

Abstract
The Maia database is a world
topographic data and attribut
backbone of the Ordnance Su

This paper highlights the tech
implementing a very large spa
spatial database design and im
performance, availability, man
complex data requirements an

Introduction
The Ordnance Survey of Great
master, editing database calle

This paper covers the strategi
Database (VLSDB) design and

These issues are highly releva
institutions, as well as, from a
national MasterMap coverage

What is Maia?
Maia is the database system t
underpins the current and futu
Digital Data Management Sys
scale topographic mapping, e
Generalised Topographic and
to be highly scalable to suppo

To support these requirement
the Oracle9i Spatial database

Two databases will underpin t
the Mercury publishing datab
based on Excelon Object Store
Once Maia is operational, the
will be pushed out from Maia
period of being accepted into
publishing system, and the da

A01.1
the agi conference at GIS 2002
The Maia project: The development of a
very large geospatial database
f
e
r

c

t
x

a

Track 1: The data engine

Brigitte Colombo, Senior Consultant, Oracle Corporation and Ed Parsons,
Chief Technical Officer, Ordnance Survey of Great Britain
1

irst. It will be the largest spatially-enabled database storing large scale
 information for editing and digital product generation purposes. It forms the
vey's business programme and supports the eDelivery initiatives.

nical direction of the Ordnance Survey and discusses the issues involved with
tial database. The Maia database provides a unique case study of very large
plementation. Technical issues include building the database for

ageability and scalability, and designing the database structures to support
d the evolution of the database.

 Britain and Oracle Corporation UK have been working together to develop a
d Maia.

 direction behind this development, the technical issues in Very Large Spatial
 implementation, and finally, the results from the Maia prototype.

nt from a strategic perspective to National Mapping Agencies or similar
 technical perspective, those wishing to implement a VLSDB, such as a
.

hat will store the seamless digital mapping base of Great Britain that
re range of MasterMap products. Maia will replace the existing tile-based
em (DDMS). Initially it will store the internal format of MasterMap large-
panding to include other MasterMap layers, for example, 1:50,000

the Integrated Transportation Network layers. Thus Maia must be designed
rt the future expansion of data complexity, data volume and functionality.

s, the Ordnance Survey has embarked upon an assessment and pilot study of
system. This follows several prototype systems developed during 2001.

he Ordnance Survey digital mapping systems: the Maia editing database and
se. The Mercury database is the current Geospatial Object Server (GOS),
 technology. Oracle9i Spatial has been selected as the platform for Maia.

field object editors (FOE) will directly edit the data stored in Maia. Updates
to Mercury at regular intervals and be available to subscribers within a short
Maia. In summary, Maia is a read-write database while Mercury is a read-only
ta in Mercury may be fully derived from Maia.

2

Spatial
Middleware

Mercury
Excelon
Object
StoreTM

Maia

Field Object
Editor

MasterMapTM

Product

Product Generation
Clients (e.g. generalisation)

Read-only
Clients

Land-Line
Product

GML
GML

NTF tiles

Vendor
Native

OCI

SQL

Vendor
Native

Figure 1. Ordnance Survey Target Architecture

Technical Strategy of the Ordnance Survey
Maia is a major part of the Ordnance Survey’s move from a tiled to a seam-free digital mapping base for
data maintenance, storage and supply. Other factors driving the Maia project are the requirement to
modernise internal systems to support a new FOE, a technical strategy based upon e-delivery and a
requirement to derive added value from existing digital data sources.

Key to realising these changes is a move away from a “Best of Breed” bespoke development environment to
the exploitation of Standards based Commercial of the Shelf Software (SCOTS).
The use of a SCOTS based system considerably reduces the long-term cost of ownership of new systems
and increases the speed and flexibility of new system development. For example, Oracle Spatial will allow
the use of multiple vendor GIS applications as clients to the Maia database. As the defacto industry
standard, Oracle Spatial is seen as advantageous for the development of the new FOE and for future
initiatives that will act on the database such as automated generalisation. The Ordnance Survey has
adopted Oracle as its enterprise database platform and has the technical infrastructure to implement this
change.

Technical Issues concerning the implementation of a VLSDB
This section of the paper provides a brief introduction to Oracle Spatial and a discussion of design issues
for very large spatial databases (VLSDB). This presents the concepts, which clarify the design and results of
the Maia prototype.

