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Extended Abstract





	Research in spatial data analysis has developed an increasing array of sophisticated analytical techniques. Such complex techniques offer greater accuracy and discrimination but yet may not always work well (Openshaw, 1995). Indeed, they may fall over completely without the user recognising the fact thus inadvertently resulting in some form of ‘GIS criminality’ (Openshaw, 1993). Such failures may arise because the underlying assumptions of classical statistics subsumed within these techniques have been transgressed. On the other hand, simple techniques tend to perform at a consistently mediocre level and thus tend to be trivialised. Nevertheless they are robust without being brittle. This paper presents an approach to the robust normalisation of spatial data that should facilitate safer analyses.



	Exploratory data analysis (EDA) became formalised as an approach to data analysis through Tukey’s seminal work (Tukey, 1977). EDA is numerical and graphical detective work to maximise what is learned from data (quality, extremes, patterns, associations) and to facilitate the perception of meaningful hypotheses. It is, above all, considered to be a state of mind (Hartwig & Dearing, 1979). At the heart of EDA is the concept that 

data = smooth + rough

in contrast to classical statistics where

data = linear function + stochastic error



	The numerical and graphical methods employed to abstract the smooth from the data and further explore the residual roughness are characterised by their robustness in the form of resistance to outliers and non-reliance on the underlying assumptions of classical statistics. Thus the median and the interquartile range are used extensively as numerical summaries of a distribution instead of the mean and standard deviation. For the latter, any statistic incorporating squared deviations is particularly non-resistant to extreme values or departures from a Gaussian distribution (Hartwig & Dearing, 1979).



	Exploratory spatial data analysis (ESDA) is the application of EDA to spatial data as a means of inferring causal processes from patterns (Fotheringham, 1992; Unwin, 1996) and of suggesting geographical theory (Fotheringham & Charlton, 1994). Although the data is treated in much the same way as in EDA, the map becomes an important means of visualisation in the exploratory process (Haslett et al., 1991). An important direction of the research is on interaction with these visualisations through ‘brushing’ of linked, alternative views of the data (see also Dykes, 1997). Given some of the unique aspects of analysing spatial data such as the modifiable areal unit problem, boundary effects, spatial autocorrelation, non-stationarity and the use of non-random sampling schemes (Fotheringham & Rogerson, 1993), the possibilities of transgressing assumptions, such as those underlying ordinary least squares (Berry, 1993), are considerable when analysing geographical data. ESDA thus provides an inherently safer route in the initial stages of analysis leading to hypothesis generation and should inform likely adherence to assumptions for the techniques used in confirmatory analysis and model building.

	Boxplots, or box-and-whiskers plot (Tukey, 1977), are a useful visualisation of the spread of a distribution giving the position of the median within the interquartile range and the relationship of these to extreme values. The derivation of the median and quartiles are particularly resistant to outliers and, when incorporated into boxplots, can visually convey the shape of unimodal distributions. One and a half times the interquartile range (hinge-spread) above or below the quartiles gives the boundary for ‘possible outliers’ and three times the hinge-spread gives the boundary for ‘probable outliers’ (Tukey, 1977; Hartwig & Dearing, 1979). Thus the boxplot is also a method of establishing outliers.



	A number of variants to the boxplot have been introduced to improve the interpretation of comparisons between data sets. McGill et al. (1978) discuss the use of variable-width boxplots to differentiate the relative size of data sets, notched boxplots to indicate the confidence interval of the medians and a combination of the two. Sibley (1987) discusses the rescaling of boxplots so as “to set aside summary values in order to observe other effects” (Sibley, 1987, p19). The method used is first, for each boxplot, to subtract the median from all the values and then to divide by the hinge-spread. This results initially in centred boxplots and subsequently in standardised boxplots as illustrated in Figure 1. Sibley considers standardizing boxplots to be analogous of z-score transformation of data. However, in z-score transformation the mean becomes zero and one standard deviation above and below the mean become +1 and -1 respectively. Only in the special case of the median falling exactly mid-way between the values of the upper and lower quartile will the quartiles be transformed to +1 and -1 respectively in a standardised boxplot. Other than this special case, the quartiles are transformed to values that are difficult to interpret and the recognition of negative and positive outliers dubious. Since boxplots are particularly useful for studying non-normal distributions, the special case is unlikely to arise. For two or more boxplots to be represented on the same scale such that their medians are zero and with the upper and lower quartiles taking the values of +1 and -1 respectively, then an asymmetric division by the median to quartile range is required on either side of the median:

