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1. Introduction 
 
The Earth’s large, dynamic river systems remain a major geo-hazard both in terms of flooding 
and erosion.  For example, erosion of the Brahmaputra River in Assam, India, has been 
responsible for more the 400,000 hectares of land destruction since 1955, with more than 
100,000 families displaced (Assam Disaster Management Cell, n.d.).  Despite the clear need 
for improved prediction of the dynamics of such channels they remain poorly understood.    
Within the disciplines of geomorphology and hydrology approaches to predicting complex 
channel processes continue to focus on the development of deterministic techniques including 
computational and physical models developed for individual rivers (e.g. Zanichelli et al., 
2004) or highly specific channel settings.  They are commonly three-dimensional, employ 
highly-parameterised, reductionist approaches, are difficult to apply outside of the specific 
river settings for which they were developed and are difficult to scale up for regional or 
continental-scale application.  Consequently it is difficult to imagine them as the key to 
unlocking successful and rapid prediction of large-scale channel dynamism. 
 
Understanding river channel processes at larger scales requires engagement with available 
spatial data sets.  Analysis of planimetric channel parameters from remotely sensed imagery 
(Mount et al., 2003; Sarma, 2005) or the estimation of hydraulic parameters from digital 
elevation, digital surface and terrain models (e.g. Pistocchi and Pennington, 2006) remain 
popular and established techniques.  However many additional parameters known to exert 
major control on channel dynamism can now be estimated at large scales via analysis of 
remotely-sensed imagery, although exactly how these parameters combine to control 
dynamism is still poorly understood.  These include land use changes and land cover classes 
(Akbari et al., 2006 Boucher et al., 2006), inundation histories (Jain et al., 2006), riverbed 
aggradation (Fan et al., 2006), bathymetric measurements (Carbonneau et al., 2006) and 
riparian vegetation (Goetz, 2006).  The result is a large-scale, multi-parameter analytical 
environment, in which techniques are required that are capable of integrating and analysing 
the changing spatial and temporal patterns within parameters deemed to be important in 
controlling channel dynamism.  Should such techniques be applied, an analytical approach 
more suited to predicting channel dynamism at large-scales may emerge. 
 
In this paper, spatio-temporal self-organising maps, an extension of the standard Kohonen 
mapping clustering technique (Kohonen, 1990, 1995), are employed to quantify space-time 
trajectories amongst the values of multiple parameters in some simple river channel datasets.  
Once computed, the space-time trajectories associated with locations known to have 
undergone a particular dynamic process can be compared to emerging trajectories across the 
entire spatial extents of the analysis.  Similar trajectories, indicating a high likelihood of the 
given processes occurring in new locations can then be identified and isolated.  The 
algorithmic processes outlined in this paper are those employed in GISTSOM, a software 
package developed by the authors for the definition and comparison of space-time trajectories 
in multi-parameter, spatio-temporal data. 



 
2.  Kohonen mapping of multi-dimensional data 
 
A Kohonen map, commonly known as a self-organising map, is an unsupervised neural 
network capable of representing high-dimensional data in a low-dimensional form through 
multi-dimensional clustering.  Commonly, the output from a Kohonen map is a 2-dimensional 
array in which there are a predefined number of elements (e.g. 10 x 10) to which input data 
are assigned.  Importantly, it spatially organises input data according to similarities in the 
values of the multiple dimensions at given locations, so that locations exhibiting similar 
values in their associated dimensions are represented proximal to one another and those 
exhibiting dissimilar values are represented distal to one another. 
 
The classic explanation of Kohonen maps exemplifies the organisation of the three 
dimensions Red, Green and Blue (RGB) associated with image pixels (the sample data) into a 
two-dimensional output array, such that similar colours are clustered together according to the 
values in each of the three RGB dimensions.  The individual RGB values are viewed as 
weights which, together, form a weight vector describing the location of the colour in the 
three-dimensional, RGB space.  In the example given in Figure 1, the Kohonen map 
algorithm will cluster those pixels with the most similar weight vectors (i.e. the most similar 
colours) together within a two-dimensional array whilst maintaining the maximum possible 
distance between those pixels with dissimilar weight vectors. 
 