Brief Overview of Oracle Spatial

Oracle Spatial is an integrated set of functions and procedures that use object-relational technology to
manage, access and query spatial data within the Oracle database. This Spatial technology is part of the
database kernel, as opposed to being an extension or plug-in.

In technical terms Oracle Spatial is:

• A data type called SDO_GEOMETRY, which enables point, line and polygon features as well as complex
elements made up of a combination of these, to be stored just like any other number, character, or date
data.

• A fast access method to the data via spatial indexes.

• Extensions to the query language SQL to be able to write and execute spatial queries such as, “Find me
all the street lights in each Ward within the County of Hampshire.”

All of the Oracle
these include re
available, such
same developm
update and sele
spatial data, an
Oracle Spatial.

Why VLSDB?

What is a VLSDB
Databases of ar
because specia
database (VLSD
processing. Be
include the sam

Initially, the Ma
double or triple

VLDB technique
design, populat
Index Partitioni

Partitioning
Partitioning add
indexes into sm
rather than the
partition elimin

For example, a N

If users only eve
specified in the
administrative a
processed. This

SELECT /*+ ordered */ s.id, s.ulrn, w.ward, s.geom
FROM street_lights s, wards w
WHERE w.county=’HAMPSHIRE’
AND SDO_RELATE (w.geoloc, s.geom, 'mask=ANYINTERACT

querytype=window') = 'TRUE';
3

 Relational Database Management System (RDBMS) features are available with Spatial;
plication, distributed processing, security and parallel processing. The same utilities are

as SQL*Loader, Oracle Enterprise Manager, backup and recovery, export and import. The
ent languages such as SQL, PL/SQL, Java, XML, and OCI, can be used to insert, delete,
ct the spatial data. This means that you can have a single database for spatial and non-

d lower the cost of ownership by using mainstream I.T. resources to manage this data within

?
ound 1 Terabyte (TB) or more are typically described as very large databases (VLDB)
l techniques are usually applied to maintain and manage these systems. A very large spatial
B) is similar, but includes additional considerations for geospatial data management and

cause Oracle Spatial is part of the Oracle RDBMS, the considerations for designing a VLSDB
e issues as non-spatial VLDB plus additional factors for the spatial element.

ia database will be in the order of 815 GB, but the addition of other data sets is expected to
 this size within the first year of production.

s include table partitioning, parallelism and data warehousing techniques for database
ion and indexing. VLSDB techniques include the above, plus Spatial Partitioning, Spatial
ng and Spatial Clustering.

resses the problem of supporting very large tables and indexes by decomposing tables and
aller pieces called partitions. SQL statements can access and manipulate the partitions
entire table. The partitions should be roughly balanced in size to benefit the most from
ation. Significant performance gains can be achieved when using partition-based queries.

ational coverage can be partitioned into Administrative Areas.

r want information for one or more administrative areas (that is, the county name is
 WHERE clause of the query) then only the partition that pertains to the specified
rea is queried; the vast majority of the data (that in all other administrative areas) is not
 is termed “partition elimination.”

4

Indexes may be “global” across all partitions in a table, or “local” with one index for each partition.
Partitioning data and, optionally, partitioned local indexes provides additional performance gains via
parallel execution when inserting / updating table data or creating / updating indexes. Partitioning data
and indexes also provides some very important manageability options for moving data, splitting and
exchanging partitions. Note that, partitioning may lead to a decrease in performance if the table is not
partitioned based upon the criteria used in the typical query profile.

Parallel Execution
Parallel execution or parallel processing can dramatically reduce query response times for data-intensive
operations on large databases. Instead of using a single process for one statement the work is spread
among multiple processes. Parallel execution is useful for many types of operations, including:

• Queries requiring large table scans, joins, or partitioned index scans

• Creation of large indexes and large tables

• Bulk inserts, updates and deletes

• Aggregations

Symmetric multiprocessing (SMP), clustered systems, and massively parallel systems (MPP) gain the
largest performance benefits from parallel execution because statement processing can be split among
many CPUs. Parallel execution helps systems scale in performance by making optimal use of hardware
resources and the performance improvement can be significant.

