GEOGRAPHICALLY WEIGHTED
REGRESSION



GIS and Spatial Analysis

GIS are very useful for the storage,
manipulation and display of spatial data

They are less useful for the analysis of spatial
data

Have been repeated calls for this to change

In some cases the link between GIS and
spatial analysis has been a step backwards

One important way the situation can be
improved is to develop better spatial
analytical tools that can take advantage of
the features of GIS



An important catalyst for the better
integration of GIS and spatial analysis has
been the development of local spatial
statistical techniques



Local versus Global Statistics
Local statistics are spatial disaggregations of global
statistics

Global

similarities across space
single-valued statistics
hon-mappable

GIS “unfriendly”

search for regularities
aspatial

Local

differences across space
multi-valued statistics
mappable

GIS “friendly”

search for exceptions
spatial



Local versus Global

* Local versus global data: the example
of US climate data

« Local versus global relationships: the
example of house price determinants

* Local versus global models: the
example of regression



Why might relationships vary spatially?
Sampling variation

Relationships intrinsically different across space e.g.
differences in attitudes, preferences or different
administrative, political or other contextual effects
produce different responses to the same stimuli - a
post-modernist view

Model misspecification - suppose a global statement
can ultimately be made but models not properly
specified to allow us to make it. Local models good
indicator of how model is misspecified - a positivist
view

Can all contextual effects ever be modelled?

Can all significant variations in local relationships be
removed?
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GEOGRAPHICALLY WEIGHTED REGRESSION

 The mechanics of GWR
« Software for GWR

« GWR in practice: an example of the determinants of
London house prices

 Won't discuss the math of GWR in much detail



Regression

In a typical linear regression model
applied to spatial data we assume a
stationary (the same stimulus provokes

the same response in all pari

fs of the

study region) process:

Yi = Pg + P1Xyi + PoXyi .o PrXni T &



The assumption of stationarity in regression

Yi=oa+ pX

Assumption 1s that the values of {¥] are
the same everywhere.




Consequently...if there is spatial non-
stationarity,

* We only see it through the residuals

* The residuals from a global model applied to
a spatial non-stationary process will exhibit a
marked spatial pattern

« Spatially dependent residuals violate the
regression assumption of error independence
and invalidate any inferences from the model



GWR and Spatial Autocorrelation

Suppose we have a non-stationary
process that can be modelled by:

Yi = o+ B X

but we model it incorrectly with a global
model of the form:

Yi=a + P X
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Estimated value of §3; from global model
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Residuals (y; - y.')



To examine spatial dependency in
the residuals,

« We might map the residuals from the
regression to determine whether there
are any spatial patterns.

* Or compute an autocorrelation statistic
for the residuals

» We might even try to 'model’ the error
dependency with various types of
spatial regression models e.g.Spacestat



However...

W

Ny not address the issue of spatial
nonstationarity directly and allow the

relationships we are measuring to vary

over space?
This is the essence of GWR

yi = ao(u,v) Z A (Wi, Vi) Ti5 + €

1=1...m

Where (u,v) refers to a location at which dataony
and x are measured and at which local estimates
of the parameters are obtained



... With the estimator

B(u, v) = (XTW (0, v)X) ' X W (u,v)y

where W(u,v) is a matrix of weights specific
to location (u,v) such that observations
nearer to (u,v) are given greater weight
than observations further away.



W (u,v)

wn(.u, V) /

where wi(u,v) is the weight given to data
point i for the estimate of the local

parameters at location (u,v)




Weighting schemes

Numerous weighting schemes can be used.
They can be either fixed or adaptive.

Two examples of a fixed weighting scheme are
the Gaussian function:

w;; = exp[-(d;* / h?)/2]
where h is known as the bandwidth and
controls the degree of distance-decay

and the bisquare function:
Wi; = [1'(dij2 / h2)]2 if dij < h
=0 otherwise



1| wij

b
bandwidth

o

X djj

X regression point  Wif is the weight of data point j at regression point j

® data point djj is the distance between regression point i and data point j



Wij

Wij

X regression point
® data point



Perhaps better...

