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Regression 

Regression encompasses a wide range of methods for modelling the relationship between a 

dependent variable and a set of one or more independent variables.  The dependent variable is 

sometimes known as the y-variable, the response variable or the regressand. The independent 

variables are sometimes known as x-variables, predictor variables, or regressors. A regression 

model is expressed as an equation.   

In its simplest form a linear regression model can take the form 

iii xy εββ ++= 10           for i=1 … n 

In this equation iy is the response variable, here measured at some location i, xi is the 

independent variable, iε  is the error term, and 0β  and 1β are parameters
1
 which are to be 

estimated such that the value of ( )∑
=

−
n

i

ii yy
1

2
ˆ is minimised over the n observations in the 

dataset.  The iŷ is the predicted or fitted value for the ith observation, given the ith value of x. 

The term )ˆ( ii yy − is known as the residual for the ith observation, and the residuals should 

be both independent and drawn identically from a  Normal Distribution with a mean of zero.  

Such a model is usually fitted using a procedure known as Ordinary Least Squares (OLS).  

More generally, a multiple linear regression model may be written: 

imimiii xxxy εββββ +++++= ...22110           for i=1 … n 

where the predictions of the dependent variable are obtained through a linear combination of 

the independent variables. The OLS estimator takes the form: 

yXXX TT 1)(ˆ −=β  

where β̂  is the vector of estimated parameters, X is the design matrix which contains the 

values of the independent variables and a column of 1s, y is the vector of observed values, and 

1)( −XX T
 is the inverse of the variance-covariance matrix.  

                                                      

1
 The term coefficient is sometimes used instead of parameter. 
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Sometimes it is desirable to weight the observations in a regression, for example, different 

levels of data uncertainty.  The weights are placed in the leading diagonal of a square matrix 

W and the estimator is altered to include the weighting: 

WyXWXX TT 1)(ˆ −=β  

The ability of the model to replicate the observed y values is measured by the goodness of fit.  

This is conveniently expressed by the r
2
 value which runs from 0 to 1 and measures the 

proportion of variation in the observed y which is accounted for (sometimes “explained by”) 

by variation in the model.  The r
2
 can often be increased merely by adding variables, so the 

adjusted r
2
 is often reported – the adjustment takes into account the number of independent 

variables in the model and reflects model parsimony.  

In a regression model we may want to determine whether the value of a parameter is 

sufficiently different from zero so that the changes in the variable to which it is attached will 

influence changes in the predictions. To determine whether variables contribute significantly 

to the model in this way, we divide the parameter estimate for each variable by its standard 

error. The resulting statistics have a t-distribution and may be compared with critical values 

from a t distribution, given the number of degrees of freedom in the model.  
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Regression with Spatial Data 

There are a number of assumptions underlying the basic regression model described here, one 

of which is that the observations should be independent of one another. This is not always the 

case with data for spatial units and Tobler’s observation that “"Everything is related to 

everything else, but near things are more related than distant things." (Tobler, 1970) can be 

recalled. Not only might the variables in the model exhibit spatial dependence (that is, nearby 

locations will have similar values) but also the model’s residuals might exhibit spatial 

dependence.  The latter characteristic can be observed if the residuals from the basic 

regression are plotted on a map where commonly the residuals in neighboring spatial units 

will have a similar magnitude and sign.  

These characteristics of spatial data have implications for the estimates of the parameters in 

the basic model.  If there is spatial structure in the residuals from the model, this will lead to 

inefficient estimates of the parameters, which in turn means that the standard errors of the 

parameters will be too large. This has implications for inference where potentially significant 

parameter estimates may appear not to be so. Spatial structure in the data means that the value 

of the dependent variable in one spatial unit is affected by the independent variables in nearby 

units. This leads to parameter estimates which are both biased and inefficient. A biased 

estimates is one that is either too high or too low as an estimate of the unknown true value.   

Anselin (1988) describes model forms to deal with these cases.  A spatial error model is 

appropriate when there appears to be structure in the residual term, and a spatial lag model is 

appropriate when spatial structure is present in the variables in the model. Unbiased parameter 

estimates can be found from both model types when maximum likelihood is used as the fitting 

method.  

