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Understanding the drivers affecting land use change in 
Ecuador: an application of the Land Change Modeler 
software 
DHRUVA RAJAN 

School of GeoSciences, Drummond Street, University of Edinburgh, Edinburgh EH8 9XP, UK. 

Abstract 

Deforestation modelling is a relatively new field of study. The importance of this science 
has been advanced with the emergence of deforestation as one of the leading causes of 
global climate change. The advent of REDD (reduced emissions from deforestation and 
degradation) and related policy mechanisms has accelerated the need for modelling 
deforestation. This project looks at developing a methodology for modelling deforestation 
using the Land Change Modeler software. To generate the model of change in forest cover, 
satellite images (years 1996 and 2001) were used to produce land cover maps which were 
then used with the software to estimate probabilities of pixels changing from forests to 
other land use types. Various drivers of deforestation input into the model were proximity 
to roads, proximity to towns and slope. The model was developed by analysing change in 
forest cover between 1996 and 2001 and computing the probability of each cell undergoing 
change by deforestation. The success was measured by validating the different models 
(generated using various drivers with the LCM) for the year 2006 with a classified image 
of actual deforestation in 2006. The predicted rate of deforestation (based on the model 
generated) was 1.5% per year. This compares to an ‘actual’ rate calculated by a 
differencing of forest pixels in two satellite images from 2001 and 2006 of 1.8%. The 
results show that the software was able to accurately model 61% of the pixels that 
underwent deforestation when using all of the three drivers mentioned above. Testing the 
various drivers revealed that proximity to towns was the single driver most strongly 
influencing the predicted pattern and that predicted deforestation using a finer 20m 
resolution slope data was more similar to the actual pattern of deforestation observed in the 
2006 imager data  than the prediction based on a coarser 90m slope. 
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1. Introduction 

Given the extent of the areas involved and the need for repeated monitoring over time, 
measuring and analysing deforestation is now predominantly accomplished through the use 
of remote sensing. The advantage of using remote sensing has already been widely 
discussed (see Gilruth et al. 1990; Kerr & Ostrovsky 2003; Liverman 1998). Remote 
sensing incorporates a technique called change detection, which is used to analyse the rate 
of deforestation. However, simple change detection techniques consider only two time 
periods, and hence yield a single estimate of deforestation between two dates. It does not 
itself help us to understand how or why the deforestation may have taken place in certain 
places rather than others.  

This project attempts to understand the rate of deforestation and analyse drivers of 
change. Instead of limiting the study to just two land cover maps and identifying areas of 
change (change detection), we are more interested in looking at drivers of land use change 
that alter the places where deforestation occurs over time. This project tries to answer the 
following questions –  

• Can we find geographical data sets that can help to explain the actual patterns of 
deforestation? 

• Does the Land Change Modeler generate models of deforestation that are reliable? 
• Are the models of deforestation sensitive to the resolution of the input data used? 

 
These questions are answered by generating a series of models and comparing patterns 

of deforestation at two dates in Ecuador using the Land Change Modeler software. 
Although it is not meant to be a comprehensive methodology, it is an attempt to develop a 
simple land use change model which incorporates various geographical data sets as 
possible explanatory variables (as ‘drivers of change’). Reflecting on the usefulness of this 
approach contributes towards a critique of land change models; something that is lacking 
in the scientific community (Pontius 2002). 

 
2. Background 

According to According to estimates by the International Panel on Climate Change 
(IPCC), over the last decade, 1.6 billion tons of carbon has been released annually by land-
use change activities (Bolin et al., 2000). The Stern Report (Stern, 2007) points out that 
nearly one-fifth of today's total annual greenhouse gas emissions come from land-use 
change, most of which can be traced back to tropical deforestation. Deforestation is caused 
by several ‘drivers’. Sometimes these drivers may be physical and measurable or social 
and political (in which case they are considerably more difficult to measure). In the context 
of REDD (Reduced Emissions from Deforestation and Degradation) and Carbon Trading, 
modelling these changes in land use has assumed great importance (Kohl et al., 2009).  
 

The premise of REDD is that tropical forest countries would be compensated if they 
reduce their rates of deforestation and thus their emissions of greenhouse gases (Bali 
Action Plan, 2007). This compensation would be given in monetary terms, which would be 
a part of the global carbon market. Several tropical, developing countries have become 
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interested in developing forest conservation programmes which leads to a reduction in 
deforestation rates, thereby generating a sizeable amount of carbon credit.  
 

Once we are able to predict how the current land use might affect the state of the forest 
after a period of time, we arrive at what is known as a “Baseline scenario” (Madeira, 
2008). This describes the future emission pathway without any climate protection measures 
or what is referred to as a business as usual scenario. Such baselines are crucial to 
measuring the emission reduction performance (Angelsen, 2008) as well as ensuring 
accurate crediting of the carbon credit account (OECD/IEA, 2003). For an avoided 
deforestation project to generate a sizeable amount of carbon credit, the baseline needs to 
indicate that the forest was under sufficient threat of deforestation (Brown et al., 2007). 
 

When initial REDD mechanisms were conceived for project level implementation, it 
became obvious that a project specific system could be compromised due to the 
phenomenon of “leakage” (Brown et al., 2000), where deforestation occurs outside the 
project area, hence negating any conservation measure taken within the project area. Thus, 
as part of the REDD mandate, there has been a debate as to whether participating countries 
must implement the REDD mechanism at a national scale or project level scale (Angelsen 
et al., 2008, Verchot et al., 2009, Madeira, 2008). This debate is significant because it has 
serious implications on the way carbon emissions are accounted for. The scale of 
assessment may also influence the approach that is taken to monitor deforestation.  
 
2.1 Models of Land use Change 

Modelling land use change helps us unravel the dynamics of land use systems. 
Sensitivity of land-use patterns to changes in key variables can be tested. “Sensitivity 
analysis can help to identify the most important mechanisms of change in a certain area 
that could not be identified from field observation” (Verburg et al., 2006). 
 
 Although several types of models exist, Verburg et al. (2006) give us a common 
structure for a large number of land use change models (see Figure 1). A distinction is 
made between drivers that influence the magnitude of change and those that influence the 
location of change. Based on the drivers that influence the change, we can come up with 
what is known as a suitability map, which indicates the suitability of a location for a 
specific land-use type relative to the suitability of other locations. This is the main 
component of any land-use change model (Clarke et al., 1997; Zamyatin and Markov, 
2005). 
 

The bottom-up approach is chosen when the spatial dynamics and allocation rules 
determine the aggregated quantity of land-use or land-cover change. This would be used 
when a set of predefined characteristics are expected to shape the land use (e.g. an 
industrial estate or a town). A top-down approach is chosen when the quantity of change is 
to be estimated or explained based on a set of driving factors (e.g. roads, rivers, proximity 
to towns etc). This would be used when only driving factors are quantifiable. In most cases 
these geographical data are proxies for the underlying processes which they may represent 
but are much harder to measure. 
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Figure 1 – Flow chart showing process of creating a land use change model (Source: 
Land use and Land Cover Change (the IGBP series – edited by E.F Lambin and H.J 
Geist) 

 
Figure 2 - Flowchart of the neural-network based model for simulating deforestation 
(J.F. Mas et al.(2004))  
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The allocation algorithm is usually a neural network, which functions as described 
in the Figure(2) above. The main steps for creating models of deforestation according to 
the diagram are described below:  

 
(1) Creating maps of deforestation by comparing land cover maps at two or more time 

periods. 

(2) Analysis of relationships between deforestation and drivers in order to select “best” 
explanatory variables (so called ‘driver’ maps) 

(3) Calibration of the model (training of the ANN) 

(4) Simulation (running the model to obtain a map of deforestation which predicts 
deforestation for the given target date)  

(5) Assessment of the model performance (comparison between actual and predicted 
deforestation). 

This paper presents a top-down type of methodology based on the steps described 
above, using an artificial neural network called Multi Layer Perceptron (part of the Land 
Change Modeler software developed by Clark Labs) to model changes in land use, 
specifically deforestation. In addition to producing a map of predicted deforestation, it also 
explores the effect of using different drivers of deforestation to create the predicted 
deforestation through a sensitivity analysis. To conduct the study, a case study area was 
chosen for which there was previous work to map land cover change and some 
understanding of the drivers leading to deforestation of this area. 
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3. Material and Methods 

3.1 Study Area: 

The study area includes a part of the province Imbabura in North Ecuador. This 
part of Ecuador contains the inter-Andean central highlands (sierra), one of the most 
rugged terrains in the world. The elevation changes from about 40m above sea level to 
almost 4500m above sea level. The slope ranges from 2% to about 60% in some places. 
The area under study contains mainly cloud forest on the lower slopes of the mountains, 
and high altitude grasslands towards the top of the mountains. Forest area covers about 
42% of the study area. 

Agriculture is the main land use in the countryside, leading to deforestation 
(Southgate and Whitaker, 1994; Bebbington, 1993). The other biggest land use is for cattle 
rearing (i.e. Pasture). This has increased over the last 20 years due to the rising demand in 
meat and milk products (Zevallos, 1989; Commander and Peek, 1986). 

With the increase in agricultural activity, there was an automatic urbanisation of the 
rural areas. Quito, the capital of Ecuador (located about 60km south of the study area) 
underwent major expansion, leading to growth in urban area, leading to further 
deforestation. The capital of the Imbabura province, Ibarra, is the biggest town in the study 
area with a population of 153,256 (http://www.statoids.com/yec.html). Due to the rapid 
urbanisation and agricultural expansion, the rate of deforestation has increased 
enormously. A baseline study conducted by Peck et.al., (2010) in association with 
Rainforest Concern has identified the potential for a REDD project in the area with a 
success rate (meaning level of reduction in emission) estimated at 96.3% and 95.1% for a 
30 year and 40 year project, respectively, based on the baseline calculated. 

However, a standard methodology for generating baselines presently does not exist 
(Brown et al., 2007). People have turned to modelling land use change based on a set of 
geographical driving factors as one approach to create a baseline, as it allows consideration 
of regional factors that affect land use change. It also means that the host country or state 
can identify factors contributing to deforestation quickly. Ecuador represents a good 
example of an area where baselines need to be produced to estimate extent of deforestation 
and available carbon stock (due to the rapid rate of deforestation as described by Peck et.al, 
2010). Thus we use a model for land use change to produce deforestation models for the 
generation of baselines in the study area described below. 

The highlighted part of Imbabura province is the county of Cotacachi. A part of the county 
(highlighted in pink in the inset) is the area under study for this project. The area was 
chosen based on the extent of the driver data available. 
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   Figure 3 – Project study area within Ecuador, in South America 
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3.2 Data Sets 

Data was obtained from Rainforest Concern’s (an NGO working in the Ecuadorian 
rainforest) scientist, Dr. Mika Peck. Peck et al. (2008) have done studies in the area to 
identify the various land use types and produced classified land cover maps (based on 
LANDSAT imagery) for a habitat study of the fauna in the province of Imbabura.  In 
addition to using the classified images (for 2001 and 2006) from Peck et al. (2008) another 
LANDSAT image (for 1996) was classified for this study (Rajan D.K, 2010) in order to 
generate a model of change from 1996-2001 based on the land cover maps of the area from 
classified LANDSAT images and drivers of deforestation present in the area. Slope 
(elevation was not used because the change in elevation, rather than just elevation has a 
greater impact on rate of deforestation), proximity to towns and protected areas were 
chosen as the drivers for this study taking data constraint into consideration. The presence 
of these drivers has also been correlated with the high rate of deforestation in Ecuador 
(Southgate et al. (1991), Rudel (1993), C.F. Mena (2006), S. Walsh et al. (2002), Chomitz, 
K.M. & Gray, D.A. (1995), Soares-Filho, B (2004)).  

