

Oracle's Spatial Technologies

Oracle Locator Oracle Spatial Oracle Application Server MapViewer

Agenda

- Geospatial Technology Trends
- Oracle Locator and Spatial
 - Oracle Geospatial Object Types and Indexing
 - SQL Operators and Functions
 - Oracle Locator and Spatial Usage & Feature Comparison
 - Oracle Spatial Technologies and Models
- Oracle Application Server MapViewer
- Oracle Locator, Spatial and MapViewer Technology Partners

Geospatial Technology Trends

Challenge of Incorporating Location Based Information

- Specialty GIS/RS servers
 - Data isolation
 - High systems admin and management costs
 - Scalability problems
 - High training costs
 - Complex support problems
- Information not aligned with Business Processes

Evolution of GIS

Early Spatial Systems: Hybrids

- Attributes in database
- Geometries in database but in proprietary binary format
 - IT can access geometries via proprietary interfaces only
- **Poor integration**

Open Spatial Databases

Integrate All Information

- Relate associated information to spatial locations
 - Land records and topologies
 - Road Networks
 - Property photographs
 - Satellite imagery
 - Image map data
 - Legal Documents

Oracle Spatial Development History

Value Propositions:

- Integrated enterprise data management for LARGE datasets and VLDBs
- Consolidated management of spatial operations
- Greater security and interoperability
- Enhanced decision support and business intelligence
- Reduced training requirements
- Spatially enabled applications

Oracle Locator and Spatial

Relational and GIS Data in a Hybrid Setup NO Data Integration

"How can I integrate all of my location (GIS) information with my ERP, CRM and multiple location technologies when my location information is 'owned' by my GIS?"

Road

ROAD_ID	NAME	SURFACE	LANES
1	Homestead	Asphalt	4
2	Bellomy	Asphalt	2
3	Santa Clara	Asphalt	2

Geospatial Data in Oracle Tables

Data Types and Models:

Vector

L SDO_TOPO_GEOMETRY

SDO GEOMETRY

Raster | SDO_GEORASTER

Road

ROAD_ID	NAME	SURFACE	LANES	LOCATION
1	Homestead	Asphalt	4	
2	Bellomy	Asphalt	2	
3	Santa Clara	Asphalt	2	

Locator and Spatial Capabilities

`distance = 10 unit = mile') = `TRUE';

ORACLE

Locator and Spatial Vector Data Types

- Points
- Line Strings
- Polygons
- Polygons with holes
- Circles
- Arcs, arc strings
- Rectangles
- Compound elements

R-Tree Spatial Indexing

- Based on the Minimum Bounding Rectangle (MBR) of the spatial feature
- Used to index two, three and four dimensional data
- Acts as a primary filter on the data
- Provides extremely fast access to spatial data

ORACLE

Locator and Spatial SQL Operators

- Full range of spatial operators
 - Implemented as functional extensions in SQL
 - Topological Operators
 - Inside Contains
 - Touch Disjoint
 - Covers Covered By
 - Equal (
- Overlap Boundary
 - Distance Operators

•

- Within Distance
- Nearest Neighbor

Within Distance

Locator and Spatial Query Via SQL

Find all buildings within 500 meters of building 902

```
SQL> SELECT a.building_id
2> FROM base_buildings a,
3> base_buildings b
4> WHERE b.building_id = 902
5> AND MDSYS.SDO_WITHIN_DISTANCE(
6> a.Location, b.Location,
7> 'distance=500 unit=meter')
8> = 'TRUE';
```


Spatial SQL Functions

- Returns a geometry
 - Union
 - Difference
 - Intersect
 - XOR
 - Buffer
 - Centroid
 - ConvexHull
- Returns a number