 
 
Figure 1.  A pixelated array of RGB values (i.e. an image).  Each pixel is an input sample to 
the Kohonen mapping algorithm, with the RGB values forming a weight vector that can be 
compared to the weight vectors assigned to each element of the Kohonen map.  The RGB 
weight vector for the bottom left pixel is shown schematically. 
 
The Kohonen map clustering algorithm firstly initialises an array of elements (often termed 
neurons), and assigns weight vectors (most often randomly) to each element of the array 
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according to the dimensionality of the input weight vectors.  The distance between each 
element’s weight vector and the weight vectors of the sample datum is then computed 
according to equation 1.   
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(equation 1) 
where, 

ix  is the value at the ith dimension of a sample 
n is the number of dimensions to the sample data 
 
 
The element with the most similar weight vector (i.e. smallest distance) is then termed the 
best matching unit (BMU) and is made more similar to the sample weight vector according to 
a learning function which controls the magnitude of modification.  Neighbouring elements to 
the BMU are also made more similar, but to a lesser degree as defined by a neighbourhood 
function.  The key attribute of this process is that the further away an element is from the 
BMU, the less it learns to be similar to the sample data.  The algorithm then iterates, 
randomly selecting a sample datum each time and identifying the BMU.  Crucially, as the 
number of iterations increases, the size of the neighbourhood around the BMU declines and 
the learning function decreases.  In this way stability in the mapping of the input weight 
vectors to the weight vectors contained in the output array can be attained.  In the case of an 
RGB image, similar colours will cluster together in the output array and clusters of dissimilar 
colours will be located distally in the array.  The result is a mapping of multidimensional 
pixel values from the original image to the output array (Figure 2.) 

 
 
Figure 2.  The mapping of a 10 x 4 image onto a 3 x 3 Kohonen map.  Pixels (6,1), (7,1), 
(8,1), (8,2), (9,2) and (10,2) have all mapped to element (3,1) indicating they are all of similar 
colour.  Similarly, pixels (9,1) and (10,1) have both mapped to element (1,3) indicating that 
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they are of similar colour.  These two colour groupings have mapped to elements a long way 
apart on the Kohonen map indicating that the two groups of pixels contain very different 
colours. 
 
3.  Extending the Kohonen mapping algorithm across time. 
 
The standard Kohonen mapping algorithm described above is applied to sample data collected 
at one point in time.  However, it can be repeated on data existing across several time periods, 
an extension for which GISTSOM has specifically been developed.  In GISTSOM, the sample 
data weight vectors used in the training of the initialized SOM are taken randomly from 
across all of the time periods for which data are available.  In this way, the weight vectors 
against which the Kohonen map learns implicitly include a temporal dimension, and a spatio-
temporal Kohonen map evolves.   
 
By comparing the locations in the spatio-temporal Kohonen map to which input data for each 
time period have been mapped, a set of coordinates describing the trajectory of the sample 
data across the Kohonen map through time can be extracted (Figure 3).  These space-time 
trajectories represent the changes in the multiple dimensions of each sampled datum (i.e. pixel 
in an image) through time.  By comparing the space-time trajectory coordinates for all of the 
input sample data, similar trajectories can be identified.  In the case of GISTSOM a simple 
coordinate tolerance measure has been used as a measure of similarlity.  Sample data with 
similar space-time trajectories can then be identified as samples whose multi-dimensional 
values have changed in a similar manner through time.  In the case of multiple RGB images, 
samples with similar space-time trajectories would have experience similar colour changes 
through time. 

 
Figure 3.  Space time trajectories for three samples in an 11x11 Kohonen map.  Clearly the 
trajectories of the circle and triangle data are very similar indicating that all of their multiple 
parameter values have responded in very similar manner through time.  By contrast, the 
trajectory of the diamond data is very different indicating a very different response in its 
multiple parameters through time. 
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4.  Beyond RGB: Kohonen maps in dynamic river channels  
 
Moving beyond the example of RGB values, the dimensions within the sample data of a 
Kohonen map can be representative of any phenomena.  In the case of understanding dynamic  
river channels, the sample data at a given point in time can be represented by any number of 
rasters, each defining the values of an individual parameter considered an important control of 
river dynamism (e.g. roughness, bed load size, vegetation type, land use type, inundation 
histories etc.) over a given spatial extent.  These data can be held in multi-dimensional arrays, 
sampled, and mapped to the spatio-temporal Kohonen map space.  By repeating the mapping 
for additional time periods, the space-time trajectories associated with each cell in the data’s 
spatial extent can be defined. 
 
