

Abstract
There are a number of XML ba
SVG, for example) and many m
industry.

In addition to the regular spat
which people can exchange da
structure their XML formats in

One approach to supporting th
components for each format re

The problem with this approac
growing the amount of develo

The approach described was t
translation between XML base

The XML translation engine is
purpose data translation comp
thereby enabling new formats

Once added the XML format ca
format or from any GIS format

Additional benefits of using th
viewing capability and embed

Paper
A markup language is a system
with a definite pattern of orga
between them. Given this gen
this variation potentially produ
becomes difficult. The effort r
language is one part of the pro

The eXtensible Markup Langu
languages for textual docume
syntactical constraints that ma
XML parsers are freely availab
from purchase orders to geogr

t1.1

the agi conference at GIS 2001 Track 1: Interoperability
An XML-driven data translation engine for
XML
 Inc
Don Murray, President, Safe Software
1

sed spatial data formats currently available (GML1, GML2, SOTF, LandX
ore being developed (GML3 and new version of GDF) throughout the G

ial data translation challenges XML represents new flexibility in the wa
ta. This flexibility presents an interesting challenge, as users are able

 vastly different manners.

ese XML-based formats would be to develop different translation
sulting in a large effort for each format.

h is that as the number of XML based formats for spatial information is
pment required would be large.

o write a single configurable XML data translation engine that enables
d formats and other GIS formats.

configured using XML and is able to exploit the capabilities of our gene
onents. This enables new XML-based support to be added by anyone

 to be configured in time measured in hours rather than weeks.

n be used to move data from the XML based format to any supported G
 to the XML based format.

is approach are the XML-based format can then be viewed with the too
ded into applications with a generic format API.

 for marking or tagging documents. The markup supplies the documen
nization that identifies the document’s structures and logical relationsh
eral definition, a markup language can be defined in a variety of ways;
ces closed systems, where sharing markup documents with other syst

equired for writing and re-writing software that reads the new markup
blem. This part of the problem is alleviated by XML.

age (XML) is a specification that provides a standard way to define mar
nts. Markup languages that are defined with XML follow certain lexical
ke the production of generic XML parsing software possible. Many of

le; they can read any of the XML defined markup languages, which ran
aphical information.
ML,
IS

y in
 to

ral-

IS

lkit

ts
ips

 but
ems

kup
 and
these
ges

2

Historically, the task of moving geographic data from one format to another has been difficult. As a result,
users with large data stores have been locked into a single vendor’s format and have been restricted to
using one vendor’s analysis and decision support tools. Naturally, the GIS community sees XML as an
opportunity to create open and accessible geographic data. There are a number of XML based spatial
formats currently available (GML1, GML2, SOTF, LandXML, SVG, for example) and many more being
developed (GML3 and a new version of GDF) throughout the GIS industry.

In addition to the regular spatial data translation challenges, XML represents new flexibility in the way in
which people can represent data. This flexibility presents an interesting challenge, as users are able to
structure their XML formats in vastly different manners.

One approach to supporting these XML-based formats would be to develop different translation
components for each format. The problem with this approach is that as the number of XML based formats
for spatial information is growing the amount of development required would be large. Although GIS
translation components can leverage the use of freely available XML parsers for lexical and syntactical
analysis, the semantic analysis -- the meaning of the XML elements -- is left to the GIS translation
component resulting in a potentially large effort for each format.

Another approach is to write a single configurable XML data translation engine that enables translation
between XML based formats and other GIS formats. The XML translation engine is configured by mapping
rules (themselves, represented in XML); in other words, the translation engine interprets the meaning of the
XML elements through the mapping rules. This enables new XML-based format support to be added with
little effort when compared to traditional application development.

When the XML data translation engine is coupled to a data translation hub such as the Feature
Manipulation Engine (FME), the XML-based formats can be translated to any of the large array of other
formats supported by the hub. The FME data translation hub represents both spatial and non-spatial
features in a format neutral manner -- a feature is the atomic data packet of FME and is considered to be a
collection of attribute names and values with optional associated geometry. For these reasons, the XML
data translation engine constructs, out of the XML elements, features that can be passed to the translation
hub. The following sections describe how the XML data translation engine converts the XML-based formats
elements into features.

The XML data translation engine is XML driven; this means, that it solves the requirement for interpreting
XML-based formats not with complex programming code, but with declarative XML-based mapping rules
that map from the elements in the XML-based format into the neutral features of the data translation hub.