- Length
- Area
- Distance

Coordinate Systems

- Support for geodetic, whole earth model (latitude/longitude)
 - Great circle computations
 - Accurate distance and area calculations (unit support)
 - Support for geometries that span the poles and the 180 meridian
- Support for EPSG coordinate systems
 - Based on European Petroleum Survey Group (EPSG) data model and data set
 - Comes with Oracle Database 10g Release 2 (10.2) and higher
- Support for U.S. National Grid
 - Point coordinate representation using a single alphanumeric coordinate (for example, 18SUJ2348316806479498)
 - Convert from U.S. National Grid text format to SDO_GEOMETRY
- Support for projected coordinate systems
 - Cartesian computations
 - Many supported: UTM, State Plane, and many more...
 - Geometries fall off the edges of the projection
- Support for non-Earth coordinates (e.g., floor plan)

Oracle Locator and Spatial: A Comparison

Oracle Locator and Spatial: Typical Deployments

Locator Usage

- Most location-based business applications
- Simple GIS applications
- Partner-supported GIS

Spatial Usage

- Business applications requiring geocoder, routing engine in database
- Complex GIS applications
- Intensive database-driven geoprocessing
- Network modeling
- Raster data management

Oracle Locator & Spatial Features

Oracle Locator

- All Vector Data Types
- Spatial Operators
 - Topological
 - Distance
- **Distance Function**
- Coordinate Transformations
- GML 2.0 and 3.0
- Java Class Library (API)
- Long Transactions
- Table Partitioning*
- **Object Replication***
- Oracle Label Security

Bundled Feature Standard & Enterprise Edition

Oracle Spatial 10g

- All Locator features
- GeoRaster Data Type
- Topology Data Model
- Network Data Model
- Geocoding
- Routing
- eLocation Quick Start (New in 10g Release 2)
- Linear Referencing
- Spatial functions
 - aggregates
 - buffer, centroid, union,etc

Licensed Option Enterprise Edition Only

*may require Enterprise Edition, additional options

Oracle Spatial Technologies and Models

Oracle Spatial Linear Referencing System (LRS)

What Is Linear Referencing (LRS)?

Commonly used in many GIS applications such as:

- transportation (road network)
- utilities (pipeline and gas lines)

LRS Concepts

ORACLE'

LRS Application Example – Oracle Spatial

- US Airspace Boundary Crossing Application
 - Oracle Spatial functions to calculate intersection of flight paths and US airspaces.
 - Linear Referencing to interpolate the time and altitude for entry/exit points of US airspace.
 - Accurately charge foreign carriers for the amount of time in US airspace.

OracleAS MapViewer and Oracle Spatial LRS

- MapViewer application for flight plan visualization
- Spatial analysis to project current flight position to next waypoint of original flight plan.
- Another example of LRS functionality

Oracle Spatial Spatial Aggregate Functions

Spatial Aggregate Functions - Example

Generate New York state boundary by aggregating counties

```
SELECT SDO_AGGR_UNION(sdo_aggr_type(a.geometry, 0.5)
FROM counties
WHERE state = `New York';
```


SDO_AGGR_CONVEXHULL

- Snap a rubber band around contaminated wells
- Dynamically generate new region
- Further analysis with new region, e.g.
 - Search for chemical plants within 5 miles of new region

Non-contaminated well
Contaminated well

Oracle Spatial 10g Geocoding

Oracle Spatial 10g Geocoder

- Geocoding Engine within
 Oracle Database
 - Geocode: Generates latitude/longitude (points) from address
 - Reverse Geocode: Generates address from latitude/longitude (points)
 - Supports international addressing standardization
 - Data dictionary completely extensible
- Base dictionary data available third parties

Northport 680 Fort Salonga Rd Huntington, NY 11768

Oracle Spatial 10g Routing Engine

Oracle Spatial 10*g* Routing Engine

- The Oracle Spatial Routing Engine enables the hosting of XML-based Web services that:
 - Given a route request that includes start location and an end location (address information or latitude/longitude), returns route information (which can include directions, driving distances, estimated drive times, and geometry information) between the two locations
 - Given a batch route request consisting of a single start location and multiple end locations, can return information (driving distances and estimated drive times) for each of the start and end location pairs