Spatial heterogeneity is another phenomenon in spatial modelling. It is assumed when fitting 

all of the regression models described above that the relationships being modelled are the 

same everywhere within the study area from which the data are drawn. This assumption is 

referred to as one of homogeneity. However, there is often good reason to question whether 

this assumption when dealing with spatial data as the processes generating them might vary 

across space. This condition is referred to as spatial heterogeneity An early example of a 

regression model which attempts to deal with spatial heterogeneity is the spatial expansion 

method (Casetti 1972). Parameters in such models are themselves functions of location where 

the user determines the nature of the function (usually some linear polynomial). For example, 

if we take a simple model with two independent variables, x1 and x2, with three parameters a, 

b, and c, that are to be estimated, i.e.: 
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iii cxbxay 21 ++=  

We then expand the parameters so that they are some linear function of the locations (ui,vi) of 

the observations. For example, if a 1
st
 order linear polynomial ised specified, then: 

iii

iii

iii

vuc

vub

vua

210

210

210

γγγ

βββ

ααα

++=

++=

++=

 

The full expansion model itself can then be re-written as: 

iiiiiiiiiiiii xvxuxxvxuxvuy 222120121110210 γγγβββααα ++++++++=  

This is easily fitted using OLS, as the analyst only needs to supply the extra terms uix1i, vix1i, 

uix2i, and vix2i in the model. As the locations of the observations are also known, the spatially 

varying parameter estimates are easily computed and mapped.  A disadvantage of this model 

is that the analyst must determine the nature of the parameter expansion prior to the modelling 

exercise.  It not may be immediately clear what order of polynomial should be used in 

advance, and specifying the wrong expansion may hide important local variation in model 

form. 

Alternative approaches that account for spatial heterogeneity also exist, examples being 

spatially adaptive filtering (Foster and Gorr, 1986) in which parameter estimates are allowed 

to ‘drift’ across the study area, and multi-level modelling (Goldstein, 1987) in which models 

for individual  and spatially aggregate characteristics are combined within the same overall 

model.  A fourth approach extends the random coefficients model (Rao, 1965) to the spatial 

case (Swamy, 1971) where coefficientsvary randomly across the study area. Again in both 

spatially adaptive filtering and random coefficients models, the parameter estimates may be 

mapped to examine local variations in model form. Further insights into these models can be 

found in Fotheringham (1997) 
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Geographically Weighted Regression (GWR) 

Geographically Weighted Regression (GWR) is a fairly recent contribution to modelling 

spatially heterogeneous processes (Brunsdon et al, 1996; Fotheringham et al 1996; 1997; 

2002).  The underlying idea of GWR is that parameters may be estimated anywhere in the 

study area given a dependent variable and a set of one or more independent variables which 

have been measured at places whose location is known.  Taking Tobler’s observation about 

nearness and similarity into account we might expect that if we wish to estimates parameters 

for a model at some location u
2
 then observations which are nearer that location should have a 

greater weight in the estimation than observations which are further away.   

We shall assume that the analyst has a dataset consisting of a dependent variable y and a set 

of m independent variable(s) Xk, k=1…m, and that for each of the n observations in the 

dataset a measurement of its position is available in a suitable coordinate system.  

The equation for a typical GWR version of the OLS regression model would be: 

mimiiiiiii xxxy )(...)()()()( 22110 uuuuu ββββ ++++=  

The notation β0i(u) indicates that the parameter describes a relationship around location u and 

is specific to that location. A prediction may be made for the dependent variable if 

measurements for the independent variables are also available at the location u. Typically the 

locations at which parameter estimates are obtained are those at which data are collected, but 

this need not necessarily be the case. This would seem to be an unusual claim, but it will be 

come clear when we consider the nature of the geographical weighting. 