The model was then used to predict change from 2001 to 2006 and the result 
compared against the actual land cover from 2006 (as explained in the next section). 

Table 1 – A summary of the LANDSAT images used 

Path Row Date Extra Comments 

10  60  24 07 1996  Source for this data set was the Global 
Land Cover Facility (www.landcover.org) 

10   60   03 11 2001  Source for this data set was Dr. Mika Peck 
(2008) 

10   60   13 08 2006  Gap filled with 09 07 2005 SLC – Off and 
03 11 2001 SLC- ON  

Source for this data set was Dr. Mika Peck 
(2008) 
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Table 2 – A summary of the data sets 

Data Set Description Thumbnail Projection Resolution Source 

Proximity 
to Roads 

Vector converted to 
Raster; Euclidian 
distance to the roads.  

WGS 1984 
UTM Zone 
17 N 

 30m 

 

Instituto 
Geografico 
Militar, 
Ecuador 

Proximity 
to Towns 

Vector converted to 
Raster; Euclidian 
distance to the towns.  

WGS 1984 
UTM Zone 
17 N 

30m 

 

Instituto 
Geografico 
Militar, 
Ecuador 

Slope Slope calculated from 
Digital Elevation 
Model  

WGS 1984 
UTM Zone 
17 N 

20m 

 

Instituto 
Geografico 
Militar, 
Ecuador 

Slope Slope calculated from 
Digital Elevation 
Model   

WGS 1984 
UTM Zone 
17 N 

90m 

 

SRTM 
(2000) 
website  

Protected 
area/ 
constraints 
map 

Vector converted to 
Raster; Reclassified 
to have 0 value for 
protected area and 1 
for all other areas 

WGS 1984 
UTM Zone 
17 N 

30m 

 

Instituto 
Geografico 
Militar, 
Ecuador 

 

Table 2a - Data Format 

Extent - Top  57968.5845163 

              Left  749920.478445 

              Right  806380.478445 

             Bottom  -1251.4154837 

Number of columns 1882 

Number of rows 1974 
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3.3 Land Change Modeler 

The Land Change Modeler (http://www.clarklabs.org/products/Land-Change-
Modeler-Overview.cfm) is a software program produced with the intention of visualizing 
change, and producing models. It also allows one to analyze measure and project the 
impacts of land use change on habitat and biodiversity.  It allows the user to create models 
of land use change with a suite of tools that address the complexities of change analysis, 
resource management and habitat assessment with relatively low level of difficulty and 
data requirements. The Land Change Modeler is included within the IDRISI GIS and 
Image Processing software and is available as a software extension for use with ESRI’s 
ArcGIS product.   

Land Change Modeler provides: 

• A certain set of tools to perform land cover change analysis 

• A relatively simple modelling environment, in order to create predictions for future 
scenarios, integrating drivers of change as well as constraints, such as protected 
areas. 

• Specific tools for the implementation of REDD projects (such as estimation of 
baselines and modelling deforestation) 

(From the clarklabs website - http://www.clarklabs.org) 

Models of deforestation were generated for year 2006 using the Land Change 
Modeler, with a variety of different driver inputs. The overall methodology is given in the 
flow chart below (Figure 4). 

In the first step, the LANDSAT image (of 1996) was classified using ERDAS 
Imagine. Two other land cover maps (for 2001 and 2006) were obtained already classified 
by Peck et.al. (2008). All three maps contained the same land cover classes. (Cloud 
shadow, Water, Urban/Cleared, Pasture, Agriculture and Forest). 

Two of the three land cover maps, one dated 1996 and the other 2001, were used 
(along with the driver maps described above) as input for the LCM. (‘Training phase’ in 
Figure 4) Using different combinations of drivers along with a constraint map (which 
restricted the deforestation in protected areas), the LCM produced a series of models of 
deforestation for the study area, based on the training data. (‘Model generation phase’ in 
Figure 4) These models then had to be validated. The Map Comparison Toolkit (MCK) 
was used to validate the results by comparing the models generated with a pre-classified 
2006 LANDSAT image. (‘Comparison phase’ in Figure 4) 
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Figure 4 – Flowchart describing major steps in the methodology 

The MCK generates a comparison map, which identifies areas of similarity and 
difference between the two maps. It also generates Kappa statistics which measures the 
amount of coincidence in classes between the two maps.  

3.4 Evaluation of Drivers of Deforestation  

In this project, the sensitivity of the model was tested by using different 
combinations of input drivers. These results were then compared against a reference map 
to compare kappa values. The Comparison Phase in Figure 4 shows the layers of maps 
used in the final step. The two land cover maps (1996 and 2001) are used to generate a 
model of deforestation for 2006, which is then compared to the land cover map for 2006 
obtained from classification of a Landsat image, thereby yielding a comparison map, 
showing areas where the model correctly predicted deforestation (hits), areas where the 
model predicted deforestation which did not actually occur (false alarms), and areas where 
the model did not predict deforestation that actually occurred (misses). 
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4. Results 

4.1 Sensitivity Analysis of model 

To evaluate the effect of the different drivers of deforestation on the study area, 
LCM was run using different combinations of drivers (listed in table 2). The Kappa 
statistics for each are given in Table 3. (For a detailed discussion on Kappa refer to 
Section 4.1 in the Technical Report (Rajan D.K., 2010) Higher Kappa values indicate 
greater agreement between the model and the 2006 LANDSAT image (see Fig. 6) 
 

Table 3 – Kappa statistics of the different drivers 

  Road  Slope Town Road + 
Town

Slope + 
Town 

Road + 
Slope 

All

Kappa  0.62511  0.58932 0.62742 0.62451 0.6207  0.61831  0.61751

Fraction  
correct 

0.81317  0.79531 0.8143 0.81286 0.81097  0.80979  0.80936

Note – Numbers highlighted show highest value in respective category 

The table shows us how the different drivers affect the final model produced. In 
fact, the model built with proximity to towns as the only driver has the highest Kappa 
value. Significantly, we can see that all the models have similar Kappa Values. The graph 
below gives us a quick summary of the comparative Kappa values according to different 
combinations of drivers. 
 

 

Figure 5 – comparison of performance of drivers 

The graph illustrates that the model of deforestation driven by only proximity to 
towns has the highest Kappa values when compared to the 2006 reference land cover map. 
One other notable feature from the graph is that the difference between the lowest and 
highest Kappa value is not high (i.e. only a 0.04 difference). Therefore we can conclude 
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that it does not make a huge difference whether using a single or a combination of these 
drivers in this area.  

  

Figure 6 – a) Original Land cover map of 2006; b) Model of land cover in 2006 
produced using all drivers 

The map above (Fig 6b) shows the model of land cover produced using all three 
drivers (proximity to roads, proximity to towns and slope). The comparison map (Fig 7a 
below) shows the difference in areas of predicted remaining forest cover with areas of 
actual remaining forest cover. We are interested in forest cover rather than areas of non-
forest in this comparison, so areas of non-forest stand out. Hits refer to areas where forest 
pixels exist in both maps. Misses refer to areas where forest pixels are found in original 
land cover map but are not forest in the model (therefore the model has missed areas of 
forest that exist). False alarms refer to areas where the forest pixels are found in the model 
image but these are actually non-forest pixels in the original image (therefore the model 
has falsely predicted forest to have existed in those areas). 

     

Figure 7 –a) Comparison map produced by comparing 6A with 6B; b) Pie chart showing 
percentage of areas correctly predicted (hits), areas missed and false alarms 

The percentage of hits are high (70%), which is quite close to the Kappa value of 0.62 (as 
described in table 3). 

A  B

B

0 10 20 Kilometers 0 10 20 Kilometers

® ®

A 
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The Kappa values (from table 3) show that the land cover model (using all drivers) 
produced for 2006 is moderately similar (almost 0.62) with the land cover map obtained 
from LANDSAT in 2006 (Kappa score of 1 = exactly the same; Kappa score of 0 = 
completely different). The fraction correct statistic shows that the model produces an 80% 
match in deforested areas with reference to the 2006 image. However we must be critical 
of this value because the fraction correct method is biased, due to the fact that it does a cell 
by cell comparison. Hence even if NoData pixels match up well, it returns a high value. 
Therefore, a more accurate value of comparison is the Kappa score. 

Effect of spatial resolution 

One of the key questions in REDD and land use change modelling is that of 
resolution. If deforestation needs to be modelled at a global scale, then data will be coarse. 
The map below shows a model generated using 90m slope instead of 20m slope (other 
driving factors remaining the same) 
 

  

Figure 8 – a) Original Land cover map of 2006; b) Model of land cover in 2006 
produced using all drivers with 90m slope 

   

Figure 9 – a) Comparison map produced by comparing 8A with 8B; b) Pie chart 
showing percentage of areas correctly predicted (hits), areas missed and false alarms 

A 

0 10 20 Kilometers 0 10 20 Kilometers

® ®
B

A  B



Dhruva Rajan  Research Paper 

 

15 

 

It is immediately clear that the areas predicted by the model produced with 90m 
Slope have less hits and false alarms than the model produced with 20m slope. The number 
of misses is more than the model created with all drivers and the 20m slope.  

Table 5 – Comparison between 20m slope and 90m slope  

  Map 20m Slope  Map 90m Slope 

Kappa  0.61751  0.52164 

Fraction correct  0.80936  0.7585 

The Kappa values confirm that the 90m slope does not perform so well in terms of 
overall accuracy. This reflects the fact that finer resolution results in greater detail, hence 
more accurate modelling. 
 

The graphs below (Figure 10a and 10b) also indicate that there is greater variability 
and a higher rate of estimated/predicted deforestation depending on the combination of 
drivers used when using the 90m slope. This could be due to the fact that a 90m slope is 
coarse, leading to a smoothing effect of the slope therefore allowing more areas of a low 
degree of slope to be potentially ‘vulnerable’ to deforestation. When comparing the Kappa 
values between the 20m slope and 90m slope, we can observe that all the models produced 
using 20m slope have higher Kappa values than the 90m slope models. This is important to 
note, as 90m datasets yield predictions that are an overestimation of actual level of 
deforestation, and any results from a model using coarse resolution  slope data must be 
treated with caution. 
 
 

     
Figure 10- showing difference between using slope (20m resolution) and slope (90m 
resolution); a) difference between Kappa values, b) difference in predicted deforestation 
rates 

 

 

 

A  B 
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4.2 Deforestation Rate 

The rate of deforestation was calculated by subtracting the model land cover map 
for 2006 (generated by LCM) from the land cover map of 2001 (classified from 
LANDSAT). This yielded the pixels that were predicted by the model to have undergone 
change from 2001 to 2006 (i.e. from forest to non-forest). These were then divided by the 
number of years (i.e. 5) to obtain average number of pixels that changed per year. The 
predicted rate of deforestation obtained for the years 2001-2006 based on the LCM model 
built from 1996 and 2001 training data (based on all drivers) was 1.51 % per annum.  
 

Rate of deforestation for the County of Cotacachi as computed by a previous study 
using the same imagery (Peck M. 2010) was 1.92% of forest loss per annum for the period 
2001-2006, using change detection techniques. Using the Map Comparison Toolkit to 
measure the area deforested between 2001 and 2006 using the same land cover maps the 
result was 1.83% per annum. This is an underestimation of the area of deforestation when 
compared with that of Peck et al.(2010) This minor difference could possibly be attributed 
to differences in the area under study (our study area slightly smaller than the one studied 
by Dr.Peck).  
 