Routing Engine Architecture

ORACLE'

Routing Query

- A route request consists of:
 - Preferences
 - Start location
 - End location

- A batch route request
- consists of:
 - Preferences
 - Start location
 - End locations

- A route response consists of:
 - Route information
 - Optional Geometry
 - Segment information (for each segment of the route)
 - A batch route response consists of:
 - Route information (for each route)

Oracle Spatial 10g eLocation Quick Start

eLocation Quick Start

- New for 10g Release 2
- Location service Java and XML APIs
- Enables application developers to quickly and easily deploy mapping, geocoding, and routing services right "out of the box" from data stored in Oracle Spatial
- Ships with sample HTML interfaces to jump-start creation of driving directions, mapping, and geocoding applications
- Sample data & data sets in Oracle Spatial 10g format available from leading data providers
 - Visit <u>http://www.oracle.com/technology/products/spatial</u> for more info
- May be used by OracleAS MapViewer, many third party mapping tools, or user-developed applications

Oracle Spatial 10g GeoRaster Support

Raster Data and Cell Size

Coarser resolution

Finer resolution

Raster/Vector Data Differences

Vector Data

Vector Coordinates

Raster Data

-74.1651749, 41.339141

-74.1651749, 41.339141, -73.4284481, 40.678193, -72.9792214, 41.686228

-74.1651749, 41.339141, -74.1651749, 39.559004, -72.9792214, 39.559004, -72. 9792214, 41.339141

Raster Data Concepts

- Grid Data is a general term used for raster data
 - An area is overlayed by a regular or nearly regular grid of cells
 - The grid does not have to be rectangular
 - Can be other type of polygon such as triangle
 - Typically has associated table with attribute values for each cell in the grid
 - Examples of grid data include:
 - Digital terrain elevation data
 - Pollution concentrations
 - Land use and land cover types
 - Others

Grid Raster Data

Attribute values are stored for each cell in the grid

- For example, in a geological grid raster data set, numeric values can correspond to the geological period associated with the rock formations
 - The value 1 corresponds to the Quaternary Period
 - The value 2 corresponds to the Tertiary Period
 - The value 3 corresponds to the Paleocene-Cretaceous periods
 - The value 4 corresponds to the Mesozoic Period
 - The value 5 corresponds to the Gondwana Period
 - The value 6 corresponds to the Early Palaeozoic Period
 - The value 7 corresponds to the Late Proterozoic Period
 - The value 8 corresponds to the Early Proterozoic Period
 - The value 9 corresponds to the Archaean Period
- When rendering a map, colors can be assigned to the stored values

Grid Raster Data

A Value Attribute Table (VAT) is used to map the stored numeric values to the meaning of that value

• An example value attribute table for geological raster data

CELL VALUE	GEOLOGICAL PERIOD
1	Quaternary
2	Tertiary
3	Paleocene-Cretaceous
4	Mesozoic
5	Gondwana
6	Early Palaeozoic
7	Proterozoic
8	Early Proterozoic
9	Archaean
0	Blank Cell (no data)

Stored cell values

2	5	4	9	1	9	7	6
6	1	1	1	1	1	6	6
1	3	8	7	9	7	9	1
3	1	8	3	3	5	9	1
3	3	3	9	8	7	9	1
0	3	3	3	9	9	1	0
0	8	8	9	9	1	0	0
0	0	2	9	1	0	0	0

A value attribute table can also contain user-defined columns

ORACLE

Grid Raster Data

- A COLORMAP table is used to map the stored numeric values to the display characteristics of that value
- An example COLORMAP table for geological raster data

CELL VALUE	Red	Green	Blue	
1	255	255	0	
2	82	123	67	
3	142	230	98	
4	96	121	228	
5	145	231	243	
6	255	51	0	
7	203	188	224	
8	195	135	75	
9	204	102	255	
0	0	0	0	