Is to use a spatially adaptive weighting
function such as:

W, (u,v) = exp(-R.(u.v)/ h)

where R is the ranked distance

or
Wi (uv) = [1-(di(u,v)* / h?)]2
if j is one of the Nth nearest
neighbours of i

= otherwise

In the latter, we estimate an optimal value of N in
the GWR routine



W if

W if

X regression point

® data point



Calibration

* The results of GWR appear to be relatively
insensitive to the choice of weighting function as
long as it is a continuous distance-based function

 Whichever weighting function is used, the results

will, however, be sensitive to the degree of
distance-decay.

* Therefore an optimal value of either h or N has to
be obtained. This can be found by minimising a
crossvalidation score or the Akaike Information
Criterion



where...
CV =Y (yi — §-i(h))

Where ¥ is the fitted value of y; with data
from point i omitted from the calibration

n(n + Tr(S))

n — 24 Tr(S)

where n is the number of data points, 0 is the

estimated standard deviation of the error
term, and Tr(S) is the trace of the hat matrix.

AIC = 2nlog(d) + nlog(27) 4

y = Sy



GWR Jargon

* Data points
— locations at which your data are measured
» Regression points
— locations at which you require parameter
estimates

These need not be the same locations

This can be handy if you want to map the results
from very large data sets



In GWR, we can also ...

e estimate local standard errors

e calculate loca
e calculate loca

goodness-of-fit measures
leverage measures

 perform tests to assess the significance
of the spatial variation in the local

nDarameter estimates

« perform tests to determine if the local

model performs better than the global

one, accounting for differences in
degrees of freedom



An empirical example - house prices
in London

« 1990 sales price data for 12,493 houses

in London (excludes houses sold below
market value)

« along with various attributes of each
property and a postcode so locations
down to 100m can be obtained via the
Central Postcode Directory

» neighbourhood data obtained for

enumeration districts (via postcode-to-ED
LUT)




London Boroughs and Urban Area




Locations of house sales in data set
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Average House Prices by District
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Hedonic Price Modelling

Basic premise:

Pi = f[S(i), N()]
Lancaster (1966) J. Political Economy

Overviews: (very popular technique)

Meen and Andrew (1998)  Modelling Regional House Prices: A
Review of the Literature DETR

Orford (1999) Valuing the Built Environment: GIS and House Price
Analysis Ashgate: Aldershot.

Issues:

Almost all applications are global, implying no coefficient variation
over space whereas several authors have argued that the
assumption of uniform price coefficients is unrealistic even within a
single metropolitan area.



Global Regression Parameter Estimates

Variable Parameter T value
Estimate
Intercept 58,900 23.3
FLRAREA 697 49.3
FLRDETACH* 205 7.5
FLRFLAT* -123 -5.6
FLRBNGLW* -87 -1.4
FLRTRRCD* -119 -6.2
BLDPWW1** -2.340 -3.9
BLDPOSTW** -2,786 -3.1
BLD60S** 5177 -50
BLD70S** -2,421 -2.1
BLD80S** 6,315 6.9
GARAGE 5,956 10.6
CENHEAT 7,777 12.4
BATH2+ 22,297 191
PROF 72 3.0
UNEMPLOY -211 -55
In(DISTCL) -18,137 -30.1
R?=0.60

* Excluded house type is Semi-detached
** Excluded age is Inter-war 1914-1939



Price / Square Metre of Various House Types
Estimated from the Global Regression Results

House Type Price / Sq. M. (£)