The rate of deforestation measured by change detection is higher (1.8-1.9%) than 
the one measured by the model (1.5%). Therefore the software predicts less deforestation 
than is actually observed (i.e. it underestimates deforestation). This is a significant point to 
note. When measuring rates of deforestation, different drivers yielded different results.  

Table 6 - describing the sensitivity to the presence of different drivers affecting 
deforestation rates 

Driver present  % Loss per year (2001 to 2006) 
Road  1.49 
Slope  1.51 
Town  1.51 

Road+Town  1.50 
Slope+Road  1.49 
Slope+Town  1.50 
All drivers  1.51 

 

Although the values of loss are similar, there is an indication that (value circled in 
red in Table 6) all the drivers together estimate a higher rate of deforestation than a single 
driver. This value is also closer to the value (1.92%) that was estimated by Dr. Peck. 
However, as described by Figure 5, when using towns as the single driver of deforestation, 
the model returns a higher Kappa value when compared with the reference 2006 map. This 
means that towns show better predictions of geographical locations of deforestation. 
Whereas when using all drivers, the predicted rate of deforestation is closer to reality 
(although not by much). As the values of all the drivers are location within a very small 
range of values, it does not matter much what driver (or combination of drivers) we use for 
generating the model.  
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Modelling future change – The comparison between the model produced with all 
three drivers and the original map shows that there is an 80% match between the generated 
model of land cover for 2006 and the actual LANDSAT land cover image for 2006. The 
Kappa value for this comparison is 0.61. This means, we can have 61% confidence in the 
models generated by the software. Using the same settings as used to generate the model 
with all the drivers, the LCM was run to generate a prediction for 2050, with intermediate 
output stages at every 5 years. The assumption here is that no changes have taken place to 
the existing roads and towns, which is very rarely true. However such a predictive model 
allows for roughly estimating the extent and level of deforestation into the future in order 
to plan conservation measures effectively. (See discussion for more) 

The predicted level of deforestation by 2050 is nearly 61% loss from 2001 (which 
is equal to a loss of 1.25% per year). The result is shown below: 

 

Figure 11 – Model of deforestation for 2050 

         

Figure 12 - modelling future scenarios; a) describing change in rate of deforestation, b) 
describing loss in forest area over time. 

The graph above (Figure 12a) shows the changing rate of deforestation over a 
period of nearly 50 years (from 2006 to 2050). The interesting thing to note is that rate of 

A  B 
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deforestation begins to increase up to 2016, and then gradually drops down over the next 
30 years. This drop is characteristic of unplanned deforestation, because with a decrease in 
forest cover over time, the rate of deforestation becomes controlled by the lack of further 
easy access to forest area. (If we assume that no new roads are being constructed) 

Figure 12b shows the reduction in area of forest. There is a steady decrease in the 
area of forest over the 50 years. The loss is forest are corresponds to the rate of 
deforestation described in 12a.  
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5. Discussion 

With the advent of global climate change, the need for understanding and 
mitigating deforestation has never been greater. Without a succinct understanding of the 
processes and patterns of deforestation however, change prediction is difficult. 
Deforestation is affected by several anthropogenic related activities, and in order to reduce 
the rate of deforestation, the primary objective then becomes understanding drivers of 
deforestation.  

A lot of study has been done on the explanatory value of different drivers of 
deforestation. The table below describes briefly, some of the studies done previously and 
their results: 

Table 7 - Conclusions from previous Spatial Regression Models about the effects of 
different variables on Deforestation (Table Source: Kaimowitz et.al. 2002) 

Study Country Presence of 
More roads 

Closer to 
markets 

Better soils 
&/or drier 

Nearer 
forest edge 

Brown et al. (1993) Malaysia  NA NA NA Increase 

Chomitz & Gray (1995) Belize Increase  Increase  Increase  NA 

Deininger and Minten (1996)  Mexico  Increase  NA  Increase  NA 

Gastellu-Etchegorry & 
Sinulingga (1988) 

Indonesia NA  NA  Increase  NA 

Liu et al. (1993)  Philippines  Increase  NA  NA   

Ludeke et al. (1990)  Honduras  Increase Increase  NA  Increase 

Mamingi et. al (1996)  Cameroon 
and Zaire 

Increase  Increase*  Increase  NA 

Mertens and Lambin (1997)  Cameroon  Increase  Increase  NA  Increase 

Nelson and Hellerstein (1995)  Mexico  Increase  Increase  NA  NA 

Rosero-Bixby and Palloni (1996) Costa Rica  Increase  NA  Increase  Increase 

Sader and Joyce (1988)  Costa Rica  Increase  NA  Increase  NA 

* Only in Cameroon. No effect in Zaire 

From the table, we can draw a few main observations.  Almost all the studies 
indicate that the likelihood of forests being cleared increases when they are closer to roads 
(From table: Chomitz and Gray, 1995; Deininger and Minten 1996; Liu et al.,1993; Ludeke 
et al.,1990; Mamingi et. al. 1996; Mertens and Lambin, 1997; Nelson and Hellerstein, 
1995; Sader and Joyce, 1988; Rosero-Bixby and Palloni, 1996). 
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Proximity to markets is the next most important variable that seems to increase the 
rate of deforestation. This has been noted by several of the authors above (Chomitz & 
Gray, 1995, Ludeke et al., 1990, Mamingi et. al, 1996, Mertens and Lambin, 1997, Nelson 
and Hellerstein, 1995). This indicates that urban areas (in which these markets occur) have 
an effect on the areas of deforestation. As seen from our results, the proximity to towns had 
the highest Kappa value, which follows the results of previous studies conducted on the 
effect of driver variables on deforestation. 

Some of the other variables that have been studied in other projects include soil 
type and edge of the forest exposed to anthropogenic activities. Kaimowitz et al. sum up 
that forest fragments have a higher risk of being lost than forests in large compact areas, 
with those close to the forest edge especially likely to be cleared (Brown et al., 1993; Liu 
et al., 1993; Ludeke et al., 1990; Mertens and Lambin, 1997; Rosero-Bixby and Palloni, 
1996). 

Some authors have explained that there is greater forest clearing in areas with good 
soil (Chomitz & Gray, 1995, Deininger and Minten, 1996, Gastellu-Etchegorry & 
Sinulingga, 1988, Mamingi et. al, 1996, Rosero-Bixby and Palloni, 1996, Sader and Joyce, 
1988.) In this project, we have not looked at variables like soil type and fragmentation due 
to the lack of available data for the study area.  

The results of our project indicate that the driver ‘proximity to towns’ had the 
highest Cramer’s V value (Rajan D.K, Technical Report, 2010) meaning it was the ‘most 
explanatory’ variable for the change of land use. This means that the presence of towns 
coincided with the areas of deforestation more often than any other driver. This supports 
evidence that deforestation occurs in areas where towns and congregations of people are 
present. This follows the trend described by authors above. 

The value of modelling land use change 

This exercise has shown us the value of modelling land use change. The results 
give us an understanding of the drivers of deforestation in the area, as well as the rates of 
expected deforestation if development activities stayed the same. This is important to 
consider because there was no data input for the new roads or towns that would almost 
certainly be constructed. The LCM allows one to model expected infrastructural changes 
like roads or buildings. This is treated as a dynamic variable, hence reflected the reality of 
situations where there is change in infrastructure over time. However, as this information 
was not available for this project, a scenario described by this model would be a 
conservative estimate of expected deforestation. Brown et.al. (2007) suggest that a 10 year 
period is the furthest projection into the future one should consider. Having said that, the 
model would provide the user with a good understanding of the qualitative and quantitative 
levels of change in the study area (i.e – spatial and non-spatial information about the rate 
of deforestation). With this information, the processes leading to deforestation can be 
worked out, allowing for a well-planned initiative towards reducing the rate of 
deforestation. 
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Visual versus automated map comparison 

The figure below shows how visual comparison might be done. For example, the 
reference map (D) is used to compare how the different models have predicted 
deforestation (A, B and C). As one might immediately conclude, it is dependent on each 
individual’s interpretation. This will therefore change from one individual to another. For 
this reason, we have considered an automated process for the purpose of comparing maps. 

 

Figure 13 – Model land cover generated for 2006 using A) only roads; B) only towns; C) 
only slope. D) Land cover map based on LANDSAT image for 2006 

In this project, the Map comparison toolkit represents an important stage of the 
methodology. The validation was made possible by the fact that one could perform 
automated comparisons between maps in very little time. The toolkit also offered the 
ability to generate Kappa statistics to compare how different models had performed. The 
applications of automated map comparison are growing, and with better development, 
these will prove to be very useful tools in the near future. 

An assessment of the LCM as a modeller for deforestation 

One of the results of the project is to assess the accuracy and reliability of the LCM as 
a tool for modelling change. Brown S. (2003) gives four criteria that can be used to assess 
a model of land use change: (1) Ease of operation and repeatability of process; (2) 
Accuracy and precision of model calibration and model validation; (3) Ability to deal with 
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multiple scales and multiple land uses; (4) Cost effective with data needs, time and skill 
required. 

(1) The biggest advantage of the software is the simplicity of the use interface. It is very 
easy to operate, and efficient in producing models. The process is easily repeated 
without having to go through too many pre-model steps over and over again. 

(2) The results of this project show that the LCM is quite accurate at predicting change 
(80% for the fraction correct and Kappa value of 0.62 when using all drivers). When 
using towns as the single driver, it resulted in model with a higher fraction correct and 
Kappa value than the combination of drivers (when compared with a reference 2006 
land cover map). 

(3) The software was tested using different resolutions (20m slope and 90m slope). This 
demonstrates the flexibility of the model in dealing with different resolutions. Although 
we were only interested in deforestation, the model allows the user to analyse change 
in multiple land use classes. 

(4) One of the primary difficulties with the Land Change Modeler is that data has to be 
corrected and formatted in a particular fashion. This formatting was one of the most 
time-consuming processes in the software program. The lack of easily available help 
for any problems encountered during the modelling process made the task even more 
time consuming. However, once data was in the right format, the time period for model 
generation is very low compared to other models (GEOMOD, SLEUTH etc.) Pontius 
gives a comprehensive assessment of the various models in his paper. (Pontius R.G 
2004) 

One of the unique features of the Land Change Modeler is that it allows for the 
addition of constraints maps. These maps are used to define areas where land use change 
will not occur (e.g. protected areas). The constraints map restricts the change in land use in 
demarcated areas, therefore reflecting real situations where one would not expect 
deforestation to occur in protected areas. 

The Land Change Modeler also allows the user to allow for infrastructural changes like 
the development of roads and towns. This feature is important when modelling long term 
changes. This represents the dynamic nature of land use change that is usually observed in 
reality. 

6. Limitations of this study 

As with any study, this one has its limitations. One must identify and accept these 
limitations so as to understand the results in the right context. The following are the 
significant limitations of this study: 

1. Data 

There is a limitation of driver data in this study. We have only considered three 
patterns that may influence deforestation (proximity to roads, proximity to towns and 
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slope). More drivers might have produced different results. However, previous studies 
have found that these three drivers are often influential on the patterns of deforestation. 

2. Drivers 

In many cases of land use change, the major driver of change is often one that is not 
quantifiable. For example, land ownership or change in forest policy is a driver that cannot 
necessarily be quantified and fed into a model. In these cases, history is not a good 
indicator of the future, and hence generating a model becomes difficult. This is because 
changes in land ownership do not follow a set pattern, wherein past trends act as indicators 
of future trends. Existing models do not incorporate this information in the generation of 
the model simply because it is difficult to quantify such variables. Lambin (1994) describes 
the plethora of factors which one may not necessarily be able to quantify, that are 
responsible for land use change. For instance, political instability, change in land 
ownership, war, environmental factors, change in law (e.g. decommissioning of a reserved 
area) are all factors that impact land use change. In this project the emphasis is on 
quantifying factors to model change. As a result, the factors mentioned above have not 
been taken into consideration in the study. 