ORACLE'

Geological Map of India (Grid Data)

Quaternary
Tertiary
Paleocene-Cretaceous
Mesozoic
Gondwana
Early Palaeozoic
Late Proterozoic
Early Proterozoic
Archaean

Raster Data Concepts – (continued)

- **Digital Imagery** a specialized type of raster data
 - Two dimensional array of regularly spaced picture elements (pixels)
 - Created from optical or other sensor data
 - Usually doesn't require attribute table
 - Georeferencing allows each cell in the image to be mapped to its location on the surface of the Earth
 - Georectification is the process of assigning ground control points (GCPs) to digital images and processing the image to better map it to the surface of the Earth

Raster Data: Digital Images

The Electromagnetic Spectrum

ORACLE

Raster Data: Digital Images

Each band collected at different wavelength for later processing and/or display

Image Data

TM Band 2

TM Band 3

TM Band 4

TM Band 432

Some bands may accentuate different features

- Some of the types of data supported by GeoRaster, classified by:
 - <u>Data source</u>:
 - Satellite imagery
 - Airborne photographs
 - Thematic grid maps
 - Digital terrain/elevation models
 - Lattice GIS data
 - Scanned maps and graphs
 - Raster data associated with geology, geophysics, and geochemistry
 - Medical images
 - Others

- Number of bands/layers in a data set:
 - Single band/layer (grid layers, black and white images)
 - Multiple band/layer (multispectral imagery, true color photos)
 - Hyperspectral (hyperspectral imagery)
- Base data types:
 - 1, 2, and 4 bit data types
 - 8, 16 bit signed/unsigned integers
 - 32 bit (integer and floating point)
 - 64 bit (floating point)

- Georectification:
 - Georectified (typically georeferenced)
 - Non georectified (georeferenced or non georeferenced)
- Georeferenced:
 - Georeferenced
 - Non georeferenced

- GeoRaster support for loaders and exporters:
 - TIFF/GeoTIFF
 - ESRI World File
 - JPEG
 - GIF
 - BMP
 - PNG
 - · Others
- Oracle Application Server MapViewer provides simple support for visualization of GeoRaster data

GeoRaster: Compression

- Natively support two industry standard compression techniques (New for 10g Release 2)
 - JPEG (lossy)
 - JPEG-B (abbreviated baseline JPEG format)
 - JPEG-F (full-format baseline JPEG format)
 - DEFLATE (lossless)
 - (a.k.a. ZIP)
 - each block is compressed and uncompressed individually
- All GeoRaster operations work on compressed/uncompressed GeoRaster objects
 - Automatic decompression on sub-set operations

Oracle Spatial 10g Persistent Topology Model

Oracle Spatial Topology Model

- New data model to store *persistent* topology
 - · Easier to do data consistency checks in this model
 - Example: when the road moves, the property boundary automatically moves with it
- Topology Data Model and Schema
 - Describes how different spatial features are related to each other
 - A land parcel shares the boundary with a road
- 10g continues to support transient topology
 - Topology computed on demand
 - Customers have choice of 2 topology management capabilities

Oracle Spatial Topology Model

- Each of these represents a spatial feature.
- Oracle Spatial can store features in two ways:
 - Object storage: Each feature is stored as a separate, complete object.
 - Topology storage: Each feature is modeled in terms of the topological primitives it is composed of.