normalised value  =        value  -  median        		for value  <  median

                                 (median  -  lower quartile)

normalised value  =        value  -  median        		for value  >  median

                                 (upper quartile  -  median)
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Figure 1: Derivation of normalised boxplots
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	Boxplot normalisation is illustrated in Figure 1. Values less than -3 or greater than +3 can be considered as outliers. This cutoff approximates 1.5 times the hinge-spread of an ordinary boxplot. No differentiation is made here between ‘possible’ and ‘probable’ outliers and are treated uniformly as extreme values. Whilst such normalisation sets aside differences in median and interquartile range, it allows data to be visualised on the same scale and provides an easy, alternative means of identifying extreme values at both the lower and upper ends of a distribution. Boxplot normalisation is introduced here as a modification of standard EDA tools and as inherently safer, more robust means of data transformation to a normalised scale.



	The utility of boxplot normalisation has been demonstrated in the analysis of limiting long-term illness (Brimicombe, in review) and this paper, in its final form, will illustrate the use of boxplot normalisation in analysing crime data and in the derivation of indices of deprivation. The latter is briefly illustrated here. The Townsend Index of deprivation (Townsend et al., 1988) has been widely used in the analysis of health inequalities and poverty (Lee et al. 1995). The index is compiled from four census variables:

rented:		percentage of households not owner occupied;

no car:		percentage of households without a car;

unemployment:	percentage of economically active residents unemployed;

crowding:		percentage of households with more than one person per room.

None of the variable are weighted. Unemployment and crowding are log transformed. All the variables are standardised using z-score transformation. The index has been calculated by averaging the four variables for the 377 enumeration districts of Barking. Essex - an urban area, mostly residential, containing a range of socio-economic groups. Due to the z-score standardisation, the resultant index can be plotted in standard deviations about the mean (Figures 2a and 2b). However, as in most cartographic representations, the message in the map is strongly influenced by choice of class interval (Monmonier, 1977). Thus in Figure 2a, in whole standard deviations, there is little visible variation in deprivation whilst in Figure 2b, with the half standard deviation about the mean shown, a more interesting pattern emerges which might trigger further study. But how reliable are these maps in terms of the calculation of the index?



	The variables used in the calculation of the index have all been converted to a percentage but are all strongly non-Gaussian when plotted in a histogram. Unemployment and crowding are heavily skewed towards the lower end of the distribution which a log transformation goes some way to correct. There are however numerous EDs with zero crowding which makes the log transformation problematic. The main point, however, is that the mean and standard deviation, as used in the z-score transformation, are not meaningful descriptors of the variable distributions as would be expected in classical statistics. The robustness of the construction of the index for the Barking area is therefore doubtful.



	Figure 3 shows a Townsend-type index of deprivation, using exactly the same variables but simply boxplot normalised.  The class intervals are easily constructed on the structure of the normalised boxplot. This gives a clearer indication of the inequalities in the Barking area and has been constructed in a very much more robust way. Some interesting clusters and spatial outliers emerge for further study. The various elements of this example will be expanded in the final paper.



	In conclusion, this paper has proposed a new ESDA tool - boxplot normalisation. It is a robust and effective method of data normalisation in spatial data analysis. It can be used in conjunction with other traditional tools of ESDA. Such an approach to normalisation could easily be incorporated into more complex analyses thus making them inherently safer.
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