

Introduction
A major partnership between O
public services gain faster and

Ordnance Survey is re-enginee
Britain' and is nearing comple
been built to provide a step-ch
and use geo-spatial informatio

The main aim of the DNF is to
which any geo-spatial informa
identifiers. Data from the Digit
making it even easier and fast
geographical information they
the most detailed point-and-li
self-contained individual objec

Being able to serve geo-spatia
the fastest-growing part of the
software at the heart of the DN
software from Object Design, a

GOS Requirements
The GOS needs to provide full
provide Ordnance Survey’s cu
timely fashion, across the Inte

• The GOS must provide an
required responsiveness t
the whole of UK at 1:10,00

• The GOS must have the ab
customers.

• The GOS must provide ful
performance.

• 24x7 availability and back
environment, that enables
supports database growth

w5.4

the agi conference at GIS 2001
Major restructuring of Ordnance Survey
database to enhance British mapping
n
Workshops: Developing DNF: impacts and issues

Brian Naughton, Worldwide Director of Product Management, Object Desig
1

rdnance Survey and eXcelon Corporation is set to help businesses and
 more flexible access to British mapping data.

ring its National Topographic Database - the computerised 'master ma
tion of the development of the Digital National Framework (DNF). The D
ange in the ways that Ordnance Survey’s customers and partners can a
n.

provide a consistent and maintained digitalized master map of Britain a
tion can be referenced, either through National Grid coordinates or uni
al National Framework is designed to be Internet- and customer-friend
er for public bodies and businesses to pick and mix the mapping and
 need. To make this possible, Ordnance Survey has converted all 230,0
ne Land-Line mapping tiles to a seamless data source containing 400 m
ts.

l data to customers is of vital importance for Ordnance Survey, since th
ir business. The Geospatial Object Server (GOS) is the database manag
F solution. The GOS database uses the ObjectStore data management
 Division of eXcelon Corporation.

 support for Ordnance Survey’s stated e-business initiatives, in order to
stomers with accurate, discrete GIS data in a format that they require, i
rnet.

extremely high performance delivery platform that accommodates the
o the entire customer base. The GOS must serve geo-spatial data cove
0 and larger scales to client programs as fast as possible.

ility to readily scale to support the introduction of a larger number of

l support for a very large (3 / 4 Terabyte) data set, without degradation

up. The GOS needs to provide a secure, robust, high-performance stora
 backup and other management operations during database operation
 over a wide range of capacities, and maximises data availability

p of
NF has
ccess

gainst
que
ly,

00 of
illion

is is
ement

n a

ring

 of

ge
,

2

• Full support for schema evolution or support for a dynamic schema in order that new features may be
modelled readily.

• The GOS must support delivery of geo-spatial data in various data format including GML

• Ordnance Survey wanted a cohesive and responsive architecture and framework that could be reused
in other Ordnance Survey initiatives.

Ordnance Survey realized that the complexity of the DNF and development of the GOS required an Object
oriented approach. Ordnance Survey recognised that only by adopting an object-oriented, component-
based approach would they be able to achieve the necessary flexibility in delivering data to their
customers. The vast electronic map already contains details about more than 400 million features of the
British landscape, all surveyed and stored in intricate detail - right down to the shapes of individual
buildings.

Object-orientation provides a powerful abstraction mechanism based on encapsulation, information hiding
and modularisation. These abilities allow software to be thought of as building blocks that can be
assembled and re-assembled in order to meet user requirements. A consequence of the structuring
principles supported by object-orientation is that it allows us to model the real world in meaningful terms
as entities and relationships between entities. It therefore becomes easier to structure the system in the
vocabulary of the geo-spatial domain.

The weight of opinion in the software development community and a view endorsed by Object Design is
that object-orientation currently offers the best available method for handling large, complex systems.
Object-orientation allows systems to be developed in a modular way so that extensions and refinements
can be added without major disruptions to working components. It has been demonstrated in many
situations to offer an excellent way of managing the risk of developing large systems.

Object-orientation also provides a consistent focus throughout analysis, design, and implementation so
that we can use the same language and models to carry the analysis into design and then over into
implementation so that object-oriented systems are more resilient, and are easier to maintain.

ObjectStore and the Geospatial Object Server (GOS) Solution
ObjectStore is the leading Object Oriented Data Database. The core of ObjectStore is a scalable and high-
performance technology that leverages its object-oriented model and native support for Java and C++ to
deliver unprecedented speed, reliability, scalability, and time-to- market demands required of mission-
critical systems.