In designing the XML data translation engine and its declarative mapping rules, a stream-based processing
model was chosen for the input of the XML-based formats. The potential size of geographical data makes a
tree-based processing model un-feasible.

The Processing Model
The XML data translation engine is event driven; it takes two input XML documents: the XML-based format
document and another document that contains the declarative mapping rules (called an X-Map). The
mapping rules react to the input stream of elements from the XML-based formats. The XML data translation
engine may activate, execute, suspend, or de-activate mapping rules. There are several different types of
mapping rules; for now, we’ll only consider mapping rules that construct the hub’s neutral geographic
features; these mapping rules are called “feature mapping rules”.

The XML data translation engine constructs one feature at a time. The first feature mapping rule that
activates, builds a new feature; this feature may be worked upon by subsequent feature mapping rules that
activate; the feature is considered complete only after the original feature mapping rule de-activates. After
a geographic feature is completely constructed it is passed on to the data translation hub.

3

XM L
Tran sla tion E ng in e

X M L
X M AP

XML
Input Data

O utput
Feature(s) to FM E

T rans lation H ub

F ig u re 1 : D a ta P rocessing F low

Consider the following XML document fragment:

Fragment 1.

<building>
 <featureCode>1234</featureCode>
 <theme>City</theme>
 <location x=”10.0” y=”0.0”/>
</ building >

If we want a feature to be constructed on the “building” element for the above XML fragment; then, we
must have a feature mapping rule that activates right when the XML translation engine reads the “building”
element’s start tag. The feature is considered constructed after the activated feature mapping rule de-
activates; that is, once the XML translation engine reads the “building” element’s end tag. The following
mapping rule satisfies the requirements:

Fragment 2.

<mapping match=”building”>
</mapping>

The geographic feature that is constructed is a vacuous one; it has no feature-type, attributes nor geometry.
The following is the textual representation of the vacuous feature (it is a log of the feature from the data
translation hub):

+++

Feature Type: `'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===

The feature-type and attributes may be constructed by adding the ‘feature-type’ and ‘attributes’ elements
to the above feature mapping rule:

4

Fragment 3.

<mapping match=”building”>
 <feature-type>
 <extract expr=”./theme”/>
 </feature-type>
 <attributes>
 <attribute>
 <name> <literal expr=”featureCode”/> </name>
 <value> <extract expr=”./featureCode”/> </value>
 </attribute>
 </attributes>
</mapping>

The “extract” element allows extraction of information from the input XML stream. Since the input
document is read in a streaming manner, the “extract” element in a mapping rule can locate and extract
information only from the sub-tree whose root is the element that activated the mapping rule.

The feature type of the geographic feature is set by the “feature-type” element. In fragment 3, the value of
the “extract” element’s “expr” attribute, that is, “./theme”, evaluates to “City”. This is because, in
fragment 2, the “building” element caused the activation of the mapping rule; and the “building” element
has a “theme” child element whose content is “City”.

The attributes of the geographic feature are set by the “attributes” element. Notice that each “attribute”
element has a “name” and “value” element as content. The “literal” element, under the “name” element,
sets the geographic feature’s attribute name to the literal value of its “expr” attribute, in this case it sets it
to “featureCode”. While the “extract” element, under the “value” element, sets the value of geographic
attribute to “1234”. The log below shows the constructed geographic feature with its feature-type and an
attribute, but the constructed feature still lacks geometry:

+++

Feature Type: `Buildings'
Attribute: `featureCode' has value `1234'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===

The geometry can be constructed by adding a ‘geometry’ element to the above mapping rule:

Fragment 4.

<mapping match=”building”>
 …
 <geometry activate=”xml-point”>
 <data name=”data-string”>
 <extract expr=”./location[@x]”/>
 <literal expr=”,”/>
 <extract expr=”./location[@y]”/>
 </data>
 </geometry>
</mapping>

The following is the log of the geographic feature. Notice that a point geometry feature is constructed:

5

+++

Feature Type: `Buildings'
Attribute: `featureCode' has value `1234'
Attribute: `fme_geometry' has value `fme_point'
Attribute: `xml_type' has value `xml_point'
Geometry Type: Point (1)
Number of Coordinates: 1 -- Coordinate Dimension: 2 -- Coordinate System: `'
(10,0)
===