Detached 902
Semi-Detached 697
Bungalow 610
Terraced 578

Flat 574



Price Comparisons of equivalent houses by age built

Period | Pre- 1914- 1940- 1960- 1970- 1980-
of 1914 1939 1959 1969 1979 1989
Housi

ng

Pre- - 2,340 446 2,837 81 -8,655
1914

1914- 2,340 - 2,786 5177 2,421 -6,315
1939

1940- -446 -2,786 - 2,391 -365 -9.101
1959

1960- | -2.837 -5177 -2,391 - -2,756 -11,492
1969

1970- -81 -2.,421 365 2,756 - -8,736
1979

1980- 8655 6,315 9,101 11,492 8,736 -

1989




Residuals from Global Model
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An Alternative

» Calibrate separate hedonic price models
for each of the London boroughs

* Map results or present in table form

 Example of the value of flatted properties
and terraced properties



Table 2.5

Price /m” of Flats and Terraced Housing in each London Borough from Separate
Calibrations of the Global Hedonic Model

Borough Price/m’ #) Ratio R?
Flat Terraced Terrace/Flat
Barking 310 609 1.96 .70
Barnet 528 579 1.10 75
Bexley 106 80 0.75 .86
Brent 263 310 1.18 73
Bromley 399 427 1.07 .83
Camden 897 179 0.20 .69
Croydon 329 216 0.66 .83
Ealing 464 350 0.75 .63
Enfield 326 615 1.89 .85
Greenwich 629 611 0.98 .53
Hackney 432 612 1.42 71
Hammersmith 524 1272 2.43 .82
Haringey 543 623 1.15 73
Harrow 233 444 1.91 47
Havering 104 555 5.34 .67
Hillingdon 265 270 1.02 71
Hounslow 513 733 1.43 .65
Islington 595 889 1.49 .80
Kensington 1574 2019 1.28 75
Kingston 141 605 4.29 .81
Lambeth 350 606 1.73 72
Lewisham 268 513 1.91 .76
Merton 517 554 1.07 .64
Newham 267 249 0.93 .56
Redbridge 420 518 1.23 77
Richmond 866 713 0.82 75
Southwark 667 498 0.75 72
Sutton 311 572 1.84 .82
Tower Hamlets 628 381 0.61 .79
Waltham Forest 257 320 1.25 .80
Wandsworth 563 780 1.39 .68

Westminster 626 1672 2.67 .64



Value of Flatted Property £/m?




Value of Terraced property £/m?
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Problems with this approach

 There is a statistical issue in that some areas do not
have sufficient data to support independent
calibrations

 |tis similar to a global model in that the processes
being examined are assumed to be stationary across
each borough (yet are assumed to vary between
boroughs!)

 The process is assumed to be discrete and
discontinuities coincide exactly with the boundaries of
the boroughs. However, most spatial processes are
continuous and unrelated to the location of
administrative boundaries



Better to use GWR

Models a continuous change in local
parameter estimates

In this case an adaptive kernel is used -
a bisquare function

Calibration yielded an optimal number
of nearest neighbours = 931

Results presented in a series of
parameter surfaces - those shown all
have significant spatial variation



Value of flatted property £/m?
(global estimate = 574)

tal

2

3

noa W [

MM - o = o &
v M a IS B -4

Eisquare: FloorspacesAat Inter action




Value of terraced property £/m?
(global estimate = £578)
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Pre-1914 housing compared to inter-war

(global estimate = £-2,340)
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1960s housing compared to inter-war
(global estimate = £-5,177)
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Value of a garage
(global estimate = £5,956)
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Residuals from Global Model
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Residuals from GWR Model

Figured. 19 Ra3duda fom the CWR modil
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Summary of Lecture

« GWR is a useful method to investigate spatial non-
stationarity - simply assuming relationships are
stationary over space is no longer tenable

 GWR is a genuine spatial statistical technique that is
GIS friendly in that it is designed to take advantage
of locational information as well as attribute
information

 GWR can be likened to a ‘spatial microscope’ - allows
us to see patterns in relationships that were previous
unobservable

« Can use GWR either to aid model development or
identify interesting areas for further investigation.