Note that parallel execution is not suited to all systems and can reduce system performance on over utilized
systems or systems with insufficient I/O bandwidth.

Data Warehousing Techniques

Data Warehouses contain very large quantities of data, have few concurrent users, are primarily Read-Only
and are used for Decision Support Systems and analytical processing. To improve performance when
querying very large quantities of data, the schema is de-normalised, for example, by storing optional
attributes or pre-computed summaries in the same table.

Data is typically loaded in large batch operations using SQL*Loader.

Oracle9i provides the External Tables feature which can provide faster bulk loading of text files than
SQL*Loader. The files containing the data are linked to a structure (similar to a SQL*Loader control file),
and can then be read in parallel and written in parallel.

Partitioning is employed for performance and management reasons.

Bitmapped indexes, Function-Based Indexes, Index Organised Tables and Materialised Views are powerful
techniques used to improve query performance in a data warehouse environment. Function-based indexes
provide a rapid method of using existing point data sets within an Oracle Spatial and a GIS environment.

The other methods should be considered with VLSDB for the non-spatial attribute data that frequently
accompanies each spatial feature. Refer to the bibliography for references that detail these features.

What’s so Special About Spatial Data?

Spatial data has some special characteristics that may impose additional constraints on the design of a
database system. These constraints apply to the characteristics of the data, technical architecture,
performance and tuning, and include:

• the space required to store a spatial feature may be much greater than typical number or character
data, requiring careful selection of database block size

• Oracle stores spatial objects as LOBs which have special characteristics

• choosing a spatial index type

5

• choosing a partitioning key for spatial data

• clustering spatial data on disk based upon proximity in the real world

Database Block Size
There are a number of factors to balance when setting the block size for a database (or at tablespace level
in Oracle9i). The goal is to minimise unnecessary I/O by ensuring that a record is wholly contained within a
database block (and not “chained” to another block resulting in additional I/O) but that there is not wasted
space in the block. If the block size is too large relative to average record size you may retrieve many
additional records in which you are not interested (depending on query selectivity) consuming memory
resources and you may suffer block contention as many processes try to access the same block. Note that
the database block size must be a multiple of the operating system block size.

For vector data, line and polygon features may be complex comprising many hundreds or hundreds of
thousands of coordinate pairs. The largest known feature in British digital data products is in MasterMap
and is comprised of approximately 400,000 coordinate pairs. This is an extreme example, but given a data
set of environmental management areas, each with an average of 500 coordinate pairs defining its
boundary, the number of bytes within Oracle required to store this geometry is shown below. The example
geometry is a polygon with two voids, the coordinate system is British National Grid and an average
precision of 8 digits per ordinate is assumed [1].

SDO_GEOMETRY Example
Data

Estimation Size (bytes)

SDO_GTYPE 2003 3 bytes plus 1 byte for every two numeric
places

5 bytes

SDO_SRID 81989 1 byte if NULL; or 3 bytes plus 1 byte for
every two numeric places

6 bytes

SDO_POINT NULL 1 byte if NULL; or for each of the three
numeric values, 1 byte if

NULL, or 3 bytes plus 1 byte for every two
numeric places

1 byte

SDO_ELEM_INFO (1,1003,1),

(1189,2003,1),

(1871,2003,1)

1 byte if NULL; or for each numeric value, 3
bytes plus 1 byte for every two numeric
places, plus 40 bytes overhead for the
VARRAY.

(4 + 5 + 4) +

(5 + 5 + 4) +

(5 + 5 + 4) + 40
= 81 bytes

SDO_ORDINATES 215130.15,
301000.05,
215135.16,
301000.05,
etc

1 byte if NULL; or for each numeric value, 3
bytes plus 1 byte for every two numeric
places, plus 40 bytes overhead for the
VARRAY.

(7 * 1000) + 40
= 7040 bytes

Total 7133 bytes (7.0 KB)

Table 1. Estimating the size of a polygon geometry in Oracle Spatial

For this example, there will be additional attribute data such as Management Area ID, Management Area
Name, District Name, etc. Assuming these additional attributes require 200 bytes, the average record
length for the table will be approximately 7.2 KB. Therefore a block size of 16 KB may be appropriate,

6

storing two geometries per block, with less than 2 KB of empty space (which may or may not be used if the
data is updated).