3. Image processing 

This study was not about finding the most optimal image processing technique for land 
cover classification. Nor was it to generate the most accurate land use classification. On the 
contrary, it was about using these data to generate predictive models to aid research into 
rates of deforestation (why and how it occurs). Errors due to misclassified pixels will 
always exist. In this project these errors have not been validated and explicitly 
acknowledged (through a confusion matrix). The only image processing undertaken by this 
author was to classify the 1996 LANDSAT 5 image. This was only to allow for a 
prediction that could be validated (as the 1996-2001 images were used to produce a model 
for 2006).  

7. Conclusion 

With a better understanding of the drivers that affect land use change, we can 
develop better models that give us a credible picture of the levels of deforestation in 
different areas of the world. By analysing factors that influence the rates of deforestation, 
conservation methods can be made more efficient. This project was an attempt at exploring 
the factors affecting deforestation in Ecuador and generating such a model using the Land 
Change Modeler software.  

The main findings were that a model was developed that estimated rate of 
deforestation for the area of Ecuador to be around 1.5% per annum (when compared to 
1.9% by change detection in a previous study). Proximity to towns was the most important 
driver with a 62% agreement with the reference map for deforestation in 2006. Adding 
further drivers did not improve the agreement. On comparing different resolutions of slope 
data, it was found that the finer 20m resolution DEM yielded a higher percentage of 
agreement than the coarser 90m DEM data. 
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 Summary 

 This document complements the research paper submitted by Dhruva Rajan, 2010. 
 The information provided here supports and details the methods used. The              
 following are included: 

- Detailed description of datasets used 
- Detailed description of data processing 
- An introduction and working of the Land Change Modeler 
- Working of the Map Comparison Kit 
- Extensive review of results  
- Suggestions for future work 
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1. Introduction 
This report is intended for those who wish to understand more about the processes 
undertaken to achieve the results described in the research paper.  

The flow diagram below (Figure 1) describes the overall methodology.  

 

Figure 1 – Flowchart describing major steps in the methodology 

1.1 Overall Approach 
The overall methodology as outlined above (Figure 1) consisted of 3 major steps. First, the 
LANSAT 5 image for 1996 was classified using Maximum Likelihood Classification to 
obtain a land cover map. This map and one for 2001(which was already classified by 
Dr.Mika Peck (of Rainforest Concern)), along with driver data (raster maps of proximity to 
road, towns and slope calculation) and a constraint map (preventing deforestation in 
protected areas) were used in the Land Change Modeler to train the artificial neural 
network, in order to aid the production of a model for the later target date. (Training phase 
in Figure 1) 

Next, the training data was used by the LCM to generate a model of deforestation for the 
desired date. This involved using the LCM to create transition potentials, which were then 
used for the final model generation. (Model Generation phase in Figure 1) 

Finally, the Map Comparison Kit was used to validate the model produced. Using a 
classified land cover map for 2006, the level of deforestation was compared with the model 
produced for 2006. (Comparison phase in Figure 1) 
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1.2 Data Sets 
The data sets and sources for the drivers are outlined in Table 1. The data set and sources 
for the LANDSAT images are given in Table 2. 

Table 1 – A summary of the data sets used in the modelling software 

Data Set Description Thumbnail Projection Resolution Source 

Proximity 
to Roads 

Vector converted to 
Raster; Euclidian 
distance to the roads.  

WGS 1984 
UTM Zone 
17 N 

 30m 

 

Instituto 
Geografico 
Militar, 
Ecuador 

Proximity 
to Towns 

Vector converted to 
Raster; Euclidian 
distance to the towns.  

WGS 1984 
UTM Zone 
17 N 

30m 

 

Instituto 
Geografico 
Militar, 
Ecuador 

Slope Slope calculated from 
Digital Elevation 
Model  

WGS 1984 
UTM Zone 
17 N 

20m 

 

Instituto 
Geografico 
Militar, 
Ecuador 

Slope Slope calculated from 
Digital Elevation 
Model   

WGS 1984 
UTM Zone 
17 N 

90m 

 

SRTM 
(2000) 
website  

Protected 
area/ 
constraints 
map 

Vector converted to 
Raster; Reclassified 
to have 0 value for 
protected area and 1 
for all other areas 

WGS 1984 
UTM Zone 
17 N 

30m 

 

Instituto 
Geografico 
Militar, 
Ecuador 

 

Table 1a - Data Format 

Extent - Top  57968.5845163 

              Left  749920.478445 

              Right  806380.478445 

             Bottom  -1251.4154837 

Number of columns 1882 

Number of rows 1974 
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Table 2 – A summary of the LANDSAT images used 

Path Row Date Extra Comments 

10  60  24 07 1996  Source for this data set was the Global 
Land Cover Facility (www.landcover.org) 

10   60   03 11 2001  Source for this data set was Dr. Mika Peck 
(2009) 

10   60   13 08 2006  Gap filled with 09 07 2005 SLC – Off and 
03 11 2001 SLC- ON  

Source for this data set was Dr. Mika Peck 
(2009) 

NOTE – Of the above images, the 2001 and 2006 images were obtained as pre-classified 
images (using MLC) 

1.3 Choice of software 
In the course of producing and testing the model, different software packages were used. 
These are outlined in the flow chart below: 

 

Figure 2 – Flowchart showing software packages used 
 

In the first step, LANDSAT images were classified using ERDAS Imagine (ver. 9.1). 
Although two images were already classified (Peck.M., 2008), a third image had to be 
classified in order to validate the performance of the model. This image was classified 
using the same land cover classes used in the first two images.  
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Two images, the 1996 and the 2001 (classified as land cover maps), were used (along with 
the driver maps) as input for the Land Change Modeler. The LCM is available as a plug-in 
for Arc GIS ver. 9.2 or higher. 

The LCM uses the data to produce a model of deforestation for the study area. In our case 
it was used to generate a model of deforestation for 2006.  The Map Comparison Toolkit 
(MCK ver. 3.2.0) was used to validate the results by comparing the model generated with 
the pre-classified 2006 LANDSAT image. The tool was developed by the Research 
Institute for Knowledge Systems. 

The MCK generates a comparison map, which identifies similar and dissimilar areas 
between the two maps. It also generates Kappa statistics for the comparison, which allows 
statistical validation in addition to a visual one. The MCK is also used in this project to 
specifically look at only the changes to the forest class. This is done by using the per 
category algorithm (explained in section 4). 
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2. Image Classification 
The aim of the classification process is to categorize all pixels in an image into one of 
several land cover classes. Normally, multispectral data are used to perform the 
classification and the spectral pattern present within the data for each pixel is used as the 
numerical basis for categorization (Lillesand and Kiefer, 1994). The objective of image 
classification is to identify and portray the features occurring in an image in terms of the 
type of land use these features actually represent on the ground. 

The process of classification consists of two stages. The first is the recognition of ‘classes’ 
of real-world objects. In the context of remote sensing of the land surface, these categories 
could include, for example, forest, water, pasture etc. The second stage in the classification 
process is the labelling of the entities (normally pixels) to be classified. These labels are 
normally numerical, so that a pixel that is recognised as belonging to the class ‘water’ may 
be given the label ‘1’, ‘forest’ may be labelled ‘2’, and so on. The process of image 
classification requires the user to perform the following steps: 

“(i) Determine beforehand, the number and nature of the categories in terms of which the 
land cover is to be described 

(ii) Assign numerical labels to the pixels on the basis of their properties using a decision-
making procedure, usually termed a classification rule or a decision rule.” 

(Mather, P.M., 2004) 

Two main classification methods are: Supervised Classification and Unsupervised 
Classification. In this project, the supervised classification method has been used to 
classify the image. 

2.1 Supervised Classification 
With supervised classification, examples of the land cover type of interest in the image are 
identified. These are called “training sites". The image processing software is then used to 
develop a characteristic reflectance value for each information class (i.e. land use class). 
Once this has been achieved for each land use class, the image is then classified by 
examining the reflectance for each pixel and making a decision about which of the 
signatures it resembles most. (Eastman, 1995) 

2.1.1 Maximum likelihood Classification 
“Maximum likelihood Classification is a statistical decision criterion to assist in the 
classification of overlapping signatures; pixels are assigned to the class of highest 
probability. The maximum likelihood classifier is considered to give more accurate results 
than parallelepiped classification however it is much slower due to extra computations.” 
(Mather, P.M., 2004)  In the classification of the 1996 LANDSAT image, Maximum 
Likelihood Classification was used to classify the different land use classes in the image. 

2.2 Identification of areas of known land use classes 
For the 1996 image, supervised classification was carried out. Training areas for the 
supervised classification were identified using previous field knowledge. This was done 
using aerial photography and field observations. The data was obtained from Rainforest 
Concern’s scientist, Dr.Mika Peck (mikapeck@yahoo.com) 
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The training sets for the image were identified with advice from Dr. Peck. First, the 
different types of land cover were identified and then selected using the AOI polygon tool 
in ERDAS Imagine. The sample pixels were selected using polygons to obtain multiple 
pixels within a single area. Then, a snapshot of the sample training pixels was sent to Dr. 
Peck as an image. He then verified the accuracy of the training classes and suggested the 
changes that had to be made. These were taken into consideration before the final 
classification was done. 

 

Figure 3 - Unclassified LANDSAT image (1996) with the outline of study area displayed 
as a 4, 2, 3 RGB false colour composite. 
 The specific land use classes were classified based on this field knowledge. Supervised 
classification was performed using parametric rule based decision with a maximum 
likelihood classification. The maximum likelihood rule was chosen as it uses surrounding 
pixels to determine the value for the pixel in question. (Mather P., 2004) 

Table 3 – A summary of the land cover classes identified for 1996 image 

Land Use Class Category Code % Study Area 

Cloud Shadow 1 0.26 

Water 2 0.06 

Urban/Cleared 3 7.5 

Pasture 4 28.2 

Agriculture 5 21.7 

Forest 6 42.1 

 

The image below shows the classified image, clipped to the extent of our study area. 
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Figure 4 - Classified image of study area 1996 (Land Cover Map) 
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3. Land Change Modeler 
The Land Change Modeler (www.clarklabs.org – Student 1 year licence) was used to 
model changes in land use, using two maps in chronological order. In our case, land cover 
maps produced based on LANDSAT 5 (24 07 1996) and LANDSAT 7 (03 11 2001) are 
used as the training maps. Once the Artificial Neural Network was trained with the two 
images, a prediction for 2006 was generated. The third LANDSAT 7 image (13 08 2006) 
was used to validate the model generated. The steps below outline the process of modelling 
change in land use based on two LANDSAT images. 

3.1 Load start and end images 
The first step involved identifying the input images for the modeller. The input images 
used were land cover maps based on classified LANDSAT 5 (24 07 1996) and LANDSAT 
7 (03 11 2001) image. Before using the data with the Land Change Modeler, one must 
ensure that both images have the following characteristics: 

• Classes 

• Projection 

• Extent 

• Resolution 

The Land Change modeler only accepts raster datasets which are either 8-bit unsigned, 6-
bit signed or 32-bit float. Thus the Copy Raster function in ArcGIS was used to convert the 
LANDSAT Images to 8-bit unsigned format. 

Clipping LANDSAT Image – The image taken from the Glovis (www.landcover.com) 
server was much larger than required. In order to clip the raster to the exact shape required, 
the Spatial Analyst was used.  

