ORACLE FUSION MIDDLEWARE
feature overview Oracle AS MapViewer 10g

September 2005

Introduction

Oracle Application Server MapViewer (or simply, MapViewer) provides powerful
geospatial data visualization and reporting services. Written purely in Java and run in a
J2EE environment, MapViewer provides web application developers a versatile means
to integrate and visualize business data with maps. MapViewer uses the basic capability
included with Oracle10g (delivered via either Oracle Spatial or Locator) to manage
geographic mapping data. MapViewer hides the complexity of spatial data queries and
the cartographic rendering process from application developers.

Overview

Java Application Programming Interfaces
JSP Tag Libraries

Map Legends

Querying Nonspatial Attributes

Support for Georeferenced Images
Improving Performance

Conclusion

O 0O 0O 0O 0O O O O

Overview

This document describes the new features that have been introduced with MapViewer
in Application Server 10g. These features are introduced below, those that introduce
extensive new functionality are discussed in more detail in the following sections.

New and improved features available in MapViewer v10.1.2 include:

= Java Client API—An enhanced Java client API provides convenient access to
most MapViewer functions from a Java application.

= JSP Tag Library—A set of custom JSP tags can be used to develop JSP
applications using MapViewer features.

= Transparent PNG, and JPEG Format Support.

= Map Legend Support—The content and layout of a map legend can also be
customized.

= Query Capabilities with Nonspatial Attributes—A set of methods in the Java
Client API is provided for querying nonspatial attributes based on locations.

= Support for Georeferenced Images—Define image themes that can be rendered

along with the normal vector themes.

= Support for Spatial 10g Network and Topology data models.

= Workspace Manager support—Themes can be from a specified workspace.

= Multiple datasources in a map request—Themes in a map can be from different
datasources.

* SVG map support—MapViewer can now output a SVG map that can be
interactively viewed in a SVG client.

= OGC Web Map Server 1.1.1 interface—MapViewer now has a WMS 1.1.1
interface.

* Dynamic coordinate system transformations—Themes with different coordinate
systems will be transformed into a common coordinate system prior to
rendering.

= Performance Improvements—MapViewer utilizes an internal geometry and
image cache for predefined themes.

Java Application Programming Interfaces

MapViewer exposes its services through an XML API, which application developers
can use when formulating XML map requests for MapViewer and parsing XML
responses from it. Through the XML API, an application can:

+ Customize a map’s data coverage, background color, size, image format and
title, and other characteristics.

+ Display a map with predefined base map, plus any other predefined themes not
included in the base map.

+ Display a map with dynamically defined themes, with each theme’s data
retrieved from a user-supplied SQL query.

+ Display a map with one or more individual features that the application may
have obtained from other sources.

» Through the XML response, obtain the URL to the generated map image, or the
actual binary image data itself, plus the minimum bounding rectangle of the data
covered in the generated map.

Since MapViewer release 9.0.4, the XML API is wrapped into a Java API so that Java
application developers can easily use the new API instead of manipulating XML map
requests directly.

JSP Tag Libraries
Through an XML-like syntax, the JSP tags provide a set of important MapViewer
capabilities, such as setting up a map request, zooming, and panning, as well as

identifying nonspatial attributes of features selected by a user with the mouse.

Creating JSP files is often easier and more convenient than using the XML or
JavaBean-based API, although the latter two approaches give greater flexibility and

control over the program logic. All MapViewer JSP tags in the same session scope
share access to a single MapViewer bean.

The tags enable you to perform several kinds of MapViewer operations:

» Create the MapViewer bean and place it in the current session: init tag, which
must come before any other MapViewer JSP tags.

» Set parameters for the map display and optionally a base map: setParam tag.

* Add themes and a legend: addPredefinedTheme, addJDBCTheme,
importBaseMap, and makelLegend tags.

* Get information: getParam, getMapURL, and identify tags.

+ Submit the map request for processing: run tag.

The table below provides a summary of the individual tags and a synopsis of each tags
function.

Tag Name Explanation

init Creates the MapViewer bean and places it in the
current session. Must come before any other
MapViewer JSP tags.

setParam Specifies one or more parameters for the current
map request.

addPredefinedTheme Adds a predefined theme to the current map
request.

addJDBCTheme Adds a dynamically defined theme to the map
request.

importBaseMap Adds the predefined themes that are in the

specified base map to the current map request.

makel.egend Creates a legend (map inset illustration) drawn
on top of the generated map.

Tag Name [Explanation

getParam Gets the value associated with a specified parameter for the
current map request.

getMapURL Gets the HTTP URL for the currently available map image, as
generated by the MapViewer service.

identify Gets nonspatial attribute (column) values associated with spatial
features that interact with a specified point or rectangle on the
map display, and optionally uses a marker style to identify the
point or rectangle.

run Submits the current map request to the MapViewer service for
processing. The processing can be to zoom in or out, to recenter
the map, or perform a combination of these operations.