In fragment 4, the “geometry” element in the feature mapping rule directs the XML translation engine to
create the pre-defined xml-point geometry builder. The XML translation engine contains several pre-
defined geometry builders that are non-format specific. These geometry builders are capable of
constructing geometry for points, lines, areas, aggregates, and annotations. In addition, the XML
translation engine can be easily extended with new geometry builders as need requires. Every geometry
builder receives the information that it needs from the “geometry” element’s “data” elements. The names
and values for the “data” elements are depended on the geometry builder. The xml-point geometry builder
requires a “data” elements with the name “data-string” and the value must be the coordinate string to
parse. The xml-point geometry builders accepts other “data” elements as well, but they are optional; these
optional “data” elements can specify the coordinate dimension, the character(s) that separate each
coordinate, the character(s) that separate each axis of the coordinate, the order of the axis of the
coordinates (e.g., x, y, z or y, x, z, etc…), and the decimal character for each coordinate (e.g., “.” or “,”).

The “extract” and “literal” elements in the XML translation engine’s mapping rule terms are called
“expression elements”. Several of the elements in the feature mapping rule illustrated above accept an
“expression sequence” as its content (these include the “feature-type”, “name”, “value”, and “data”
elements); as its name implies an “expression sequence” is a sequence of expression elements. The “data”
element in fragment 4 above has an expression sequence that consists of an “extract”, a “literal” and
“extract” element; when this expression sequence is evaluated its value is the appended value of each of
the expression elements in the sequence; in this example it is: “10.0,0.0”. There are several other
expression elements that are not illustrated in the above fragments, they are the “tclexpr”, “defnval”,
“parmval” expression elements. The “parmval” element allows access to the mapping rule’s parameters (a
mapping rule may have an optional parameters section, a mapping rule calling that calls another mapping
rule may use these parameters to passed in information). The “defnval” element allows access to
expression sequences that are defined earlier in the mapping rule (a mapping rule can have an optional
define section which defines expression sequences by name). The “tclexpr” element allows various TCL
commands that return a value to be execute, the arguments to these commands are themselves passed in
as expression sequences.

The above was a brief description on how the XML translation engine uses activated feature mapping rules
to interpret the information of XML elements into the data translation hub’s neutral geographic features.
Many GIS XML-based formats structure their data topologically. The primitive geographic features may be
constructed out of these formats with the feature mapping rules, while their topology may be constructed
with other mapping rules that take advantage of the hub’s inherent geographic feature processing
capabilities, these mapping rules are called “group mapping rules”.

Leveraging the Hub’s Feature Manipulation Capabilities
The XML translation engine is coupled to a data translation hub that is capable of performing a large variety
of sophisticated transformations on geographic features. These include topological, geometrical,
attributes, and coordinate system transformations. The data translation hub provides an API for all these
transformations and for which the XML translation engine exposes through “group mapping rules”.

When group mapping rules activate they create group objects. A group object is destroyed when the group
mapping rule, that created the group, de-activates (actually, the lifetime of the group object can become a
little more complicated than this, but what was stated is usually true). A group object is like a tunnel in
which geographic features enter, are transformed, and may or may not exit, all depending on the processing

6

that is performed inside the tunnel. If there are group objects that are “alive” in the XML translation engine,
then, before being output to the hub the geographic features that are created by feature mapping rules
must first pass through the group objects. The processing that is performed inside a group object is
dependent on the structure of the group. The XML translation engine constructs a group object based on
the contents of the group mapping rules.

A group mapping rule may contain an “apply-properties” and/or an “apply-pipelines” element. The ‘apply-
properties’ element instructs the XML translation engine to construct one or more property structures in the
group object. The property structures can append additional attributes to the geographic features that pass
through the group. Consider the following XML fragment:

Fragment 5.

<topologicalDataset theme=”parcels”>
 <primitiveEdge id=”1”>…</ primitiveEdge >
 <primitiveEdge id=”2”>…</ primitiveEdge >
 <primitiveEdge id=”3”>…</primitiveEdge>
 <polygon id=”4”>
 <edges>
 <edge>2</edge>
 <edge>3</edge>
 <edge>1</edge>
 </edges>
 </polygon>
</topologicalDataset>

Lets assume that we have feature mapping rules that create a geographic features for each the
“primitiveEdge” and “polygon” elements above. Recall that after the geographic features are constructed
they, before being output to the hub, pass through group objects. The following group mapping rule when
activated will instruct the XML translation engine to construct a group object that contains one property
structure; these group object will be destroyed after the group mapping rule de-actives – the group
mapping rule activates when the XML translation engine reads the ‘topologicalDataset’ element’s start-tag
and de-activates when it reads its end-tag:

Fragment 6.