First, an analysis mask was set for the Spatial Analyst. This can be done by going to 
options and general tab in the Spatial Analyst. The mask used was a shape file of the shape 
of the part of Imbabura (Imbabura_Clip.shp) district that was under study. By using a 
mask, one can cut raster images to the exact shape as that of a vector. 

Once the mask has been set, the cell size was set to 30, and then using the Raster 
Calculator, the raster is evaluated. The evaluate function just multiplies every cell with 1. 
Since an analysis mask had been imposed, the resulting analysis was carried out only 
within the area that corresponded to the extent of the Imbabura shapefile. 

The remaining raster images were also clipped this way to ensure uniform extent and 
shape. 

The images also had to be in the same projection (WGS 1984 UTM Zone 17 N) and 
contain the same number of rows (1882) and columns (1974) in the raster data set.  ArcGIS 
was used to manipulate the raster data to arrive at same size and projection.  
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Figure 5 - Flowchart describing the steps in preparation of the data 

3.2 Change Analysis 
The next step is to quantify change that has occurred in the images from 1996 to 2001. 
This helps understand areas of change, and therefore build the change prediction. The Land 
Change Modeler does this by automatically identifying specific pixels that have undergone 
a change from the first image to the second one. The Land Change Modeler also can 
identify specific land cover classes that have undergone change. For example, one can 
analyse only the forest class to identify which land cover classes increased with a 
corresponding decrease in the forest class. This way, one can identify possible causes for 
deforestation. 

This functionality was used to identify the land use classes that contributed most towards 
deforestation. By analyzing the different land classes, it became clear that deforestation did 
not result in any direct increase in the urban or cleared areas. Rather, the process was more 
staged. Forest was first converted to Pasture, and then Pasture to Agriculture. Finally, 
Agriculture became urban land. This process was an important finding to enable 
conclusions about the processes leading to deforestation in the area.  

Once the amount of change has been identified, the locations undergoing this change can 
be mapped. This change map is then used by the Land Change Modeler in its prediction 
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model. This information goes into the training of the neural network, and eventually affects 
the resulting model. The areas of change indicate where further change might occur. This 
is because the neural network works in such a way that, the areas of past change influence 
areas of future change. Therefore the generation of the change map is an important step in 
the modelling process. 

 

Figure 6 – Change analysis showing gains and losses 
The graphic above (Figure 6) produced by the LCM indicates change of land use measured 
from the two LANDSAT images between 1996 and 2001. The land change modeller 
allows the user to change these analysis settings to analyse either each land use change 
individually, or all the land use changes together. The above graphic shows a scenario 
where we are trying to compare all the changes at once. The Gains/Losses per class are 
shown. This allows one to summarize the changes in land use to understand whether there 
have been significant gross changes in the time period or not. 

Legend: 

6 ‐ Forest 

5 – Agriculture 

4 – Pasture 

3 – Urban/Cleared 

2 – Water 

1 – Cloud Shadow 
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Figure 7 – Change analysis showing net change by category 
This graphic (Figure 7) tells us about the change in Forest areas (class 6). This is the most 
important change in land use that we are interested in modelling as we use it to measuring 
deforestation. The modeller can measure change in hectares.  

Figure 7 shows us that the forest class has reduced by almost 8500 hectares from 1996 to 
2001. This is consistent with the high rate of deforestation that has been observed by 
authors (Peck M., 2010) in the area. There also seems to be an almost corresponding gain 
of nearly 7000 hectares in classes 4, 3 and 2, which are Agriculture, Urban and Water 
respectively. In order to explain if these changes are related to land use, one can use a 
simple tool within the software.  

The graphic below (Figure 8) shows the results of a tool that allows one to compare the 
contributors to net change in a specific land use class. This allows us to pin point the 
conversion of land use, and hence begin to suggest some of the factors during the change. 

Legend: 

6 ‐ Forest 

5 – Agriculture 

4 – Pasture 

3 – Urban/Cleared 

2 – Water 

1 – Cloud Shadow 



Dhruva Rajan      Technical Document 

12 

 

 

Figure 8 – Change analysis showing contributors to net change 
From the graph, it becomes apparent that most of the pixels that were forest (6) in 1996 
have changed to pasture in 2001. The next largest change from forest class has been to 
class 3 (Urban). Most forest areas that have experienced a change have changed to pasture 
land between 1996 and 2001. 

3.3 Creating Change Maps and Maps of Trends 
The LCM allows one to create maps of changes to specific classes. For instance, the map 
below (Figure 9) shows the change in all land use classes from 1996 to 2001.  This change 
map was produced using a tool in the LCM. 

 

Figure 9 – Map showing change in all land use classes between 1996 and 2001 

Legend: 

6 ‐ Forest 

5 – Agriculture 

4 – Pasture 

3 – Urban/Cleared 

2 – Water 

1 – Cloud Shadow 
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The change map shows change in land use classes. The areas of Red are the ones we are 
interested in, as it indicates areas of deforestation. This however, provides only a 
‘snapshot’ of the areas of change. 

To assess ‘directionality’ of change, so that one may predict future trends, the modeller 
allows one to create maps of trends. These maps indicate trends of change that have 
occurred from the earlier map to the later one. The map below shows an example of a trend 
map. These are created to explore the geography of whether certain changes are occurring 
in particular regions. As one can see, this representation allows interpretation of 
directionality of the change, as well as the magnitude of that change. This can be useful to 
answer questions like “in which areas do we expect to find the greatest amount of 
deforestation?” 

 

Figure 10 – Trend map showing change from Forest to Pasture 
This map (Figure 10) was produced by selecting only changes in pixels from Forest class 
to Pasture class. It is a smoothed surface of change produced. 

Dark Red areas indicate areas where there is generally a high likelihood of Forest changing 
to Pasture. Greener areas indicate areas where there is a lower likelihood of the change 
from pasture to forest. 

3.4 Selecting transitions to model 
The LCM allows one to select specific transitions to model. The maximum number of 
transitions is defined by the number of land use classes present in the image. That would 
be all the transitions from each class to every other class. 

In this project we are interested only in deforestation, which is the transition from the 
forest class to other classes. Thus we have to model 5 transitions, as we have 6 land use 
classes. However, the transitions to cloud shadow and water have been excluded, these are 
artefacts of the Image Processing and neither are transitions that occur in reality.  

This also reduces the errors due to misclassified pixels. This is because with fewer 
transitions, there is less chance of attributing change to error from wrongly classified 
pixels. 

3.5 Adding in drivers of Deforestation 
Once there is evidence that there has been some degree of change in the area, the next step 
is to try and map the change, in order to project it into the future for our study. The change 
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is predicted based on coincidences between pixels that undergo change during the training 
period 1996-2001 and the relationship (e.g proximity or average) of these change areas 
with other data sets – which may be causes or drivers of this change. These drivers are 
added as raster datasets. Different data were treated with different calculations before 
being added to the model. The drivers were chosen based on the availability of data and 
their expected relative importance to the rate of deforestation. 

3.5.1 Road 
Vector data was first converted to raster using ToRaster tool. Once the raster was obtained, 
a distance calculation using Spatial Analyst Tools on ArcGIS was used to calculate straight 
line distance from the road. 

The resulting raster was exported to the desired location, with the same projection and 
number of rows and columns as the original landsat image. This was achieved by using the 
export data function in ArcGIS.  

Once the data was obtained in the desired format, it could be added to the modeller. 

3.5.2 Slope (0-4300m) 
The slope was calculated using ArcGIS’s Spatial Analyst tool. The Digital Elevation 
Model (Instituto Geografico Militar) for the study site was obtained at 20m resolution. The 
slope was calculated using the DEM. A similar calculation was performed for the 90m 
resolution DEM, to obtain slope at 90m resolution. The raster datasets were then exported 
as above, to match the resolution (in terms of number of rows and columns) of the original 
images and then added to the LCM. 

3.5.3 Small towns (181 towns) 
Small towns were obtained as point data. They were first converted to raster format, and 
then a distance calculation was run to find the gridded distances away from these towns. 
The raster was once again exported to the same projection and size as the other images. 

 

Figure 11 – Distribution of towns within study area 

3.5.4 Protected areas (6) 
The protected areas were added as constraints to the model after the training of the neural 
network. This factor is important to acknowledge because the presence of protected areas 
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should mean that no deforestation can take place within those areas. In order for a raster 
layer to be added as a protected area, it had to be re-classified. 

Existing protected areas were available as polygons. They were first converted into raster 
using the convert tool. Once the raster was generated, it was reclassified into values of 0-1. 
The classified values are important here because they act as multipliers. So values of 0 on 
the map are treated as absolute constraints while values of 1 are unconstrained and 
consequently have no impact. Values less than 1 but above 0 act as disincentives while 
values greater than 1 act as incentives. Once reclassified, the raster was then exported with 
the same number of rows and columns as the other images (and the same projection).  

The land change modeller models constraint maps in a different way to the way the maps 
of drivers are used. This is because drivers only influence the rate of change of land use. 
On the other hand, the constraints, such as protected areas, act to completely restrict the 
change in land use. 

 

Figure 12 – Distribution of Protected Areas within study area 

3.6 Cramer’s V 
Before the drivers can be added to the model, they are checked for the Cramer’s V and p 
values. These values check the degree of explanatory value for each of the drivers to be 
added to the LCM. This driver variable test procedure is based on a contingency table 
analysis. For qualitative variables, it uses the originally defined categories of the variable 
to test association with the distribution of land cover types in the later land cover map. 
Quantitative variables, on the other hand, are divided to 256 categories in order to conduct 
this test. The Cramer’s test does not give conclusive proof that a particular variable 
explains the change in land use. It is rather a more intuitive tool that can be used to 
understand the significance (statistical) that a particular variable has in influencing change. 
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Figure 13 – Table showing Cramer’s V and P values for Towns 
A high Cramer’s V indicates that the potential explanatory power of the variable is good, 
but does not guarantee a strong performance since it cannot account for the mathematical 
requirements of the modelling approach used and the complexity of the relationship (LCM 
tutorial and Help files). However, it is a good indication that a variable can be discarded if 
the Cramer’s V is low. The p value expresses the probability that the Cramer’s V is not 
significantly different from 0 (Note that this assumes that all pixels are independently 
sampled and have no spatial dependence in their values). A low value of p is not a good 
indicator of a variable’s worth (in terms of its explanatory value), but a high value is a sure 
sign that it can be rejected (LCM Tutorial and Help Files). In our case, all the P values are 
very low. This is because the Cramer’s V values are also relatively low (the overall score is 
0.05 – in the case of proximity to towns). However, the variable (proximity to towns) was 
not discarded because further detailed data was not available for testing.  

The figure below (Figure 14) shows the Cramer’s V value for slopes as the explanatory 
driver. In this case, two p values are very high (for classes 1 and 3). This means that slope 
as an explanatory driver may not be appropriate to model change to urban land (because 
category 3 is Urban) or Cloud Shadow (which is category 1). 

 

Figure 14 – Table showing Cramer’s V and P values for Slope 
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3.7 Running the Modeller 
Once the drivers with a high level of significance (based on the Cramer’s V value) have 
been selected, the Multi – Layer Perceptron uses half the pixels that underwent the 
transition for training and the other half for testing of the network. 

The default modelling procedure is the MLP neural network (the other option is simple 
linear regression) which is what is used in this analysis. The model identifies the number of 
cells that transitioned during the training period (in this case from 1996-2001) for the 
smallest transition (least number of pixels change) in the group of classes that are being 
modelled. It also identifies cells that could have undergone the transition but did not (i.e. 
persisted). This allows one to gauge the sample size to be used for the training of the MLP. 
Although one can select a smaller sample size, a larger sample usually yields better results 
(LCM tutorial). 