Point data and simple lines or rectangles require much less space. In this example, the geometry is a point,
the coordinate system is British National Grid and an average precision of 8 digits per ordinate is assumed
[1].

SDO_GEOMETRY Example
Data

Estimation Size (bytes)

SDO_GTYPE 2001 3 bytes plus 1 byte for every two numeric
places

5 bytes

SDO_SRID 81989 1 byte if NULL; or 3 bytes plus 1 byte for
every two numeric places

6 bytes

SDO_POINT (215130.15,
301000.05,
NULL)

1 byte if NULL; or for each of the three
numeric values, 1 byte if

NULL, or 3 bytes plus 1 byte for every two
numeric places

7 + 7 + 1

= 15 bytes

SDO_ELEM_INFO NULL 1 byte if NULL; or for each numeric value, 3
bytes plus 1 byte for every two numeric
places, plus 40 bytes overhead for the
VARRAY.

1 byte

SDO_ORDINATES NULL 1 byte if NULL; or for each numeric value, 3
bytes plus 1 byte for every two numeric
places, plus 40 bytes overhead for the
VARRAY.

1 byte

Total 28 bytes

Table 2. Estimating the size of a point geometry in Oracle Spatial

Assuming this database is a decision support system, a block size of 8 KB would be the choice for storing
this data set (4 KB block size is only suitable for some online transaction processing systems).

As can be seen, the space requirement of spatial data varies dramatically with the complexity of the data.
Oracle9i supports the concept of tablespace block sizes such that data with similar characteristics can be
grouped together in a tablespaces and an appropriate block size set for that tablespace. This flexibility
provides many advantages but raises the requirement for a good understanding of the data and the way in
which it will be used.

LOB Segments and Indexes
Data of type SDO_GEOMETRY is stored as a LOB (Large Binary Object). By default LOBs will be stored “in-
line”, that is, with the other table data. If the LOB column is greater than 3,964 bytes, it will be stored “out-
of-line” in another segment of the same tablespace. This results in at least one additional read or write
operation as the original block is read and then the block(s) containing the LOB segment. LOB segments
are also created for spatial indexes.

By default in Oracle, LOB segments are not cached in the database buffer cache. This behaviour can be
changed by specifying the STORE AS CACHE option of the CREATE TABLE or ALTER TABLE command.
Caution should be exercised as read of a long LOB could effectively flush the cache. This problem may be
reduced in Oracle9i with the use of multiple buffer caches and the ability to assign tables to specific buffer
caches. On Unix systems, the operating system buffer cache can be used to store LOBs. This provides

7

another mechanism for tuning LOB performance if the database buffer cache is not used. Discuss the
options with the system administrator.

Database Buffer Cache
Due to the size of spatial geometries, the database buffer cache size can have a significant impact on
performance. As a general rule, this should be increased, with the optimum size determined by monitoring
and tuning.

Spatial Indexes
Oracle provides two types of spatial indexes: a (Linear) Quadtree and an R-tree. Spatial index creation and
updates against spatially indexed data are slow relative to standard index types. A spatial index re-build is
different to rebuilding a B-tree index in that it is a total re-creation. The performance of the spatial index
types are compared for query, insert and index creation operations in [2]. A summary of the relative
features is provided in the table below:

R-tree Quadtree

Use for geodetic data Cannot be used for geodetic data

Use for local spatial indexes Do not support local spatial indexes

Can index data in two, three or four
dimensions

Can index two-dimensional data

Do not require tuning Require tuning of the tessellation level

Requires additional space in index
tablespace during creation

Fixed-tiling level recommended. Hybrid
indexing rarely suitable

Requires allocating sort area space in
memory, and undo / rollback space and
temporary space on disk for creation

Generally larger storage space required;
point data requires same storage as R-
tree

For large polygon data sets index creation
time and updates can be faster than
Quadtree

For point data sets index creation time
and updating the index is faster than R-
tree

Update times are almost linear in the
number of updates

Index creation time is fairly linear

On average, for large polygon data, R-tree
queries are faster for all relate query
masks

For larger query windows (>10 mile
radius), Quadtree may provide equal or
better performance than R-tree.