ObjectStore plays a key role in geo-spatial data management. It was selected for use in the GOS because of
the following features:

• Direct support for objects and hierarchies of object

• High performance and scalability due to its CFA

• Transparent management of spatial data including flexible querying and indexing mechanisms

• 24*7 support

ObjectStore supports the storage of hierarchical information explicitly, e.g. as an object model, without the
need to transform to a normalised relational structure that contains tables, rows and columns.

ObjectStore stores data as defined by the C++ or Java client that is accessing it. That is C++ or Java objects
are stored as exactly that within the ObjectStore database. This direct support for object-orientation
drastically reduces the amount of code required to manage persistent objects, and improves application
quality whilst reducing development costs and time.

The ObjectStore database employs a technology called the Cache Forward Architecture™ (CFA), to actually
distribute and push the data out to the applications or application servers that are actually performing the

3

calculations on the data. ObjectStore’s CFA is designed for maximum application performance through load
balancing, cache affinity, transaction services, and overall component coordination management. This
architecture allows distributed components to access data from local caches at in-memory speed, instead
of sending requests across the network to a central server.

Geo-Spatial information represents geographic information as a hierarchical structure, maintaining
relationships between geographic entities. A GIS model typically contains vast numbers of one-to-many
relationships. For example 'Areas' consist of many 'Lines' and 'Lines' consist of many 'Points'. This
complexity coupled with the addition of inter-related points of interest information in a normalised
relational model would involve many table joins between these entities. This leads to significant
degradation in performance.

ObjectStore’s implicit understanding of hierarchical information directly supports the complex inter-related
structure of the imported GIS information. ObjectStore stores and retrieves spatial data as objects, along
with other related properties. In doing so, there are no mappings and no ‘joins’, present in all other
relational database technologies. This is especially important with very large and complex data sets such as
the GOS one.

Data and Object Model

Ordnance Survey decided that it was imperative that Object Oriented techniques be used in the modelling
of the mapping data. The underlying database would therefore have to support models that use
inheritance, polymorphism, encapsulation, and navigation of relationships between objects. It would also
have to support models that involve aggregations of large numbers of objects and chains of aggregations.

ObjectStore directly supports the object models that have been designed, but the database structure and
the object model have been designed to do much more than model spatial data and store it in ObjectStore.
There were a number of other requirements, which were vital to the success of the project. The first was
performance. The system was designed to be customer and Internet friendly, therefore performance was an
important factor. In a competitive environment it is important to Ordnance Survey that they be able to
respond to new and changing business requirements. In order to support this the system had to have a
dynamic data model, which allows online changes and updates to the underlying data definitions. And
finally the system must be able to provide 24x7 operation.

Database Structure
The volume of data for the Ordnance Survey has been estimated to be approximately 3-4 Terabytes. To
effectively handle such a large volume of data it is necessary to ‘divide et impera’ i.e. use multiple
databases distributed across several machines. This has the following advantages.

Using a number of databases and database servers to manage access to the data supports scalability, both
in terms of the size of data and the number of users of the system. The distributed nature of the system
gives the ability to scale a larger number of smaller machines rather that a single powerful database server.
Because functionality of the system is distributed across a number of processes, it means that any failure
will only result in partial loss of functionality. And finally because the system is comprised a number of
completely decoupled processes it also makes it possible to incrementally update parts of the system, for
example with new software releases.

The map data is stored in multiple ObjectStore databases. Each database has two areas associated with it.
A nominal area, which is the fixed area of the Great Britain covered by the database. This is a rectangle of
fixed size, that does not overlap with the nominal areas of other databases. The geometry involved is
justified onto a millimetre grid and any point is either in one database or in another. Consequently,
databases have no geometric points in common.

The other area associated with a database is its populated area, which is initially identical to the nominal
area of the database. As objects that overlap the nominal area of the database are inserted this populated
area can grow so that it always bounds the farthest extremities of all the objects contained within the
database.

4

1 Diagram of Databases and their Nominal Areas

This strategy ensures that each feature is only stored once in the entire set of databases. Storing each
feature once guarantees that each query process operates on a unique set of objects.

Consequently, the distributor process doesn’t need to handle duplicates and accumulate state, this allows
the system to scale to large queries and a higher number of users.

The overall configuration of the GIS components is stored in a configuration database. The configuration
database records what database files exist, what machines they are on, and the content of the databases.
This is used as an indexing mechanism to the data. The query splitter/splicer uses the configuration
database to route queries to the appropriate databases. Therefore when a query is processed the
databases that need to be accessed to perform that query can be quickly identified.