According to the analysis outline above, space time trajectories for a cell known to have 
experienced a given form of channel dynamism can be extracted from available spatio-
temporal datasets of relevant parameters recorded prior to the occurrence of the dynamism.  
In this way, the space time trajectory for the multiple parameters which is predictive of the 
given dynamism can be computed.  It then follows that by searching for the occurrence (or 
it’s apparent development) of this space-time trajectory throughout contemporary data, cells 
in which multi-parameter responses are indicative of the given dynamism can be isolated. 
 
5.  GISTSOM exemplar 
 
The graphical user interface of GISTSOM during an example analysis of panchromatic river 
channel data over three temporal periods is given in figure 4.  GISTSOM provides both a 
visual and numerical output of the space-time trajectories associated with any cell in the input 
raster data set.  It allows user selection of a given trajectory for any cell and the selection of 
all cells displaying similar trajectories according to a tolerance value.  Data may be output to 
any proprietary GIS for further analysis (Figure 5). 
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Figure 4.  The GISTSOM graphical user interface (GUI).  Three parameters of the input data 
for each time period are displayed using the RGB colour guns (A) allowing input data 
visualisation.  Following the initialisation and training of the Kohonen map, interaction with 
A allows the space-time trajectory for any cell of the input rasters to be displayed as 
coordinates (B) or visually in the Kohonen map (C). 
 

 
 
Figure 5.  GISTSOM output.  Black cells indicate the locations of cells which display a 
similar space-time trajectory amongst the panchromatic parameters to that selected within the 
GISTSOM GUI. 
 
6.  Discussion 
 
There is little doubt that the ability to analyse the multi-parameter data sets relevant to the 
prediction of river channel dynamism through space and time represents a significant advance 
over the present analytical procedures employed by fluvial geomorphologists.  These often 
rely on the visual interpretation of data, contain an over emphasis on either the spatial, or 
temporal dimensions contained within the data, and are not automated.  Consequently they 
remain restricted in their ability to predict channel dynamism at large spatial and temporal 
scales.  The analysis of Kohonen map space-time trajectories offers a solution to these issues, 
affording equal emphasis to space and time, removing the need for visual interpretation and 
analysis of complex data and automating the analytical process.   
 
However, the procedures are dependent on the availability of raster data sets encompassing all 
of the parameters which drive channel dynamism.  For many important parameters good 
spatio-temporal data are available (e.g. land cover mapping and inundation histories from 
Landsat TM imagery), but for others, particularly those reliant on ‘flown-for-purpose’ data, 
data availability may be a significant restriction to the application of the technique. In 
addition, during high river stages it is likely that increased inundation area will limit the 
completeness of the data records for many important parameters, falsely indicating major 
changes in key parameters.  For example, a highly vegetated area at time t1 which is inundated 
at time t2 will appear as ‘losing’ its vegetation under the inundated area.  Therefore, enormous 
care is needed in selecting data for use in analysing space-time trajectories. 
 
 



 
7.  Conclusions 
 
The quantification of space-time trajectories of spatio-temporal Kohonen maps offers an 
exciting development for those analysing dynamic systems driven by changes in multiple 
parameters in both space and time.  It offers automation of frequently manual analyses and 
removes bias in the analysis of the spatial or temporal dimensions.  Importantly, it offers a 
method for the prediction of locations of future dynamism, by analysing the patterns of 
spatio-temporal change in the parameters governing the dynamism at locations where it has 
already been observed.   However, the technique is dependent on the availability of raster data 
sets which fully describe the governing parameters through space and time, and this may limit 
its application to certain problems. 
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