Faster for nearest neighbour queries
because spatial proximity is preserved

For “touch” queries Quadtrees are faster
because they better approximate the
“boundary” area of the window

Faster for distance queries

Support incremental nearest neighbour
queries (where results for a nearest
neighbour query keep getting returned
until some non-spatial criteria is met)

Do not support incremental nearest
neighbour queries

May become less efficient with frequent
updates (can rebuild the index)

Table 3. Comparison of R-tree and Quadtree spatial index features

8

For most applications R-tree indexes provide better performance, require no tuning, less disk space and are
the only spatial index type supported for local spatial indexes, two- or three-dimensional data and geodetic
data. A Quadtree index may be advantageous for update-intensive applications using simple polygon
geometries, for high concurrency update databases, or where specialised query masks such as “touch” are
frequently used [2].

Partitioning Spatial Data and Indexes
For spatial data and indexes, Oracle supports range partitioning. This uses a scalar partition key and the
data is allocated to a partition based upon whether the partition key is between user-specified values. For
location based billing applications for mobile telecommunications a good partition key may be billing
regions as the cost of making a call is computed based upon the location of the caller relative to their
“home” area. This also has the advantage of storing all data that is located in the same geographic area in
the real world, in the same partition and relatively contiguous on disk. The partition key should be based
upon an attribute that is fairly static as re-partitioning the data is resource intensive.

For linear features it is difficult to find a geographical partitioning key for which every feature will be
entirely contained by the area corresponding to a particular value. Real world features can cross the
boundaries of administrative areas. Therefore, partition elimination can be therefore less straightforward
with spatial data.

For partitioned table data, the spatial index may be either global or local partitioned. Local partitioned
spatial indexes are supported for R-Tree indexes only and can provide the following benefits:

• reduced response times for long-running queries

• reduced response times for concurrent queries as I/O operations may run concurrently on each
partition

• reduced index creation times as builds can be run in parallel

• easier index maintenance, because of partition-level create and rebuild operations (reduces time and
permits operations in parallel)

• indexes on partitions can be rebuilt without affecting the queries on other partitions enhancing data
availability

• storage parameters for each local index can be changed independent of other partitions

Partitioned local spatial indexes are a feature of Oracle9i Spatial. Exchanging partitions (with local spatial
indexes) is supported with 9i release 2 (9.2.0).

Spatial Clustering Data on Disk
Spatial clustering is the organisation of data on physical storage media such that features that are close to
each other in the real world are stored close to each other on disk. This requires the data to be sorted into
an order that preserves spatial proximity using a space-filling curve such as a z-ordered algorithm. Studies
show that for large data sets data retrieval performance can be significantly improved when implementing
spatial clustering over randomly clustered data [3]. The performance benefit achieved is dependent upon
the table or partition size and the selectivity of the query. Spatial index creation performance should also
be improved as the data is already sorted.

Once each spatial feature has been assigned a spatial cluster key, the data can be clustered on disk using a
query with the ORDER BY clause or loading pre-sorted data. Note that a published limitation in Oracle
prevents records with a column greater than 30,000 bytes being sorted. Thus not all data, but certainly the
majority, may be sorted in this way. However, as new data is inserted in to the table or the geometry is
updated, the spatial clustering will degrade. The performance benefits of spatially clustering data on disk
must be balanced against the increased processing and maintenance cost.

9

The Maia Pilot

Hardware

Model Sun Enterprise V880

CPU 4 x SPARC-II 750 MHz

Memory 8 GB RAM

Disks 2 x T3 disk arrays, RAID 5, • 400 GB storage space

LAN Protocol TCP/IP

Software

Operating System Sun Solaris 2.8

Oracle Products Oracle9i Enterprise Edition (9.0.1.3.0) Spatial, with
Partitioning Option

Database Configuration

Locally managed tablespaces were used for all the data and index tablespaces. Automatic Undo
management was configured for the database. To enable the parallel query options the following
initialisation parameters were set:

parallel_automatic_tuning=TRUE

parallel_max_servers=16

parallel_min_servers=4

The Oracle SGA was configured as follows: -

Total System Global Area 806127636 bytes

Fixed Size 280596 bytes

Variable Size 167772160 bytes

Database Buffers 637534208 bytes

Redo Buffers 540672 bytes

Of the available 4 GB of memory, Oracle used just under 1 GB. The SGA could be sized much bigger and
improve the overall query response times, however, database tuning was not in the scope of the Pilot.