Map Legends

A map legend is an inset illustration drawn on top of the map and describing what
various colors, symbols, lines, patterns, and so on represent. The legend provides a key
or an index that ties specific meaning to the map and its symbols. The appearance of a
map can be customized in the following ways:

+ Customize the background and border style

» Have one or more columns in the legend

* Add space to separate legend entries

+ Indent legend entries

« Use any MapViewer style, including advanced styles

The example below is an excerpt from a MapViewer request that includes a legend.

<?xml version="1.0" standalone="yes”?>
<map request
basemap="density map”
datasource = “mvdemo”>
<center size="1.5">

</center>
<legend bgstyle="fill:#ffffff;fill-opacity:128;stroke:#££0000"”
position="NORTH WEST”>
<column>

<entry text="Map Legend” is title="true” />
<entry style="M.STAR” text="center point” />
<entry style="M.CITY HALL 3” text="cities” />
<entry is separator="true” />
<entry style=”C.ROSY BROWN STROKE” text="state boundary” />
<entry style="L.PH” text="interstate highway” />
<entry text="County population:” />

<entry style="V.COUNTY POP DENSITY” tab="1" />
</column>
</legend>
<themes>

</themes>

</map_request>

Querying Nonspatial Attributes

It is often necessary to query nonspatial attributes that are associated with the spatial
features being displayed in the current map image. For example, assume that a map
request is issued to draw a map of all customer locations within a certain county or
postal code. The next logical step is to find more information about each customer
being displayed in the resulting map image. In a typical situation the user clicks on or
identifies a feature displayed on the map to find out more (nonspatial attributes) about
the feature This action can be essentially implemented using a query with the desired
nonspatial attributes in its SELECT list, and a spatial filter as its WHERE clause. The
spatial filter is an Oracle Spatial SQL operator that checks if the geometries in a table
column (the column of type SDO_GEOMETRY in the customer table) spatially interact
with a given target geometry (in this case, the user's mouse-click point). The spatial
filter in the WHERE clause of the query selects and returns only the nonspatial
attributes associated with the geometries that are being clicked on by the user.

You will need to call an Oracle Spatial operator to perform the filtering; however, you
can use the MapViewer bean-based API to obtain information, and to preassemble the
spatial filter string to be appended to the WHERE clause of your query. The identify
method simplifies the task even further.

Support for Georeferenced Images

An image theme is a special kind of MapViewer theme useful for visualizing
geographically referenced imagery (raster) data, such as from remote sensing and aerial
photography. Image data can be used to communicate specific information that is
critical in applications such asset management and in many transportation related
applications.

You can define an image theme dynamically or permanently (as a predefined theme) in
the database. You can use image themes with vector (non-image) themes in a map. The
figure below shows a map in which an image theme (showing an aerial photograph of
part of the city of San Francisco) is overlaid with themes showing several kinds of
roadways in the city.

_3. o C ﬁ-zoumln & ‘{QMaveTn C laﬁZu:.-n:um'EInu.L c E"“Iden.hﬁr

'ﬁa&e map|apps_ -:il:mo] C’erz;er[122. 3914 37 7304]
@Orac]e Tavteq, Skyhne and Au’phc.:c-USA

Improving Performance

To tune MapViewers performance the memory cache and disk cache that MapViewer
uses for spatial geometry objects can be customized. This is accomplished by using the
<spatial data_cache> element. For example:

<spatial data cache max cache size="64"
max _disk cache size="512"
disk cache path="/var/tmp"
/>

You can specify the following information as attributes of the <spatial data cache>
element:

+ The max_cache size attribute specifies the maximum number of megabytes
(MB) of in-memory cache.

Default value: 64

+ The max_disk cache_size attribute specifies the maximum number of
megabytes (MB) of disk cache.

Default value: 512
» The disk cache path attribute specifies the temporary disk path where the
spooled cache will be located.

Default value: location specified for the Java environment variable
java.io.tmpdir

The spatial data cache is always enabled by default, even if the element is commented
out in the configuration file. To completely disable the caching of spatial data, you need
to specify the max_cache_size attribute value as 0 (zero).

Conclusion

MapViewer is a tool available as a component of the Application Server or as an
extension to the JDeveloper environment. MapViewer is used to improve the delivery
of complex geographic data and mainstream business information to applications and
business intelligence tools. The current 10.1.2 version of MapViewer includes a range
of new features that support functional improvements (Legends, JSP tags, support for
geographic images etc.) and performance and manageability features designed to
improve the ease-of-use of this important map making extension to the location-enabled
infrastructure in the Oracle platform.

Top of Page

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065

Worldwide Inquiries:
+1.650.506.7000

Fax +1.650.506.7200
http://www.oracle.com/

Copyright © Oracle Corporation 2005
All Rights Reserved

This document is provided for informational purposes only,
and the information herein is subject to change

without notice. Please report any errors herein to

Oracle Corporation. Oracle Corporation does not provide
any warranties covering and specifically disclaims any
liability in connection with this document.

Oracle is a registered trademark of Oracle Corporation.

All other company and product names mentioned are used
for identification purposes only and may be trademarks of
their respective owners.