<mapping match=”topologicalDataset”>
 <apply-properties>
 <property>
 <attributes>
 <attribute>
 <name> <literal expr=”the-theme”/> </name>
 <value> <extract expr=”@theme”/> </value>
 </attribute>
 </attributes>
 <property>
 </apply-properties>
</mapping>

The group object that is defined by the above group mapping rule will append the attribute with “the-
theme” as name and “parcels” as value to each of the geographic features that passes through the group.

The ‘apply-pipelines’ element instructs the XML translation engine to construct one or more pipelines that
contain the definition of one or more of data translation hub’s feature factories. The feature factories in the
data translation hub can perform, on a single and or on group of geographic features, topological,
geometrical, attribute, and coordinate system transformations. These factories are specified in a separate
text file in the syntax of the data translation hub. The group mapping rule below is activated by the XML
translation engine when the “topologicalDataset” element start-tag is read; it creates a group object
containing one pipeline that is defined in the “myPipeline.fmi” file:

7

Fragment 7.

<mapping match=” topologicalDataset”>
 <apply-pipelines>
 <pipeline>
 <file name=”myPipeline.fmi”/>
 </pipeline>
 </apply-pipelines>
</mapping>

Lets assume that we have feature mapping rules that construct features out of the XML fragment 5. Each of
the geographic features constructed will have their id attribute, the geographic feature constructed for the
“polygon” element will in addition contain a list of ids that references the edges. When all of these
geographic features pass through the pipeline of the constructed group object, a polygon feature will be
topologically constructed by the factories that were defined in the “myPipeline.fmi” file.

Geographic features may also be filtered out of group objects. The group mapping rules also contain a
mechanism to filter out features from property and pipeline structures, users may selectively write their
group mapping rules to allow and/or disallow the entry of geographic features based on their attribution.

Up to now the gist of the XML translation engine has been given through the descriptions of its mapping
rules. The following section briefly describes the engine’s implementation.

Implementing the XML Translation Engine
The XML translation engine leverages the free parsing utilities that are available in industry. There are two
standard APIs that are used by application software to parse XML documents these are DOM and SAX. The
DOM specification defines a tree-based approach to navigating an XML document. Currently, DOM Parsers
create an internal in-memory tree based data structure; usage of a DOM Parser on GIS data is thus
prohibitive. A SAX Parser is event based, it does not itself construct an internal representation of the XML
document, but instead provides callback functions so that application software may handle events. Using a
SAX Parser then, does not tax the memory usage, but it does require considerable more effort for
application software to build meaningful content out of the XML documents.

A hybrid solution is used to implement the XML translation engine. The DOM Parser is use to read in the
mapping rules, while a SAX Parser is use to read the actual input XML document. The consequence of this
is that the XML translation engine can read arbitrarily large XML documents. Using SAX means that unless
provisions has been made information that came before the current element in the input stream will not be
available at hand to the application program. There are various mechanisms that allow mapping rules to
access information of elements other than elements in the sub-tree of the current element being read in the
input stream by the SAX parser. The mechanisms include mapping rule parameters and reference mapping
rules.

The data translation hub to which the XML translation engine is coupled to, is Safe Software’s Feature
Manipulation Engine (FME). The XML translation engine utilizes two of Safe Software’s APIs, the Plug-in
Builder API and the FME Objects API. The Plug-in Builder API is used to enable XML to be translated into any
of the FME supported formats. The FME Objects API are used extensively in the implementation of the
group objects that group mapping rules create. The FME Objects API allows the group objects to access all
of the FME’s feature factories and features functions. The XML translation engine is Safe Software’s XML
Reader and its mapping rules are defined in xMap documents.

Conclusion
The XML translation engine replaces complex hard-coded programming code with declarative mapping
rules for the interpretation of XML elements – the meaning of the XML elements. This enables new XML-
based support to be added by anyone thereby enabling new formats to be configured in time measured in
hours rather than weeks.

To date, the XML translation engine is being used to successfully read SOTF, GML2, and DNF data.

8

References
Extensible Markup Language (XML). Eds. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler.
<http://www.w3.org/TR/REC-xml>.

Laser-Scan Inc., Spatial Object Transfer Format (SOTF): Initial High-Level Design, v1.2, 18 November 1999.

Open GIS Consortium Inc., Geography Markup Language (GML) 2.0
<http://www.opengis.net/gml/01-029/GML2.html>

Ordnance Survey, The Digital National Framework (DNF).
<http://www.ordsvy.gov.uk/dnf/prod-spec.htm>