Format of the Maia Pilot Study

The rationale for the Pilot study was to load and spatially index as much data as possible (the constraint
being disk space) then test query performance and functionality important for the project.

This was not a formal benchmark. Many different processes may have been running against the server at
the same time as tests were being conducted.

10

Maia Pilot Results
Maia Logical Design

Database design should be driven by business needs and encompass both the functional and non-
functional requirements. The key factors that drove the design the Maia database were the large number of
complex records that the first route into the data would be via a spatial query and that optimisation of data
structures for spatial analysis was not required. That it to say, the question asked would be “Find me
everything in the area”, and not “Find me all the yellow bike sheds in London”.

A schema was designed based upon three large central tables, which contain all the point, line and polygon
features respectively and all their attributes. This design was chosen for performance reasons to reduce
the number of table joins that would be required to query the data. A single table for storing all features
was considered but discounted as some out-of-the box GIS require points, lines and polygons to be in
separate tables. In the next phase of the project, the three feature table model will be refined to ten tables
to reflect topological structuring such that each of the topological layers is placed in a separate table e.g. a
road network line is in a different table to a topographic line or an administrative boundary line. This is
required to implement a topology model within the database.

Optional feature attributes were modelled as columns in the main feature tables. In Oracle, trailing
columns in a table will take up a maximum of 1 byte storage regardless of the number of columns, providing
they are all NULL. To minimise record length the columns were ordered such that the least frequently
populated columns were located at the end of the table definition.

There is also a business requirement to be able to query the database as it was at a point in time in the
past: requiring on-line storage of historical data. Given that the editing applications or product generation
processes will operate from the current version of the data, it was decided to keep the historic data in a
separate tables to reduce the amount of data being searched. Data views across the current and historic
data will enable the reconstruction of data snapshots at a point in time in the past. This design favours
queries of the current version because historical queries are expected to be infrequent.

Each feature is stamped with a from_date and a to_date. The to_date is null for the current version. When
features are updated database triggers will copy the current version of the feature to the corresponding
history table and to time stamp the to_date attribute. The record in the main feature table will then be
updated and the system time entered in the from_date attribute. The history to_date and the main feature
table from_date will be set to the same time for all features in a given transaction.

Maia Physical Design

As each of the feature tables will be very large (lines 276,640,000 (66.5 %), areas 96,512,000 (23.2 %) and
points 42,848,000 (10.3 %)) the main concern for the physical data model, was finding a suitable partition
key. As the primary access method to the data would be geographic it was decided to implement a
geographic-based partitioning regime. A reference grid similar to that used to partition the data in Mercury
was conceptually laid over Britain and the centroid of each geographic feature was used to assign it to a
grid cell. By using the centroid a feature could only ever appear once. The grid cell id became the
partitioning key.

One hundred and sixty-two partitions were defined based upon feature density. Thus the partition grid
cells are of smaller geographical extent in urban areas and become much larger in rural areas where feature
density is low. Each partition was placed in its own tablespace within the database.

As explained above the performance benefit of partitioning is obtained when the partition key is passed as
a parameter to the query. To achieve this using the current spatial partitioning model, an API layer could be
introduced to interpret a query window into one or more of the grid cells. As a feature may straddle a
partition boundary, the “partition map” used by the API layer to identify relevant partitions would also have
to record and maintain the aggregate minimum bounding rectangles (MBR) of all features assigned to the
partition. The query would then be re-written to include the grid cell id(s) and benefit from partition
elimination. This would be transparent to the application. Development of such an API was out-of-scope
for the project, however, this partitioning method was chosen because of the maintenance benefits and the

11

fast elimination of partitions available via the use of local partitioned spatial indexes (the root node of each
index partition can be scanned very rapidly to determine those partitions that need to be examined).

Data Loading

Fifty-four percent of complete national cover or 250,000,000 features comprising sixteen 100 km British
National Grid squares: NB, NC, NG, NH, NM, NN, NR, NS, NW, NX, SJ, SK, SO, SP, SU, TQ; were loaded into
the Maia database. These areas were chosen as representative of all types of data in MasterMap,
specifically the very large, complex features along the coast of Scotland, and the very dense urban areas in
the south of England.

