SQL).

associated db

Mapping
Metadata

View USER_SDO_MAPS

user_sdo_maps (name varchar2, description varchar2,
definition CLOB);

– name uniquely references to a basemap, e.g. “us_base”
– definition is an XML document that lists all the themes

included in this basemap.

<? XML version=“1.0” >
<MapDefinition title=“eLocation Customers” >

<Theme name=“us_state” min_scale=“0.5” max_scale=“0.002” />
<Theme name=“us_road_0” min_scale=“0.2” max_scale=“0.002” />
<Theme name=“us_road_1” />
<Theme name=“us_parks” min_scale=“0.3” max_scale=“0.05” />
<Theme name=“us_lakes” min_scale=“0.3” max_scale=“0.05” />

</MapDefinition>

A Sample basemap definition doc:

View USER_SDO_THEMES
user_sdo_themes (name varchar2,

description varchar2
base_table varchar2,
geometry_column varchar2,
styling_rules CLOB);

A Sample styling_rules column:
<?xml version=“1.0” ?>
<styling_rules>

<rule>
<features style=“m.airport”> name like ‘% INTL AIRPORT” </features>
<label column=“substr(name, 1, 3)” style=“t.airport name”> 1 </lable>

<rule>
</styling_rules>

View USER_SDO_THEMES – contd.

Anatomy of the styling_rules column:

<?xml version=“1.0” ?>
<styling_rules>

<rule>
<features style=“m.airport”> name like ‘% INTL AIRPORT” </features>

<label column=“name” style=“t.airport name”> 1 </lable>
<rule>

</styling_rules>

• An XML doc with root element <styling_rules> and child nodes <rule>s.
• Each <rule> node has a mandatory <feature> node, and an optional <label> node.
• The <feature> node specifies features/rows to be included in this theme, using any
SQL WHERE clause. It has one attribute “style” specifying the name of the style used
in rendering.
• The optional <label> node specifies whether the features should be labeled. Any
value/SQL expression greater than 0 means labeling is required. The “column”
attribute node designates a column in the base table whose values will be used as the
label text. The “style” attribute specifies the text style for labeling.

View USER_SDO_STYLES
user_sdo_styles (name varchar2,

type varchar2

description varchar2,

definition CLOB,

image BLOB,

geometry MDSYS.SDO_GEOMETRY);

All six types of styles are stored in this schema. For
details please see the MapViewer User’s Guide.

Web Resources

• Oracle Application Server MapViewer site on OTN:
http://otn.oracle.com/products/mapviewer

• Oracle Spatial site on OTN:
http://otn.oracle.com/products/spatial

• Oracle Discussion Forum on Spatial/MapViewer:
http://forums.oracle.com/forums/forum.jsp?forum=76

Appendix

Screen Shots

Screen Shots of Map Definition Tool – Managing Color Styles

Screen Shots of Map Definition Tool - Marker Styles

Screen Shots of Map Definition Tool - Line Styles

Screen Shots of Map Definition Tool - Area Styles

Screen Shots of Map Definition Tool - Text Styles

Screen Shots of Map Definition Tool - Advanced Styles

Screen Shots of Map Definition Tool - Themes

Screen Shots of Map Definition Tool - basemaps

A simple application tracking a ship’s locations as it travels from San Francisco to
Singapore.

Overlaying vector data (roads) on top of an image theme (aerial photos of
downtown Boston)

Enhanced Mapping and Visualization Capabilities
Sample Screenshots

Each pie chart represents
household income
distribution in each block.

A simple floor plan map with
automatic label placement.

A map showing feature identification and location-based queries/searches.

JDeveloper with custom MapViewer JSP tags in its component palette, and a
map metadata browser in its Connections panel.

ORACLE FUSION
MIDDLEWARE