The configuration database also maintains a map of databases and spatial identifiers. This means that to
select a particular object given a spatial identifier, the configuration will return the location of the database
that contains the identifier. Once the correct database has been identified the object can be found via a
single lookup operation.

Data Model
Central to the storage model are Ordnance Survey’s topographic features. Typically these would be real-
world objects that are the subject of surveys, but they could also be objects that are strictly internal to the
Ordnance Survey.

5

The diagram below (2 GOS Storage Model) shows the main elements of the GOS class diagram.

2 GOS Storage Model

Each feature is modelled using the Bridge Pattern being split into two parts: a head class and a body class.
These classes are called FeatureHead and FeatureBody.

The design of the body class has been optimised to represent the varying behaviour of different geometric
constructs. For example it is possible to represent constructs such as Area, Line and Point. Attributes to
represent the geometry of the construct and to define the

behaviour of the object are defined for each geometry construct. The head class contains a unique identifier
called TOId. It points to the body associated to that head.

The big advantage of this approach is that if the type of a body object needs to be changed only the head
object that references it needs to be updated. A sub-class of an existing body class can be created to add
new behaviour.

The GOS foundation classes implement the visitor pattern to support the processing of features by
programs such as the query processor. The FeatureBody provides an interface that accepts an
FeatureVisitor.

This pattern makes it easy to add new functionality, particularly the provision of new output formats,
without changing the existing persistent classes. An FeatureVisitor sub-class is written for each product
produced from the GOS. Visitors can also be used to sweep the database to look for data quality problems,
and to migrate features from an old FeatureBody sub-class to its replacement etc.

One of the most significant strengths of this model is with respect to performance. The combination of the
definition of FeatureBody and FeatureHead and because ObjectStore allows objects to be physically
clustered together reduces the number of pages fetched from the server when an FeatureBody is accessed.
This has a high impact on performance.

FeatureHead FeatureBody

FeatureAreaBody FeatureLineBody FeaturePointBod
y

Field_v1 Building_v1

Fence_v1 Post_v1

1 1

*

*

SpatialIndex TOIdIndex

* *

1

1 FeatureVisitor

XMLVisitor

6

Data Compression
One of the issues facing the GOS project was the sheer size of the data set. Compression of data both in
storage and during transmission between processes provides major performance enhancements. Using
techniques, including the use of string tables and bit-field compression, the data in the database has been
compressed to approximately 300 Gigabytes from an original data set of 3 to 4 Terabytes.

Dynamic Data Model
Ordnance Survey needs to be able to respond to new and changing business requirements. The impact on
the GOS system is that it will be necessary to make changes to the underlying data model and also update
the processes that access the data. This is an important issue, especially when the data set is as large as
the GOS one.

This process is made possible and manageable at Ordnance Survey because of the distributed nature of the
system and because of the underlying object model.

To change the feature type of a feature, the FeatureBody instance is replaced with an instance of another
sub-type. This is a very efficient process because there is only ever one persistent pointer to any
FeatureBody – the one held in its FeatureHead. Thus replacing the FeatureBody is a straightforward
process. And because the GOS consists of a number of decoupled processes, the system can be updated in
an incremental way without effecting other parts of the system.

Data Navigation and Indexing
One of the key features of the GOS is the way in which the indexing strategy is implemented. The GOS
indexing implementation represents a unique solution in the geo-spatial world.

The complexity and size of the information that needs to be managed and delivered in a real time
environment such as the GOS, requires very sophisticated spatial indexing mechanisms that can easily be
expressed directly in C++ models and held within ObjectStore. These indexing mechanisms can be critical to
system performance particularly as the size of the database increases. Using ObjectStore enabled the
implementation of bespoke and highly efficient indexing classes, almost impossible using a relational
database. The development of such indexes is not possible with relational technology; if the indexes that
are supplied with a relational database are not fast or flexible enough updates to the underlying database
engine are required.

There are two basic queries in the GOS each supported by dedicated index structures within the GOS. One
supports spatially based queries and the other supports queries based on unique identifiers associated to
each head object.

The spatial index defined at Ordnance Survey is a refinement of the well-established quad-index commonly
used in GIS application. This refinement combines very well with ObjectStore in that once an object has
been placed in the database, the index structure is created immediately to reflect that physical location.
Further updates to the index do not require any movement of objects that already exist in the database.
This eliminates the need to copy objects and update object pointers during index update.