Ordnance Survey wrote routines to extract data from the Mercury database in a format suitable for loading
into Oracle using SQL*Loader. Each spatial feature was augmented with a cluster key, which was used to
both partition and to sort the data on disk. A primary key on the TOID was used to reject duplicate data.
The duplicate features result from the 5 km “chunks” used in the extraction query, causing features that
cross the chunk boundary to be repeated.

Load rates were highly variable depending predominately upon the density of the features. Load rates
varied from 1,000 – 3,000 features per minute. The estimated minimum time to complete the national load
is 85 hours (3 days, 13 hours)

Number of features Time to Load

250,000,000 42 hours

Data loading was parallelised in four load processes to make full use of the 4 CPUs on the server.
Alphabetically listed data files were distributed cyclically between the 4 load processes, resulting in a
degree of randomisation. However, the load processes remained unbalanced, with some processes
completing more than 15 hours after the first. Performance could be improved by using External Tables and
by balancing the load streams based upon the number of records in each input file. Tables were set to
NOLOGGING during the load to minimise the amount of redo generate and improve performance. Note that
Direct Path loads are not supported for spatial data.

Sizing

The raw data (without indexes) required the following disk space:

Number of features Size on disk

227,859,756 * 128 GB

* 249,697,673 features were loaded, but National Building Data Set polygons, cartographic pylons and
archways were deleted resulting in 227,859,756 features.

With an estimated total of 416,000,000 features, extrapolating from 54 % of the data, the Maia database is
estimated to require 250 GB of raw data storage within the database, extending to around 815 GB for all
data, indexes, database structures (redo logs, archived redo logs, undo, temporary and system
tablespaces), allowance for maintaining history on-line and contingency.

12

Type of Data Size (GB)

Raw data 250

Spatial indexes 80

Transient tables required during Spatial index creation / re-build
(≈ 50% of final index size)

40

Non-Spatial indexes 50

History (10% change per year for 5 years) 125

History Spatial indexes 40

Transient tables required during Spatial index creation / re-build 20

History Non-Spatial indexes 25

Database structures (system, undo, redo, temp) 20

Sub-total 650

Contingency at 25% 165

Total 815 GB *

* This estimate does not take into account space for data re-organisation, a staging area for data
undergoing quality assurance or for data sets other than the internal large-scale topographic MasterMap
data set.

Spatial Clustering Data on Disk

The grid-based partition key described above was refined to also serve as a spatial clustering key on which
the data could be sorted. A Z-ordered curve was used to refine the grid cells generating 10-character cluster
keys, appended with the 100 km grid reference e.g. Sdccadbacbdc, which provided a clustering resolution
of just under 100 m.

The data was first loaded into the table partitions in random order and then sorted, partition by partition.
Features greater than 30,000 bytes (0.0002% of lines and 0.02% of areas) were inserted into the partition
following the sort.

Spatial Indexing

The following elapsed times where obtained for global spatial index creation: -

Table No. Records Elapsed
Time

Spatial Index
Final Size

Spatial Index
Max. Build Size

Final Size as
% of Build
Size

Areafeature 52,946,832 24:13:00 4,480 8,382 53.45

Linefeature 151,464,847 59:14:25 12,727 16,849 75.54

Pointfeature 23,448,077 6:57:48 1,992 6,466 30.81

Global versus Local Spatial Indexes
Global spatial indexes were used due to a Bug with local spatial index creation in Oracle 9.0.1.3. Local
partitioned spatial indexes may be chosen as more performant for the Maia database and are currently
being tested using Oracle9i release 2.

13

Parallel Spatial Index Creation
The index creation process in 9.0.1.3 is a serial operation and cannot be parallelised. Parallelism was
enabled by starting the spatial indexes for each of pointfeature, linefeature and areafeature
simultaneously. Thus with 3 CPUs (for 3 spatial tables) the minimum time required to spatially index the
data is the length of time of the longest operation, this being for the lines. If local partitioned spatial
indexes are used, indexing of partitions in parallel is possible, enabling all 4 CPUs to be utilised. Oracle 9i
release 2 provides parallel spatial index creation; the performance improvement has been shown to be up
to 50%.