The MLP performs the training by identifying two sets of classes. The first one consists of 
the pixels that underwent transition from the first land cover map to the next. The second is 
a set of pixels that persisted from the first land cover map to the next. 

It then automatically starts the training process. The MLP uses examples obtained from the 
training classes and develops a function that predicts the potential for transition based on 
the values at any location for the driver variables. It does this by taking half the samples it 
was given to train on and reserving the other half for testing success. 

The MLP constructs a network of neurons between the driver variables, the transitions and 
a web of connections between the neurons that are applied as a set of (initially random) 
weights. With each pixel MLP looks at from the training data, it gauges its error and 
adjusts the wrights. As the weights are adjusted and more actual changes in the test set are 
correctly predicted, the accuracy improves, and the precision improves (i.e. the RMS gets 
lower). When the MLP has completed training, a decision can be taken as to whether it has 
performed well enough or not. If the accuracy is not up to the mark (the LCM tutorial 
suggests 80% or higher), then the training can be re-run. Once an acceptable level of 
accuracy has been achieved, a map showing the Transition Potential is created. (LCM 
Tutorial) 

While running the MLP, there are several options that can be used to change the way the 
neural network runs the model. 

3.7.1 Automatic Training mode 
When calculating transition potentials, the Land Change Modeler launches MLP in a 
special automatic training mode. This automatic mode monitors the start and end learning 
rate of the neural network. The learning procedure starts with an initial learning rate and 
reduces it progressively over the iterations until the end learning rate is reached when the 
maximum number of iterations is reached. “If significant oscillations in the RMS error are 
detected after the first 100 iterations, the learning rates (start and end) are reduced by half 
and the process is started again.” (LCM Tutorial) 

All other parameters of the MLP are used by the Land Change Modeler at their default 
values. However, Land Change Modeler applies some special modifications to the outputs. 
When specific transitions are being modelled, Land Change Modeler masks out the 
transition potentials of all cases that do not match the case of any specific transition (LCM 
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Tutorial). For example, if the transition being modelled is from forest to agriculture, values 
will only exist in pixels that were forest to start with. 

3.7.2 Learning Rate 
The critical factor in the use of MLP is the learning rate. What is ideally required is a 
smooth descent of the RMS error curve. If it is flat over a large number of iterations (more 
than 2000), the training should be stopped and the start and end learning rates be halved. 
(LCM Tutorial) 

“If the RMS error curve has descended and flattens out over a large number of iterations 
(>1000), the training should be stopped and one can proceed to the next step. If however 
one experiences a slow but progressive increase in accuracy and decrease in the RMS 
errors, then the MLP must run until the end of its iterations. If it reaches the end of its 
iterations and it still appears to be learning (the accuracy is increasing and the RMS is 
dropping), it should be re-run with a larger number of iterations (e.g., an additional 25%).” 
(LCM Tutorial) 

Optional parameters are also included in the MLP dialog that may be useful. The authors 
of the LCM software suggest that the default settings are usually optimal for most uses. 
(LCM Tutorial) However, two parameters are occasionally helpful in achieving the best 
solution.  

3.7.3 Sigmoid Constant 
The first is the Sigmoid Constant. This function is often referred to as the activator 
function in a neural network. Its purpose in an artificial neural network is to generate a 
degree of non-linearity between the neuron’s input and output. An easy way to understand 
this function is to think of it as a sigmoid curve. It is common knowledge that a sigmoid 
curve has a slow lag phase, followed by an exponential log phase and then terminated by a 
stationary phase. The sigmoid function does exactly this with a neural network. It works to 
reduce the slope between the correctly predicted pixels and wrongly predicted pixels.  A 
value greater than 1 (generally not more than 10) will make the decision boundary between 
correct and wrong locations less steep. However, upon testing of the model with different 
sigmoid constants, it was concluded that a value of 1 gives the best result. 

3.7.4 Layer Nodes 
The second is the number of hidden layer nodes. Each hidden unit sums the signal with 
different weights, then applies its activation function to compute its output signal, and 
sends this signal to the unit in the output layer. 

With a small numbers of layer nodes relative to the number of input layers, the hidden 
layers act like Canonical Components, reflecting the common underlying themes in the 
driver variables. With large numbers relative to the number of driver variables, the nodes 
capture very specific characteristics. In general, it has been found that two layers perform 
well. (LCM Tutorial) 

3.8 Create Map of Transition Potential 
The Transition Potential is a map estimating suitability for change in each pixel. The word 
‘suitability’ in this case may sound counter intuitive, and an easier way of explaining this is 
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by calling it a vulnerability to change. This is then used further by the software to generate 
the predictive model for the desired future target date. 

The software uses the trained data from the MLP to generate a transition potential. The 
potential is shown in varying degrees of transition estimated. 0 indicates no potential to 
transition. A value of 0.46 indicates a high transition potential. 

 

Figure 15 – Map showing transition potential from forest to pasture (to be redone) 
Transition potential – Areas in Red indicate greater probability of transition. Areas in 
Green indicate lower probability of transition. Most of the values of transition potential lay 
in the region between 0.43 and 0.46. As a result, the image has been displayed to pick out 
the difference in values at the higher end of the scale. 

3.9 Generate model for desired date 
The Land Change Modeler provides two basic types of models to predict change: a hard 
prediction model, and a soft prediction model. The hard prediction model is based on a 
competitive land allocation model similar to a multi-objective decision process. The soft 
prediction yields a map of vulnerability to change for the selected set of transitions. In 
general the results of the soft prediction are preferred for habitat and biodiversity 
assessment. (LCM Tutorial) The hard prediction yields only a single possibility while the 
soft prediction is an assessment of change potential. 

The change is modelled using a Markov Chain, which determines the amount of change 
using the earlier and later land cover maps along with the target date specified. A Markov 
chain is a discrete random process with the assumption that the next state depends only on 
the current state (Eastman, 2005). This means that previous states do not influence the 
outcome. This is important because it means that the model is only influenced by the 
current training set received from the MLP. Thus the matrix (as shown in fig 16 below) 
records the probability that each land cover category will transition to every other category, 
and then applies the specific weights to the model. (Eastman, J.R., and Toledano, J., 
(2000)) 
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Figure 16 – Matrix showing transition probabilities for change in land use 
Here, the classes 1-6 indicate the land use classes. The matrix gives the transition 
probabilities associated with each class based on the training set of actual changes fed into 
the MLP. 

3.10 Validation 
The resulting model needs to be validated. In this project only the hard (scenario) was 
validated. This validation step involved the need to classify an earlier LANDSAT image, 
so that one could generate a model for the time at which a later image was available. 
Hence, a 1996 image was classified, and this was used along with the 2001 image, to 
generate a model for 2006 (using all the drivers or a combination of drivers and the 
constraints map), for which a land cover classification exits. The model was then validated 
using this 2006 land cover map as described below. 

Using the Map Comparison Kit (described in section 4), the predicted model for 2006 
(Map 2) was compared against the classified LANDSAT image of 2006 (Map 1). The 
resulting comparison yields two results. The first is a map of comparison. This map has the 
following attribute table which is used for display. 

Table 4 – Attribute table used for display in the comparison map 

S .no Actual Land Cover | Model 
Land Cover 

Description 

1 0|0  

2 1|0 Misses – Forest that is present in Map 1, but not 
in Map 2  

3 0|1 False alarm – Forest that is present in Map 2, but 
not in Map 1 

4 1|1 Hits – Forest that is present in both Map 1 and 2 
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Figure 17 – Map showing areas correctly predicted (hits), false alarms and areas missed 
 

The second result is the number of pixels in the respective categories, which yields a pie 
chart as shown below. 

 

Figure 18 – Pie Chart describing distribution of the hits and misses 
We look at comparing maps in terms of area of forest remaining rather than area of non-
forest remaining, because Kappa does a pixel wise comparison, which results in values in 
terms of number of forest pixels, and not non-forest (or deforested pixels). 

One must also remember that a hard prediction is just one of the many possible ways in 
which a particular scenario might be represented. The LCM also generates soft models, if 
one recalls, that give a map of vulnerability, rather than a pre-defined model. 

At this stage, we can use the soft prediction to get a more relevant picture of how well the 
model has performed.  

We can use the soft model to ascertain where future changes are expected in a study area. 
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Figure 19 – Soft map showing vulnerability to change 
The scale of vulnerability is measured from 0 to 1.50 (0 being no vulnerability and 1.50 
being very high vulnerability) 

Areas in Red and Orange indicate a high vulnerability (greater than 60%) to change in land 
use. In this case we are looking at change from forest to any other land use (i.e. 
deforestation). The areas in yellow and green indicate lower vulnerability to change, 
reducing from yellow (50 - 60% vulnerability) to green (less than 50%). This scale was 
chosen to fit the values present.  

Sometimes a soft model is a better one to use in cases where there may more than a few 
factors driving the deforestation. For example, past history might indicate that the 
deforestation did not occur in a particular pattern. If the user thinks that the deforestation 
does not have a pattern, then by using a soft model, the places vulnerable to deforestation 
can be identified, leaving room for some level of ambiguity. Using a map like this would 
involve understanding the fact that it is a model which describes vulnerability to 
deforestation, and not like the previous hard land cover map, which shows a single 
scenario out of many possible ones. 
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4. Map Comparison toolkit (MCK) 
The Map Comparison Kit (MCK) (http://www.riks.nl/mck/) is a software tool for the 
comparison of raster maps developed by the Research Institute for Knowledge Systems, 
originally with the only purpose of evaluating output of dynamic spatial models. The 
software was known as 'Analyse tool'. 

Since 2001, major extensions to the software have been made by account of the 
Netherlands Environmental Assessment Agency (Milieu- en Natuurplanbureau, (MNP). 
This is the version (version no. 3.2.0) that is popularly used for comparing maps. The 
program allows users to obtain a good understanding of the differences between pairs of 
maps, concerning:  

• the overall area of the differences 

• the location (spatial) of these differences 

 (from- http://www.riks.nl/mck/) 

This is a valuable tool to use for this particular project, as it allows statistical quantification 
of the difference between two maps. Such a statistical analysis allows us to quantify the 
difference between the predicted model and the actual image. 

 

Figure 20 – Map Comparison Kit 
The software has a simple user interface that allows for quick comparison of maps. The 
MCK software only allows the user to add raster or ASCII datasets. The raster format was 
used in this project, as the LCM also operates with raster datasets. 

The first step in the MCK is to add the desired raster datasets and to create a log file. This 
log file is the place where the information about the data in a particular project is stored. 
Once the files have been selected, they can be imported to the software.  
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Once the files have been imported, the user can use the drop down menu to select the 
reference map and the test map. These are referred to as Map 1 and Map 2. If one wants to 
see the map, the display map button next to the drop down menu can be used to display the 
respective maps. 

Once the two maps have been selected, one needs to choose a comparison algorithm. The 
comparison algorithm can be selected using a tab on the top right-hand corner. There are 
several options for the comparison method, but in this project we only use per-category 
and the Kappa algorithm.  

Finally, the compare map button can be used to create the comparison map, which is 
displayed in the same window (as shown above). The statistics for the comparison is 
displayed using the display statistics button adjacent to the compare map button. 

In the analysis of the model and the original map in this project, the Kappa statistic has 
been used; as it is one of the most widely used statistic to assess similarities between 
observed and predicted results (Pontius, 2000). 

4.1 Kappa statistic 
The Kappa statistic for maps was introduced by Cohen (1960). Often used to assess the 
similarities between observed and predicted results, it is not only applied to geographical 
problems (e.g., Monserud and Leemans, 1992 and Pontius, 2000) but many other 
disciplines such as medical and social sciences. This has led to a lot of information on the 
Kappa statistic, including an extensive discussion on its functionality (Carletta, 
1996, Foody, 2002 and Foody, 2004). 