The estimator for this model is similar to the WLS (weighted least squares) global model 

above except that the weights are conditioned on the location u relative to the other 

observations in the dataset and hence change for each location. The estimator takes the form: 

yWXXWX TT )())(()(ˆ 1
uuu

−=β  

                                                      

2
 We shall use u to indicate some general location in the study area.  Typically u will be a vector of 

coordinates measured in either a projected coordinate system (such as Universal Transverse Mercator) 

or a geodetic system such as WGS84. A particular location can be indexed ui, with Cartesian 

coordinates (uι,vi) or geodetic coordinates (λi,φi). 
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W(u) is a square matrix of weights relative to the position of u in the study area; X
T
W(u)X is 

the geographically weighted variance-covariance matrix (the estimation requires its inverse to 

be obtained), and y is the vector of the values of the dependent variable.  

The W(u) matrix contains the geographical weights in its leading diagonal and 0 in its off-

diagonal elements.  
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The weights themselves are computed from a weighting scheme that is also known as a 

kernel. A number of kernels are possible: a typical one has a Gaussian shape: 

2)(
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u  

where wi(u) is the geographical weight of the ith observation in the dataset relative to the 

location u, di(u) is some measure of the distance between the ith observation and the location 

u, and h is a quantity known as the bandwidth.  The distances are generally Euclidean 

distances when Cartesian coordinates are used and Great Circle distances when spherical 

coordinates are used. However, there is no reason why non-Euclidean distances might be used 

(for example, distances along a road network).  

The bandwidth in the kernel is expressed in the same units as the coordinates used in the 

dataset. As the bandwidth gets larger the weights approach unity and the local GWR model 

approaches the global OLS model.   

As we have already stated, the locations at which parameters are estimated are generally the 

locations at which the observations in the dataset have been collected. This allows predictions 

to be made for the dependent variable and residuals to be computed. These are necessary in 

determining the goodness of fit of the model and we shall discuss this below. The locations at 

which parameters are estimated can also be non-sample points in the study area – perhaps the 

mesh points of a regular grid, or the locations of observations in a validation dataset which 

has the same dependent and independent variables as the calibration dataset.  

It is convenient to refer to the locations at which the calibration data have been collected as 

the sample points and the locations at which parameters are estimated as the regression 
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points. The combination of geographically weighted estimator, kernel and bandwidth can be 

referred to as a local model.  

Kernels other than the Gaussian can be used in GWR although in practice it generally matters 

very little as long as the kernel is ‘Gaussian-like’. In terms of influencing the fit of the model, 

the choice of a bandwidth is more important than the shape of the kernel.  If the sample points 

are reasonably regularly spaced in the study area, then a kernel with a fixed bandwidth is a 

suitable choice for modelling.  If the sample points are not regularly spaced but are clustered 

in the study area, it is generally desirable to allow the kernel to accommodate this irregularity 

by increasing its size when the sample points are sparser and decreasing its size when the 

sample points are denser. A convenient way of implementing this adaptive bandwidth 

specification is to choose a kernel which allows the same number of sample points for each 

estimation. This is usually accomplished by sorting the distances of the sample points from 

the desired regression point u and setting the bandwidth so that it includes only the first p 

observations, where the optimal value of p is found from the data. The weight can be 

computed by using the specified kernel and setting the value for any observation whose 

distance is greater than the bandwidth to zero, thereby excluding them from the local 

calibration.  One such kernel is the bisquare: 

22 ))
)(

(1()(
h

d
w i
i

u
u −=  

where wi(u) is zero when di(u) > h. This is a near-Gaussian function with the useful property 

that the weight is zero at a finite distance.  In the ArcGIS implementation a fixed radius kernel 

is Gaussian and the adaptive kernel is based on the bisquare. 

When the sample and regression points coincide residuals and predictions of the dependent 

variables are available. These values can be used to measure the goodness of fit of the model. 

For the conventional global model, the usual goodness of fit measure is the r
2
 or adjusted r

2
 

value.  The adjusted value is preferable if several models are compared as it compensates for 

the number of variables or parameters in the model. In general a model with more variables or 

parameters is likely to have a higher r
2
 than one with fewer.  The situation is a little more 

complex with GWR and we need to consider the effective number of parameters in the model 

when computing a goodness-of-fit measure.  