Elapsed Time versus CPU Time
CPU intensive operations that take place concurrent to spatial index creation will significantly slow down
the creation of spatial indexes. For example, at the same time as the spatial index on the linefeature table
was creating, foreign key constraints were being created and schema objects analysed. By comparing
elapsed time with CPU time, we found that these additional operations caused the elapsed time to be more
than 8 hours longer than the CPU time.

Spatial Index Tablespace Size
More space is required during spatial index creation than the size of the final spatial index because a large
number of transitory tables are created during the creation; these are then dropped on completion. The
figures above show that the amount of additional space required during spatial index creation vary for
point, line and polygon features.

Enable Foreign Key Constraints

It is also useful to present the results obtained when completing typical database operations such as
enabling foreign key constraints as the time taken to complete these tasks must also be considered in a
large data load exercise.

Type of Operation Database Size Elapsed Time

Enable all foreign key
constraints (63 indexes)

250,000,000 records
3 ancillary tables
9 lookup tables

 Actual = 19 hours

Enable all foreign key
constraints (63 indexes)

Full national data set
3 ancillary tables
9 lookup tables

Estimate = 35 hours

The tables, indexes (spatial and non-spatial) and spatial index tables should be analysed. A measurement
is not available for this operation but when estimating statistics with a sample size of 5 per cent, is
expected to take no more than 10 hours for the full National data set.

Other Tests

MapInfo Professional 6.5 was used to visualise the data. A database view was used to format the data e.g.
with a MI_PRINX column, suitable for MapInfo. This provided a visual check of the data.

Other tests are being progressed by the Ordnance Survey to gain experience in the operations that will
typically be performed against the Maia database, such as generating a change-only update query and
implementing the automatic population of the history table using database triggers.

It is expected that the system will go into production on Oracle9i release 2 to take advantage of features
such as automatic segment space management, parallel spatial index creation, local partitioned spatial
indexes and improved R-tree index update performance. Further tests are being conducted within the
Ordnance Survey to measure the benefits of these new features.

The Ordnance Survey is closely following the development of a Topology Manager proposed for release
with Oracle 10i Spatial. The Ordnance Survey has already demonstrated that it can populate the draft
topology model within the Maia database.

14

Conclusion
This paper has described how the Maia master editing database project exemplifies the Ordnance Survey’s
technical strategy, the specific issues that drive the design of a very large spatial database in the Oracle
environment and the results obtain from the Maia prototype.

The Ordnance Survey continues to test and explore the possibilities offered by the Oracle9i Spatial
database (release 2) to support its advanced storage, editing and product generation requirements.

The future development of this system will push the boundaries of current spatial database technology and
realise substantial business benefits for the Ordnance Survey. To ensure the successful adoption of Oracle
Spatial for current and future projects, Oracle Corporation is collaborating with Ordnance Survey and its
technology partners. Ordnance Survey, in turn, is feeding enhancement requests and new requirements to
Oracle for incorporation in future releases of the Spatial product. This close relationship is sure to benefit
the geospatial community in the UK, and internationally.

Acknowledgements
Many thanks to Mark Richardson of Ordnance Survey for his contribution to this paper.

References
[1] “Oracle Spatial 8.1.6 Performance-Related Characteristics,” Oracle Technical White Paper, April 2000
(54 p).

[2] “Quadtree and R-Tree Indexes in Oracle Spatial: A Comparison using GIS Data”, Kothuri R, Ravada S,
Abugov D, ACM SIGMOD ‘2002 June 4-6 Madison, Wisconsin USA (12 p.).

[3] “Spatial DBMS testing with data from the Cadastre and TNO-NITG,” Tijssen T, Quak C and
van Oosterom P, GISt Report No. 7, Delft, March 2001.

Bibliography
[4] “Optimal Storage Configuration Made Easy”, Juan Loaiza, Oracle Open World, 2000 (13 p).

[5] “Oracle9i Materialized Views: an Oracle White Paper”, Oracle Corporation, May 2001 (23 p).

[6] “Oracle 9i Database Concepts Release 1 (9.0.1)” Oracle Corporation, Part No. A88856-02

[7] “Oracle Spatial User’s Guide and Reference Release 9.2” Oracle Corporation, Part No. A96630-01