Kappa is a measure of similarity between two maps based on a contingency table (figure 
below), which is commonly also referred to as the ‘confusion’ matrix. In essence, Kappa is 
based on the percentage of agreement between two maps, corrected for the fraction of 
agreement that can be expected by pure chance. 

Contingency Table: 

Table 5 – Contingency table showing different categories in the two maps 

 

 

 

 

 

 

 

 

The table above was created from a pixel wise comparison of all cells in map A and map B 
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The contingency table above details how the distribution of categories in map A relates to 
that of map B. It tells us about the user and producer accuracy of the two maps. The cell 
values represent the number of cells of a particular class in map A and map B. For map A 
this corresponds to the categories specified in the rows. For map B, the columns specify 
the different categories.  

The central diagonal tells us the number of cells that were correctly predicted. The rows 
indicate a situation where a particular class was predicted as one thing, whereas the actual 
land use class is another. Thus, if we look at row 1, land use class 6 is identified as some 
other class (177771/886825) = 20% of the time. Hence the accuracy is 80% for this class. 

The last row and column give the column and row totals. Each row total represents the 
total number of cells of the given category in map A. Similarly, each column total 
represents the total number of cells of the given category in map B. 

The Kappa statistic is defined according to the following equation: 

 

Where: 

P(A) is the fraction of agreement. 
P(E) is a random location of subject to the observed distribution (meaning a randomly 
selected location based on the observed distribution) 
 
Pontius (2000) clarified that the basic Kappa statistic combines the similarity of quantity 
with similarity of location. In this sense ‘quantity’ means the total presence as a fraction of 
all cells in a category taken over the whole map. ‘Location’ means the spatial distribution 
of this quantity over the map. Pontius introduces two statistics to separately consider 
similarity of location and similarity of quantity. The statistic for similarity of quantity is 
called K-quantity (or referred to here as KHisto). The statistic for similarity of location is 
called KLocation. 

KLocation is calculated by the following equation: 

 

KHisto can be calculated by the following equation: 

 

Kappa, KLocation and KHisto are connected through the multiplicative relation 

Kappa=KLoc×KHisto 

Thus, given a fixed value for Kappa, KLoc will increase if KHisto decreases, and vice 
versa. Furthermore, if categories in both maps lie at identical locations, we have 
KLoc = 1.0, and Kappa = KHisto. If the frequency of categories in both maps is equal, we 
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have KHisto = 1.0 and Kappa = KLoc. Examples from practice have been given in Visser 
(2004). 

According to the authors of the MCK, the reasons for choosing the Kappa statistic are 
threefold:       

1. It has been used widely in research fields such as land-use modelling, remote 
sensing and ecological modelling. 

2. Obtaining the chance correction in Kappa is good, therefore allowing us to compare 
Kappa values across pairs of maps.  

 (H Visser, T De Nijs, 2006) 

However, there are other measures for map similarity than Kappa, and some authors doubt 
the practical value of Kappa. Indeed, a measure with chance correction may not be 
advantageous under all circumstances. Pontius (2002) suggests choosing ‘disagreement 
due to quantity’ and ‘disagreement due to location’, as better alternatives for KHisto and 
KLoc. 

As explained above, the rationale for choosing Kappa is not that it is the ‘best’ measure for 
all applications; it is not an absolute criterion. It depends on the specific goals of the user. 
For this project, the Kappa statistic has useful properties, which are good for measuring the 
difference to a satisfactory extent. Moreover, the Kfuzzy statistics have been proved to 
score very well if measured in terms of ‘similar to human judgement’ (H. Visser, and T. de 
Nijs, 2005). Finally, this approach is unique in having the ability to define both vagueness 
in location and vagueness in category. This reflects real situations where magnitude of 
change and location of change can be different. 

“By calculating relative measures for Kfuzzy, Khisto and Klocation with the aid of a 
reference map it is possible to give a founded validation of the similarity between a model 
map and an observed map.” (Hagen A., 2002) In the research paper (Rajan D.K, 2010) we 
use the overall Kappa to compare a generated model with reality. 

4.2 Per category Comparison 
The per category comparison yields a comparison of the different land cover categories 
between the two maps. This allows us to calculate amount of change in a particular land 
cover category. 

This algorithm was used to calculate the difference in areas deforested, between 2001 and 
2006, described in section 3.10 earlier as “Validation”. 

 

 

 

 



Dhruva Rajan      Technical Document 

27 

 

5. Testing and Validation 
Once a test model was generated, the next step was to test various drivers for their impact 
on the rate of deforestation. The above mentioned steps were followed in producing the 
model, the only difference being that the drivers were changed in order to understand the 
level of impact on the model. 

Drivers of deforestation are varied in their presence and effect on the forest. They are 
therefore hard to pinpoint. They may be simple; For example, Sader and Joyce (1988) 
examined forest area change associated with transportation networks for Costa Rica. They 
found that there was a strong relationship between forest clearing and proximity to road. 
This is an example of the proximity to road being a driver for deforestation.  

On the other hand, they also may be hard to quantify; Lambin (1994) describes the plethora 
of factors that are responsible for land use change. For instance, political instability, 
change in land ownership, war, are all factors that impact land use change. In most land 
use change models, these factors are not taken into consideration as they are difficult to 
model. In this project the emphasis is on quantifying factors to model change. As a result, 
the factors mentioned above have not been taken into consideration in the study. 

Several authors (Lambin (1994), Madeira(2007) , Veburg (2006)) have described common 
drivers of deforestation that are at least often show correlations with deforestation: (in no 
particular order of significance) 

1. Proximity to Roads 

2. Slope 

3. Protected areas 

4. Soil type 

5. Proximity to settlements 

6. Edge of Forest exposed to direct contact 

Of these drivers of deforestation, proximity to roads, slope, proximity to towns and 
protected areas were chosen for this study taking data constraint into consideration. The 
presence of these drivers has also been correlated with the high rate of deforestation in 
Ecuador (Southgate et al. (1991), Rudel (1993), C.F. Mena (2006), S. Walsh et al. (2002), 
Chomitz, K.M. & Gray, D.A. (1995), Soares-Filho, B (2004)).  

 

The box on the left describes the settings used for the 
generation of all the models below. The only variable 
changed was the driver data for the different models. 

 

 

Settings Used for all models: 

Layer Nodes – 2, Sigmoid factor -1 

Driver data (road, slope, towns) AND 
Constraints map (with 0 for protected 
areas and 1 for all other areas) 
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5.1 Testing drivers 
Roads 

   

Figure 21 – a) Original 2006 Land Cover Map; b) Model generated using proximity to 
roads as the only driver of deforestation 
In order to assess the validity of a model produced using proximity to roads as the primary 
driver, it was compared with the original land cover map for 2006. 

When the above map was compared with the original 2006 map with MCK, the following 
output was obtained. 

     

Figure 22 – a) Comparison map between Fig. 21 (roads model) and actual deforested 
areas in 2006; b) Pie chart summarizing % area predicted correctly (hits), areas missed 
(misses) and falsely predicted (false alarms) 
In this case, when using roads as the main driver of deforestation, we get 70% of all the 
predicted area correct, but miss 18% of the area that was actually forest in 2006. 12% of 
the time, forest pixels are predicted where they have not occurred, so these are ‘false 
alarms’.  

 

 

 

A  B

A  B
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Slope (20m resolution) 

    

Figure 23 – a) Original 2006 Land Cover Map; b) Model generated using slope as the 
only driver of deforestation 
According to Peck M.(2010), the rate of deforestation in the area is lower at slopes above 
45 degrees. In order to take this into consideration, one must consider the effect of slope in 
the generation of this model. 

Slope as the driver of deforestation yields the model illustrated above. The areas of steep 
slope are not preferred for deforestation, as they are inaccessible to heavy transport 
vehicles.  The comparison map below illustrates the difference between actual 
deforestation in the area and the deforestation as predicted by slope as the only driver for 
deforestation. 

      

Figure 24 – a) Comparison map between Fig. 23 (slope model) and actual deforested 
areas in 2006; b) Pie chart summarizing % area predicted correctly (hits), areas missed 
(misses) and falsely predicted (false alarms) 

When using slope as the only driver of deforestation during the years 2001 to 2006, the 
comparison map reveals the following: 

• 68% of the area that was actually forest in 2006 was correctly predicted by the 
model 

A  B

A  B
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• 19% of the area that was forest in 2006 was missed by the model 

• 13% of the area that was predicted to have forest by the model was not actually 
forest in 2006. 

Towns 

     

Figure 25 – a) Original 2006 Land Cover Map; b) Model generated using proximity to 
towns as the only driver of deforestation 
With towns as the driver, the model generated does not reflect a plausible situation in 
reality. The model makes the conversion from forest to urban very high near the towns. 
This leads to an effect that looks very artificial. 

       

Figure 26 – a) Comparison map between Fig. 25 (towns model) and actual deforested 
areas in 2006; b) Pie chart summarizing % area predicted correctly (hits), areas missed 
(misses) and falsely predicted (false alarms) 
When comparing the model produced by using towns as the only driver of deforestation 
with the original 2006 land cover image, the following can be observed: 

• 70% of the area was actually forest in 2006 was correctly predicted by the model 

• 18% of the area that was forest in 2006 was missed by the model 

A  B

A  B
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• 12% of the area which was predicted to be forest by the model, was not actually 
forest in 2006 

These values are better than those returned by the model generated using only slope. It is 
very similar to the values obtained when comparing the road model. In order to separate 
the effect each driver, we use another test. 

In addition to validating the model by testing the predicted rate of deforestation with the 
actual rate of deforestation, the MCK also gives Kappa statistics of similarity between two 
land cover maps. The following table describes the Kappa statistics derived when each 
model was compared to the original 2006 land cover map. 

Table 6- Comparison of Kappa statistics between drivers 

  Road  Slope Town

Kappa  0.62511  0.58932 0.62742

KLocation  0.68179  0.64346 0.68524

KHisto  0.91686  0.91585 0.91563

Fraction correct  0.81317  0.79531 0.8143

The Kappa statistics indicate that the model produced using slope as the principle driver 
does not have a good fit with the original map. However, the KHisto for all three of the 
maps are very similar. The KHisto values indicate the quantitative similarity between the 
two maps in question. (Hagen A., 2002). Thus, a set of similar KHisto values means that 
the maps are relatively similar in their performance when measured only for quantity of 
change. As Pontius points out, change can be measured in terms of location and 
magnitude. This means that quantitative change alone cannot accurately measure change. 
The KLocation values are similar for the models generated with road and town 
information. The KLocation values are much lower than the KHisto values, indicating that 
the model may be better at predicting magnitude of change rather than location of change. 

On comparing the three drivers and their Kappa values, we can conclude that the proximity 
to towns is the best explanatory variable amongst the three drivers. It must also be noted 
that the difference between the Kappa values is not very high. One conclusion that we can 
draw, therefore, is that it does not make a huge difference to the Kappa value when 
changing a single driver. In order to compare the driver impact on the model, one needs to 
compare how different combinations of the driver data affect the Kappa statistics in the 
map comparison. 
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Road and Towns 

         

Figure 27 – a) Original 2006 Land Cover Map; b) Model generated using both proximity 
to roads and proximity to towns as the two drivers of deforestation 

   
Figure 28 – a) Comparison map between Fig. 27 (roads and  towns model) and actual 
deforested areas in 2006; b) Pie chart summarizing % area predicted correctly (hits), 
areas missed (misses) and falsely predicted (false alarms) 
From the pie chart, one can conclude that roads and towns in combination seem to have the 
same value for areas of deforestation predicted as the towns model. 