An interesting matrix in regression modelling is known as the hat matrix, S.  When the 

observed y values are premultiplied by S we obtain the predicted (fitted) values thus: 

yy S=ˆ  
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The trace of the matrix S in a global model yields the number of parameters in that model – 

the trace is the sum of the values in the leading diagonal of this matrix, usually expressed as 

tr(S). The trace of S for an OLS regression is the number of parameters in the model. In a 

GWR model the effective number of parameters is obtained from the expression 2tr(S)-

tr(S
T
S).  The effective number of parameters in the model depends on the number of 

independent variables and the bandwidth and can often be large and is usually not an integer. 

However, it is useful in evaluating the fit of the model.  

The measure of goodness of fit which we use extensively in GWR is the corrected Akaike 

Information Criterion (Hurvich et al, 1998). This takes the following form: 









−−

+
++=

)(2

)(
)2(log)ˆ(log2

S

S

trn

trn
nnnAIC eec πσ  

where n is the number of observations in the dataset, σ̂  is the estimate of the standard 

deviation of the residuals, and tr(S) is the trace of the hat matrix.  The AICc can be used to 

compare models of the same y variable which have very different right hand sides and it 

contains a penalty for the complexity (degrees of freedom) of the model.   

The AICc provides a measure of the information distance between the model which has 

actually been fitted and the unknown ‘true’ model. This distance is not an absolute measure 

but a relative measure known as the Kullback-Leibler information distance.  Two separate 

models which are being compared are held to be equivalent if the difference between the two 

AICc values is less than 3. This is a widely accepted rule of thumb, however the more 

cautious analyst might use 4 instead.  As the AICc is a relative measure, the actual values 

which are reported in the GWR output might be counter-intuitively large or small. This does 

not matter, as it is the differences in the AICc values which are important.  The AICc formula 

contains log terms, and with a little manipulation it can be shown that the difference between 

AICc values for two models with identical degrees of freedom corresponds to the ratio of the 

likelihoods of the models, although it should be stressed that the AICc is not a likelihood ratio 

test.  

The AICc can not only be used to compare models with different independent variable 

subsets, but can also be used the compare the global OLS model with a local GWR model. 

The AICc is also used in the software the determine the ‘optimal’ value for the bandwidth; the 

bandwidth with the lowest AICc is used in the estimation of the model parameters.   However 

it is up to the analyst to choose the final best value, and there may be good a priori reasons for 

choosing one that is not suggested by the plot of AICc against bandwidth.  



9 

Outputs from GWR 

As a minimum, GWR will produce parameter estimates and their associated standard errors at 

the regression points.  If the regression points are the same as the sample points then GWR 

will produce predictions for the dependent variable (fitted values), residuals and standardised 

residuals. Some implementations will also output local r
2
 values and influence statistics based 

on the hat matrix.   

If the regression points are not the same as the sample points, and there are no independent 

variables available for the regression points, then little else besides parameter estimates and 

standard errors will be available – fitted values, residuals, and a hat matrix will not be 

available. If independent variables are available, then fitted values will be available. If there is 

also a dependent variable present as well, then the whole range of outputs can be created.  
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Interpreting parameter estimates 

In a global model the analyst may be interested in whether the parameter estimates provide 

any insights into the process being modelled.  This is not always the case, since the goal of 

the analysis may be only to get better predictions of the dependent variable, but it is always 

advisable, even if this is the goal, to check the parameter estimates.  

Each parameter has a sign and a magnitude. If the sign is positive, then an increase in the 

value of the variable to which the parameter refers will induce an increase in the dependent 

variable.  If the sign is negative, then a decrease will be induced.  The size of the change 

depends on the magnitude of the parameter estimate – a change of 1 unit will lead to a change 

in the dependent variable of an amount equivalent to the magnitude of the parameter estimate.  

For example, a model of the form y = 0.5 - 0.7x tells us that when x is zero, we can expect y 

to be 0.5, and for each unit increase in x, y will decrease correspondingly by 0.7.  