Implementing an effective index strategy for spatial object identifiers was one of the main issues at
Ordnance Survey, considering the large amount of data managed by the GOS. Standard indexing
techniques would have consisted in massive index structure. A different strategy has been adopted at
Ordnance Survey. It consists in storing ranges of identifiers rather than each identifier explicitly. The
implemented solution occupies the minimum number of memory pages.

The GOS Process Architecture

The GOS process architecture is divided into two major activities:

• Those concerned with processing queries and serving out the results.

• Those concerned with managing data loading and updating.

7

3 The GOS process architecture

Processing Queries
To serve the necessary extensibility and interoperability requirements the query engine provides a modular
query interface that can be extended dynamically to accommodate both new data formats and
communication mechanisms without affecting the underlying geo-spatial storage.

Such flexibility, scalability, and the fully distributed architecture have been achieved by using ObjectStore’s
support for distribution and component based computing.

ObjectStore has actually been designed to support distributed component based computing. This means
that as concurrent performance needs increase more components can simply be added to the middle tier to
scale performance response.

Via ObjectStore’s CFA, information is cached at the client accessing the information. Therefore it was
possible to architect a distributed middle tier of components accessing information in parallel at in memory
speeds.

The query engine architecture involves multiple query processes, each one working on a subset of data.

The Distributor process is responsible for receiving the queries in the form of GML, identifying which query
processes are needed to execute the query, forwarding the query to the other process, called Query
process, and combining the results when returned. This process is also called ‘Splitter/Splicer’.

Index
Db

Distributor
Process

Query
Processor

Query
Processor

Query
Processor

Updater
Process

Updater
Process

GOS Db

GOS Db

GOS Db

Update
Manager

CITF File

CITF File

XML
Queries

Update
Instructions

8

The Query process is responsible for executing the query, and there are multiple Query processes. Each one
executes queries against a small number of databases each covering a unique area of the country. This has
been possible since component based computing and ObjectStore support Routing. Routing associates
specific components within the middle tier with particular functionality or information, and any requests
that pertain to that functionality or information is automatically routed to the component.

This means for example that regional information could be partitioned onto specific individual data stores,
each one simply dealing with requests for information relevant to its geographic region.

By regionalizing access to the database, queries that span large regions can be performed across a
distributed environment. For example a query that spanned a number of regions will firstly be performed at
each specific region, and the result set from all involved can then be combined. This obviously has the
effect of being able to perform large queries across a number of machines or components.

The main advantage of this technique is that queries against the GOS are distributed among several
processes and can run in parallel. These query processes are distributed across many CPUs and so genuine
parallelism results.

Without the ability to efficiently distribute the processing, a centralized server based architecture would
require very high-end specification hardware in order to simply run the query. With the added demands of
multi-user and concurrent environments, the administration of such a server-based architecture in itself
requires a very specialized skill set. All these factors contribute to a high cost of ownership, and poor
performance.

Data Loading and Updating
This process has again been designed to maximize performance of the GOS, and ensure that whilst updates
are occurring to Ordnance Survey’s data there is no degradation to other parts of the system.

The Updater Process has been designed so that multiple instances of the process can run in parallel, each
being responsible for a different area of the country and each having their own data queue. ObjectStore
enabled the adoption of this approach since its distributed architecture allows the addition, update, and
deletion of specific data/services without affecting any other deployed data/ services.

This would have been impossible using a relational technology, since its intimate nature means that
changes to existing applications may mean intensive restructuring and application (re)development.

Conclusions
The work done at Ordnance Survey has led to the development of a highly scalable and flexible system.
ObjectStore has played a key role in the development process of the GOS.

ObjectStore’s direct support for objects and hierarchies of objects, and its easy management of spatial
data, has meant it has been possible to design an object and data model in a very effective and flexible way.
ObjectStore has also enabled the development of a unique and highly effective indexing solution.
Scalability and high performance have been achieved by taking advantage of ObjectStore’s CFA and
inherent support for distribution. To summarise the key features of the system are

An indexing mechanism which provides fast data access and is flexible so that it can be updated in the face
of new data access paths

A dynamic data model which means that the model can be updated in response new business requirements

A distributed process architecture, supported by ObjectStore and CFA, resulting in high performance and
scalability

The solution implemented at Ordnance Survey represents a significant development for GIS applications.
Never before have they had to support such high demands in respect to real time performance and
extensibility.