Slope (20m resolution) and Towns 

   

Figure 29 – a) Original 2006 Land Cover Map; b) Model generated using both proximity 
to towns and slope as the two drivers of deforestation 

A  B
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Figure 30 – a) Comparison map between Fig. 29 (towns and slope model) and actual 
deforested areas in 2006; b) Pie chart summarizing % area predicted correctly (hits), 
areas missed (misses) and falsely predicted (false alarms) 
Once more, the pie chart above (Fig 30 b) indicates a similarity with the towns and the 
road+town models.  

Slope (20m resolution) and Roads 

  

Figure 31 – a) Original 2006 Land Cover Map; b) Model generated using proximity to 
roads and slope as the two drivers of deforestation 
 

The pie chart below (Figure 32 b) indicates that it is the same percentage of area correctly 
predicted, areas missed and areas falsely predicted as towns, towns+roads and 
towns+roads.  
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Figure 32 – a) Comparison map between Fig. 31 (roads and slope model) and actual 
deforested areas in 2006; b) Pie chart summarizing % area predicted correctly (hits), 
areas missed (misses) and falsely predicted (false alarms) 
Although some of the locations of change are different, the overall magnitude (in terms of 
number of cells) is the same for all four scenarios. 

In order to differentiate their individual effects on the model, we can use the Kappa 
statistic. Different combinations of drivers produce varying results. The best result seems 
to be achieved by the road and town combination, with a Kappa score of .624 and a 
fraction of .812. The roads and slopes however, seems to perform comparatively poorly, 
with a Kappa score of .61 and a fraction of .80. The Kappa values seem to back up the 
observation that the drivers in combination seem to produce similar results. 

 

Table 7 - Comparison of Kappa statistics between combinations of drivers 

  Road + Town  Slope + Town Road + Slope

Kappa  0.62451  0.6207 0.61831

KLocation  0.6815  0.67721 0.6742

KHisto  0.91636  0.91655 0.9171

Fraction correct  0.81286  0.81097 0.80979

 

The table below (Table 8) shows the comparison between all the generated models and 
their kappa values. The model with proximity to towns as the only driver resulted in the 
best Kappa value. The models produced with slopes (slope, slope+town, slope+road) all 
have lower Kappa values than the models produced with other values. 
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Table 8- Comparison of Kappa statistics between all drivers 

  Road  Slope Town Road + 
Town

Slope + 
Town 

Road + 
Slope 

Kappa  0.62511  0.58932 0.62742 0.62451 0.6207  0.61831 

KLocation  0.68179  0.64346 0.68524 0.6815 0.67721  0.6742 

KHisto  0.91686  0.91585 0.91563 0.91636 0.91655  0.9171 

Fraction  
correct 

0.81317  0.79531 0.8143 0.81286 0.81097  0.80979 

This is because the slope as a driver does not result in a model which had a good Kappa 
value. Hence the addition of slopes to other drivers, results in a model with lower Kappa 
values than the other combined models. This is probably because not all areas with a less 
steep slope will necessarily be deforested (as would be the case when modelling slope as 
the only driver of deforestation). Hence this results in less correlation with the original 
2006 image, and a lower Kappa value. 

Model with all drivers 

   

Figure 33 – a) Original 2006 Land Cover Map; b) Model generated using all 3 drivers of 
deforestation 

 

Figure 34 – a) Comparison map between Fig. 33 (all 3 drivers model) and actual 
deforested areas in 2006; b) Pie chart summarizing % area predicted correctly (hits), 
areas missed (misses) and falsely predicted (false alarms) 
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The pie chart above (Figure 34 b) indicates that the final model resembles the models 
generated with two drivers in terms of the areas correctly predicted, missed and falsely 
predicted. When the map is compared with the original 2006 map, we get the following 
statistics 

Table 9- Kappa statistics for model generated with all drivers 

Kappa  0.61751

KLocation  0.67449

KHisto  0.91553

Fraction correct  0.80936

A look at the Kappa values tells us that it is slightly lower than the models with towns, 
roads and models with towns+roads, towns+slope as the drivers of deforestation. A reason 
for this could be that the slope as a driver performs relatively poorly, hence bringing down 
the overall Kappa value for the model. Thus, a model without slope seems to do better than 
one with slope. In order to test the effect of slope as the driver, we can explore the models 
generated using 90m resolution slope to see if it makes a difference. 

5.2 Testing models generated using 90m resolution slope 
One of the aims of the project was to test the performance of the model when using coarse 
resolution data. The previous set of results was obtained using 20m resolution DEM 
(slope). In order to test the level of accuracy of the model with coarse data, models were 
generated using 90m resolution (slope) data. 

90m Slope 

       

Figure 35 – a) Original 2006 Land Cover Map; b) Model generated using 90m slope as 
the only driver of deforestation  
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Figure 36 – a) Comparison map between Fig. 35 (90m slope model) and actual 
deforested areas in 2006; b) Pie chart summarizing % area predicted correctly (hits), 
areas missed (misses) and falsely predicted (false alarms) 
The pie chart above (Fig 36 b) shows that, while using a 90m slope, 65% of the area that 
was forest in 2006 was correctly predicted by the model, 25% was missed, while 10% was 
wrongly predicted to be forest in 2006. This indicates that 20m slope (see Figure 24b) does 
better than the 90m slope when used as the single driver for deforestation (although only 
slightly). 

Table 10 – Comparison between 20m slope and 90m slope 

  Slope 20m  Slope 90m 
Kappa  0.58932  0.57231 

KLocation  0.64346  0.7051 

KHisto  0.91585  0.81167 

Fraction correct  0.79531  0.78429 

Comparison of Kappa values between 20m slope and 90m slope models shows that the 
20m slope model tends to be more similar to the real areas of deforestation than the 90m 
slope model, confirming what the pie chart above shows. 

Slope (90m) and Roads  
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Figure 37 – a) Original 2006 Land Cover Map; b) Model generated using both proximity 
to roads and 90m slope as the two drivers of deforestation 
 

     

Figure 38 – a) Comparison map between Fig. 37 (roads + 90m slope model) and actual 
deforested areas in 2006; b) Pie chart summarizing % area predicted correctly (hits), 
areas missed (misses) and falsely predicted (false alarms) 
The comparison map and statistics reveal that when using 90m slope with roads as the 
drivers for deforestation, it only predicts 61% of the area forested correctly. The area 
missed is 27%, while the ‘false alarms’ are 12% of the area. 

When Kappa values from Road + 20m slope and Road + 90m slope were compared, we 
see (from Table 11) that the 20m slope is more similar to the real areas of deforestation 
than the 90m slope in terms of Kappa.  

Table 11 – Comparison between 20m slope and 90m slope  

  Road + Slope (20m)  Road + Slope (90m) 

Kappa  0.61831  0.50548 

KLocation  0.6742  0.61582 

KHisto  0.9171  0.82082 

Fraction correct  0.80979  0.75084 
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Slope (90m ) and Towns  

       

Figure 39 – a) Original 2006 Land Cover Map; b) Model generated using both proximity 
to towns and 90m slope as the drivers of deforestation 
 

 
Figure 40 – a) Comparison map between Fig. 39 (towns and 90m slope model) and 
actual deforested areas in 2006; b) Pie chart summarizing % area predicted correctly 
(hits), areas missed (misses) and falsely predicted (false alarms) 
The statistics from the pie chart above (Fig 40 a) indicate that 63% of the areas that were 
forest in 2006, have been correctly predicted by the model, while 26% of the areas were 
missed. 11% of the area which was predicted to be forest was not actually forest in 2006. 

A comparison of Kappa values from Table 12 below reveals that the Kappa values for the 
20m slope are much better than those for the 90m slope.  
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Table 12 – Comparison between 20m slope and 90m Slope 

  Town + Slope 20m  Town + Slope 90m
Kappa  0.6207  0.53529 

KLocation  0.67721  0.65351 

KHisto  0.91655  0.8191 

Fraction correct  0.81097  0.76582 

 

All Drivers with 90m resolution slope 

    

Figure 41 – a) Original 2006 Land Cover Map; b) Model generated using all 3 drivers 
(road, town and 90m slope) as the drivers of deforestation 
 

   

Figure 42 – a) Comparison map between Fig. 41 (all drivers model) and actual 
deforested areas in 2006; b) Pie chart summarizing % area predicted correctly (hits), 
areas missed (misses) and falsely predicted (false alarms) 
The pie chart above (Fig 42 b) reveals that the model with all the drivers does not predict 
the areas of deforestation more accurately than the model produced using a combination of 
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two drivers. The area correctly predicted is only 62% (it was 65% when using 90m slope 
as the only driver).  

A comparison of Kappa values from table 13 below reveals that the model with 20m slope 
is more similar to the real areas of deforestation than the model with 90m slope. From this 
it can be inferred that the greater the level of detail, the better the model generated 
(meaning the closer to reality it is), as all the models with 20m slope have higher Kappa 
values than the models with 90m slope. 

Table 13 – Comparison between 20m slope and 90m slope 

  Map 20m Slope  Map 90m Slope 

Kappa  0.61751  0.52164 

KLocation  0.67449  0.64959 

KHisto  0.91553  0.80304 

Fraction correct  0.80936  0.7585 

 

6. Future work 
The study towards the identification of a comprehensive methodology for measuring and 
modelling deforestation has only just begun. This study was just an explorative one, to 
understand the sensitivity and working of the Land Change Modeler in predicting 
deforestation in Ecuador based on a set of driving factors. The Land Change Modeler has 
proved to be robust in its generation of models. The direction for future work would be in 
terms of exploring different datasets as well as more resolutions. Using MODIS data is one 
of the options that we only began exploring during the course of the project. A more in-
depth look at different satellite imagery will further enhance our understanding of how 
models of land use change may be generated. 
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8. Appendix 
List of file names associated with the project: 

All the files used in this project can be found deposited with the School of GeoSciences IT 
department in a folder named dissfinal 

 

Folder Filename Description 

/Base Files dem.rst DEM (90m resolution) 

 imb_01_d_clip.rst 2001 Land cover map 

 imb_06_d_clip.rst 2006 Land cover map 

 imb_96_d_clip.rst 1996 Land cover map 

 reserve_rc1.rst Constraints map 

 road_d_clip_CopyRaster.rst Distance from road 

 slope_dem1.rst Slope (20m resolution) 

 town_d_clip_CopyRaster.rst Distance from town 

/Results landcov_predict_all_d.rst Model generated with all drivers 

 landcov_predict_road_d.rst Model generated with roads 

 landcov_predict_roadtown_d.rst Model generated with road and town 

 landcov_predict_slope_d.rst Model generated with slope 

 landcov_predict_sloperoad_d.rst Model generated with slope and road 

 landcov_predict_slopetown_d.rst Model generated with slope and town 

 landcov_predict_soft_d.rst Soft model with all drivers 

 landcov_predict_towns_d.rst Model generated with towns 

 landcov_predict_2011.rst Model generated for 2011 

 landcov_predict_2016.rst Model generated for 2016 

 landcov_predict_2021.rst Model generated for 2021 

 landcov_predict_2026.rst Model generated for 2026 

 landcov_predict_2031.rst Model generated for 2031 

 landcov_predict_2036.rst Model generated for 2036 

 landcov_predict_2041.rst Model generated for 2041 
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 landcov_predict_2046.rst Model generated for 2046 

 landcov_predict_2051.rst Model generated for 2051 

 transition_potential3.rst Transition potential for Forest to Urban 

 transition_potential4.rst Transition potential for Forest to Pasture

 transition_potential5.rst Transition potential for Forest to 
Agriculture 

 trend_change.rst Trend Map of change 

 