Oracle Spatial Topology Model

Topology Example

- Land parcel features
 - Land Parcel 1 associated with face F1
 - Land Parcel 2 associated with face F2
 - Both faces include edge E3.
- Stream features
 - Stream 1 associated with edge E3 (and edges E1 and E5)

Hierarchical Feature Model: Example

- Parcels features derived from topological primitives (faces)
 - Oracle table called **PARCELS** with **SDO_TOPO_GEOMETRY** column
 - Each parcel feature is derived from topological primitives (faces)
- Neighborhoods features derived from parcels features
 - Oracle table called **NEIGHBORHOODS** with **SDO_TOPO_GEOMETRY** column
 - Each neighborhood is derived from a list of parcel features
- School District features derived from neighborhood features
 - Oracle table called **SCHOOL_DISTRICTS** with **SDO_TOPO_GEOMETRY** column
 - Each school district feature is derived from a list of neighborhood features

Advantages of Using Topology

- Some of the advantages of using topology to store and manage data:
 - No redundant storage of data
 - Shared edges between objects are stored only once.
 - Features from *different* columns can share edges, such as roads and land parcels.
 - Data consistency
 - There are no "registration" issues between geometries.
 - Moving a boundary between objects is done once.
 - Quick and easy determination of topological relationships

Oracle Spatial 10g Network Data Model

Network Data Model

- Network Data Model
 - A data model to store network (graph) structure in the database
 - · Explicitly stores and maintains connectivity of the network
 - Attributes at link and node level
- Routing Engine
 - Street navigation for single or multiple destinations
 - Provide network analysis functionality in the database
- Supports Network solutions (Tracing & Routing)
 - Transportation and Transit Solutions
 - Field Service, Logistics
 - Location based Services, Telematics
- Bio-Info Pathways (Life Sciences)
 - Hierarchical Networks
 - Scale-free Networks
 - Small Worlds

Spatial Analysis Versus Network Analysis

- Oracle Locator and Oracle Spatial solve spatial proximity problems. Another type of analysis required by users and applications is network analysis.
 - Network applications deal with the connectivity and (optionally) cost of features. Spatial data is optional.

What Is a Network?

- A network (also called a graph) is a model that represents relationships between objects of interest.
 - In a network model, objects of interest are defined as nodes.
 - A cost may be associated with a node
 - A direct relationship between two objects (nodes) is defined as a link. A link connects two nodes.
 - A link may have associated cost (time or distance).
 - Links can be directed or bidirected.
 - The ability to traverse links to go from one node to another node is known as accessibility.
 - The sets of ordered links between two nodes is called a path.

A Simple Network

- If this network represented streets and intersections:
 - Nodes are intersections
 - Links are streets
 - A path is a route between two nodes

A More Complicated Network

New York City Streets Data

A More Complicated Network

New York City Streets Data (zoomed in)

ORACLE
What Is the Oracle Spatial Network Data Model?

- The Oracle Spatial Network Data Model stores and analyzes network data.
 - Connectivity is determined using links and nodes:
 - Each link has a start node and an end node.
 - Analysis is done based on connectivity and optionally cost information. Common analysis includes:
 - Accessibility
 - Shortest path analysis
 - Within cost analysis
 - Minimum cost spanning tree
 - Traveling salesman problem
 - Reachable nodes
 - Reaching nodes
 - Result of analysis is often a path.
 - A path has start and end nodes, and one or more links.

Oracle Spatial 10g Spatial Analysis and Mining

Spatial Analysis & Mining

- Pattern Discovery Process
 - Based on spatial patterns
 - Integration with Oracle Data Mining
- Example Applications
 - Demographic analysis, customer profiling
 - Epidemiology, Site location
 - Crime or Insurance Risk analysis:
 - cluster house-holds based on high risk neighborhoods
 - Identify business prospects across a region:
 - examine the average incomes across different regions of the space

Spatial Analysis in Oracle Database 10g

- Spatial Analysis and Mining includes functions for:
 - Neighborhood analysis
 - Aggregates a theme layer attribute for a given area of interest (AOI)
 - Applies the overlap ratio of theme layer and AOI to the aggregated attribute
 - Spatial binning
 - Classifies data based on location
 - Spatial clustering
 - Determines patterns based on location
 - Colocation analysis
 - Determines how the location of one thing correlates to the location of something else