The situation is analogous in GWR, except that we have a surface of parameter estimates – 

we do not estimate everywhere on the surface, only at the regression points, so our output is a 

sample from a much larger, effectively infinite, population.  The spatial changes in the 

magnitude of the parameter estimates across the surface indicate the locally changing 

influence of a variable on the dependent variable – in some areas the influence might be much 

stronger than in other areas. This is the essence of spatial heterogeneity – the structure of the 

model changes from place to place across the study area as the parameter estimates change in 

relation to each other in the model.  The local parameter estimates are mappable and should 

be mapped.  

As well as mapping the parameter estimates, the analyst should also map the associated 

standard errors. Are the local standard errors sufficiently large for us to doubt whether the 

values of the parameter which has been estimated are non-zero?  

In a global model it is usual to test whether the parameter estimates are significantly different 

from zero. This can be accomplished with a t-test – the t statistics and their associated p-

values are usually provided on the computer output. A parameter whose estimated value is 

found to be not significantly different from zero is associated with a variable whose variation 

does not contribute to the mode. Variables with non-significant parameter estimates can be 

dropped from the model.  

The situation with GWR is a little more complex and is the subject of current research. As 

there is one set of parameters associated with each regression point, as well as one set of 

standard errors, then there are potentially hundreds or thousands of tests that would be 
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required to determine whether parameters are locally significant. The assumptions behind the 

tests mean that if the 0.05 significance level is used we would expect 5 tests in every hundred 

to be significant. With a 5 variable model estimated at 20000 regression points, we would 

expect 5000 of these tests to return a significant result. This is the spectre that is raised by 

multiple testing.  

The situation also arises in analysis of variance. Having determined that at least one of the 

means is different from the rest, it is common to use some form of post hoc test to determine 

which are different. Such tests control the significance level to take into account the multiple 

testing. There are many such methods, associated with statisticians such as Bonferroni, 

Tukey, Sidak, and Scheffé.  

Using a Bonferroni correction (which downweights the significance level by the number of 

tests being made) is inappropriate when the tests being carried out are highly correlated as it is 

highly conservative and therefore likely to miss many real differences. A potential solution 

for GWR exists in the Benjamini-Hochberg (1995) False Discovery Rate (FDR) procedure – 

this modifies the significance level for each separate test in a consistent fashion. The test is 

not implemented in any version of GWR at the time of writing, but as the DBF files which are 

part of the ESRI shapefile structure are easily read in Excel, the approach detailed by Thissen, 

Steinberg and Kuang (2002) is convenient, and the corresponding results can be mapped.  

Benjamini and Yekutieli (2001) report a development of the FDR approach with dependent 

tests.  

Parameter estimates for a variable that are close to zero often tend to be spatially clustered 

indicating that in these parts of the study area, changes in this variable do not influence 

changes in the dependent variable. This is potentially interesting and encourages further 

curiosity about the processes, the data, the model, and the outcome.  
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Extensions to GWR 

This White Paper has discussed the OLS version of the GWR model which is implemented in 

ArcGIS 9.3. However, this model is not appropriate for every kind of data.  If the analyst is 

using count data as the dependent variable then, for example, a Poisson model might be 

appropriate as it will not predict negative quantities (the potential range of the predictions 

with OLS is –∞ to +∞).  For data which is not quite Poisson distributed, a Negative Binomial 

model might be more useful.  With case-control or similar data where the dependent variable 

is 0/1 valued, then a logistic (binary logit) form is appropriate. The fitted values from the 

model are the probabilities that the dependent variable takes the value 1.  

Other extensions to GWR include the possibility of creating models where some variables are 

held constant across the study area, and others are allowed to vary spatially. Such models are 

known as mixed or semi-parametric models. Nakaya et al (2005) derive a semi-parametric 

Poisson model and use it in an investigation of the determinants of premature mortality in 

Tokyo.  The development of such models raises questions of variable selection and which 

parameters should be allowed to vary spatially or remain constant. Work is in progress on this 

issue.  
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