Oracle Locator & Oracle Spatial: Summary of 10g Release 2 Enhancements

Oracle Locator: 10g Release 2 Enhancements

- Coordinate system support for European Petroleum Survey Group (EPSG) specification
- Explicit coordinate transformations (new to Locator in 10g Release 2)
- Utility package (new to Locator in 10g Release 2)
- Tuning functions and procedures (new to Locator in 10g Release 2)

Oracle Spatial: 10g Release 2 Enhancements

- Coordinate system support for European Petroleum Survey Group (EPSG) specification
- eLocation Quick Start
- GeoRaster compression
 - JPEG baseline (lossy)
 - DEFLATE (lossless)
- Topology Data Model feature level spatial transactions
- Network Data Model PL/SQL interface for creating, editing, analyzing network data
- Routing engine support for Western Europe
- Reverse & batch geocoding
- RDF Data Model

Oracle Application Server MapViewer

Oracle Application Server 10*g* **MapViewer**

- No cost feature of the Oracle Application Server
- Supports vector and raster data (SDO_GEOMETRY and SDO_GEORASTER)
 - Integrated with Oracle Locator and Spatial
- Easily publishes spatial data to the web
- Centralized managed symbology, annotation and map definition rules
- Provides an XML API, Java API, JSP Tag library and OGC WMS interface

MapViewer: Map

- Renders from spatial data stored in Oracle database
- Defined as a collection of themes
- May contain a legend, title and footnote
- Users request maps using via a MapRequest The
- MapViewer returns a map via a MapResponse Lege

Title

MapViewer Architecture

MapViewer Query

Map response consists of:

- A streamed map image or
- A URL to the map image along with the map MBR

MapViewer XML: Map Request

- XML/HTTP Based Request
- Client sends XML map request to URL of listening Map Server
- A map request element must define a data source as one of its attributes
- A map request can include a base map name, theme elements, JDBC query elements and geographic feature elements

```
<?xml version="1.0" standalone="yes"?>
<map request
  title="Oracle LBS Map"
  datasource="mvdemo"
  basemap="demo map"
  width="500"
  height="375"
  antialiasing="true"
  format="GIF URL" >
  <center size="1.5">
    <geoFeature render style="m.star"</pre>
    radius="1600, 4800"
    label="The Place"
    text style="t.Street Name" >
      <geometricProperty >
        <Point>
          <coordinates>
            -122.2615, 37.5266
          </coordinates>
        </Point>
      </geometricProperty>
    </geoFeature>
  </center>
</map request>
```


MapViewer XML: Map Response

- For every user-submitted map request, MapViewer sends back a Map-Response
- Contains the URL to where the generated map is located

```
<map_response>
<map_image>
<map_content
    url="http://mapsrus:8888/mapviewer/images/omsmap78.gif?refresh=66737789482409838" />
    <box srsName="default">
        <coordinates> -122.9615,37.0016 -121.5615,38.0516 </coordinates>
        </box>
        </box>
        <wMTException version="1.0.0" error_code="SUCCESS"/>
        </map_image>
</map response>
```


MapViewer XML: Resulting Map

MapViewer Oracle Workspace Manager Support

- Workspace Manager
 - Oracle Database feature that lets you version-enable one or more tables in the database
 - Users can create workspaces
 - Users can go to workspaces
 - Edits to versioned enabled tables in a workspacace, can only be seen by users in that workspace
- MapViewer supports map requests from:
 - A specific workspace
 - A savepoint in a workspace

Map Definition Tool (Manages Mapping Metadata)

- Currently in Beta & downloadable from Oracle Technology Network
 - http://www.oracle.com/technology/products/mapviewer/index.html
 - Click on "software" on right side
- Production Map Builder Tool planned for release with upcoming release of MapViewer
- Map Definition Tool is written in Java
- Used to manage or modify the following Oracle dictionary views:

Map Definition Tool – Styles: Line

👹 Oracle Map Definition Tool [scott:oci@dabugov-lap:dabu9i:1521]								
		name	preview					
OF	RACLE	L.DPH		Ê				
		L.EXCELLENT_ROA			Description:			
Admi	nistration	L.FAIR_ROADS			Overall Style			
Connection		L.FERRY			Width: 1 Sample Color Opacity: 255			
∳-s	Styles —Color —Marker — <mark>Line</mark>	L.GOOD_ROADS			End style: ROUND - Join style: ROUND -			
		L.LIGHT DUTY			Base Line			
		L.MAJOR STREET			Width: 1 Sample Color Dash: Apply1			
	Area Taut	L.MAJOR TOLL ROAD			Parallel Lines			
	—Text —Advanced	L.MQ_ROAD2			Width: 1 Sample Color Dash: Apply2			
-T	hemes	L.PH			Hashmark on Base Line			
M	laps	L.POOR_ROADS			Length: 3.0 Sample Color Gap: 8.5 Apply3			
		L.PTH			Preview:			
		L.RAILROAD						
		L.RAMP			New Update Delete Help			

Map Definition Tool: Managing Themes

🎇 Oracle Map Definition Tool [scott:oci@localhost:ora90:1521]									
		theme name			N <u>a</u> me:	COUNTI	COUNTIES		
	RACLE	COUNTIES			Description:	color cou	color counties by population		
Administration					- ·				
L_C	onnection				base rable.	[GEOD_C	CONTES		
Map Metadata				Geometry Column	GEOM	GEOM			
⊝_St	tyles								
	-Color				The <u>m</u> e Type:				
	Marker	Styling <u>R</u> u	Styling Rules:						
	-Line	Attr Col Feature Style Feature			ire Query	Label Col	Label Style	Label Func	
	—Area Tourt		MDSYS:C.BLA	totpop >= 0 and to	tpop &It 500000	COUNTY	SCOTT:COUNTY	1	
	-Text		MDSYS:C.SAN	totpop >=500000	and totpop < 2000000	COUNTY	SCOTT:COUNTY	1	
	Auvanceu		MDSYS:C.RED	totpop >= 200000	0	COUNTY	SCOTT:COUNTY	1	
M	ans								
	apo								
		+_ X			1 (
			Nev	/ Upd	ate <u>D</u> elet	Delete Help			

Map Definition Tool: Managing Maps

🌺 Oracle Map Definition Tool [scott:oci@dgeringe-lap:ora90:1521]								
ORACLE	map name SAMPLE_MAP	N <u>a</u> me:	SAMPLE_MAP					
		Description:						
Administration		Map Definition:						
Connection		Т	heme Name	Min Scale	Max Scale			
Map Metadata		STATES			2.5			
⊖ -Styles		COUNTIES		2.5				
Color								
Marker		L						
-Line		L						
—Area								
—Text								
Advanced								
-Themes								
<mark>Maps</mark>								
		<u>*</u>						
			·					
		New	Update De	elete	Help			
	L							

Oracle Application Server 10g MapViewer Enhancement Summary

- Support for Spatial 10g features
 - GeoRaster
 - Topology data model
 - Network data model
- Workspace Manager support

- SVG, JPEG, transparent PNG, HTML imagemap support
- Open Geospatial Consortium's Web Map Service 1.1 interface
- Dynamic coordinate transformations, multiple datasources per map, and temporary styles in a map request

Oracle Spatial Technology Partners

Oracle Locator, Spatial and MapViewer Partners

Locator and Spatial Solution Providers

ORACLE'

Oracle & Acquis

Oracle & eSpatial

Oracle & Autodesk

Oracle & MapInfo

ORACLE'

Oracle & Intergraph

ESRI/Oracle Architecture Options

To find out more...

http://www.oracle.com/technology/products/spatial/

Examples, white papers, downloads, discussion forum, sample data, customer successes, partner information, more

