Current and Future Status of 3D GIS in the UK

Dr Claire Ellul
Reader in Geographical Information Science

UCL/AGI Early Careers Network Career Fair

- 7th March from 3pm - 6pm at UCL, London
- Includes:
 - CV reviews
 - Mock interviews
 - Talks from professions about how they use GIS in their industry
 - Networking
- ECN also potentially interested in other locations in the UK!

University College London

- UCL
 - Founded in 1826
 - 30,000 students, 5000 staff
 - Ranked 8th in the world (QS 2014)
- Civil, Environmental and Geomatic Engineering (http://www.cege.ucl.ac.uk)
 - 50 academic staff, 150 researchers, 700 students
 - Specialist areas include
 - GIS
 - Citizen Science/Crowd Sourcing

About Me

- GIS consultant for 10 years in Malta, the Middle East, the UK and all over Europe
- Specialise in databases, software design, development and systems integration
- PhD in Geographical Information Science from UCL in 2007
- New Reader (Associate Professor) in Geographical Information Science
- Programme Director, MSc GIS @ UCL
- Research interests – GIS and technology
 - 3D GIS
 - Combining GIS and Building Information Modelling
 - GIS data quality and usability

Overview

- Introductions
- The Need for 3D GIS
- Current Status of 3D GIS
 - Data Capture
 - Data Management
 - Editing and Analysis
 - Presentation/Visualisation
- 3D Futures – Drivers for Change

Geographical Information Systems

- Traditionally when we think of GIS we might think of this
 - ESRI ArcGIS
3D GIS

- GIS is 2D because …
 - Historically maps are 2D

3D GIS

- GIS is 2D because …
 - Computer Screens are also 2D

3D GIS

- 3D GIS has been around a while
- But mainstream 3D GIS does not exist – why?
 - Applications?
 - Functionality?
 - Data Capture
 - Data Management
 - Editing and Analysis
 - Presentation

What is 3D GIS?

- Dimensions
 - 2.5D – x, y and 1 height value (z)
 - 3D – x, y and multiple height values for the same x, y points
 - 3D GIS deals with solid 3D objects – i.e. those that enclose a volume
 - NB: Talking about Vector GIS

- Operations
 - Data capture and edit
 - Data quality validation
 - Visualisation
 - Metric and topological analysis
 - Thematic mapping
 - Interpolation and statistical analysis
 - Proximity (buffer, distance)

Integrating the 3D Geometry and the Information System

3D GIS

- The first question to ask …
 - Do we really need 3D GIS?
 - Are there situations where:
 - 2D GIS really doesn’t provide the functionality we need
 - 2D GIS provides the functionality but with quite a bit of ‘fudging’

Some problems can’t be solved easily in 2D ..
3D Problems - Construction

http://www.agroupinternational.com/construction-2/construction-material/

3D Problems – Disaster Management

http://scientificallyspeaking.edublogs.org/2012/09/24/get-involved-young-ones/

3D Problems – Decommissioning Buildings

3D Problems - GNSS

Image courtesy of Dr. Paul Green – CNNP, UCL.

3D GIS – Applications - Research

- Economic Benefits of 3D GIS (UCL/EuroSDR)
- Review of:
 - the 3D value chain
 - potential 3D applications
 - the role of National Mapping Agencies in promoting 3D

Overview

- Introductions
- The Need for 3D GIS
- Current Status of 3D GIS
 - Data Capture
 - Data Management
 - Editing and Analysis
 - Presentation/Visualisation
- 3D Futures – Drivers for Change
3D Data

Data
- Extrusion of 2D Datasets
- Manual Data Capture
- Point Cloud Sources
- LiDAR and Laser Scanning
- Computer Aided Design
- Photogrammetry

3D Data – Extrusion and Beyond

![3D Data - Extrusion and Beyond](image)

3D Data – Manual Capture - Sketch-Up and Google Earth

![3D Data – Manual Capture - Sketch-Up and Google Earth](image)

Source: 3D Models downloaded from Google Earth, February 2010

3D Data – Ordnance Survey

![3D Data – Ordnance Survey](image)

3D Data - Research

- Scan2BIM - Converting Point Clouds to Buildings @ UCL
- "City Doctor" project @ University of Stuttgart, Germany
- Completeness of Open Street Map 3D Buildings

![3D Data - Research](image)
3D Data - Research

- Using Google Glass to identify requirements for 3D City Models

Overview

- Introductions
- The Need for 3D GIS
- Current Status of 3D GIS
 - Data Capture
 - Data Management
 - Editing and Analysis
 - Presentation/Visualisation
- 3D Futures – Drivers for Change

Data Management

- Can 3D datasets be stored using standard GIS approaches?
 - Databases?
 - Proprietary formats such as ArcGIS .shp?
- What exchange formats exist for data sharing?

3D Data

- Extrusion of 2D Datasets
- Manual Data Capture
- Point Cloud Sources
 - LiDAR and Laser Scanning
- Computer Aided Design
- Photogrammetry

Data Management – Oracle Spatial, PostGIS, ArcGIS

- 3D Cadastral Systems (UCL/University of Coimbra)
Data Management – Exchanging Data

- FME
 - General GIS Data Exchange
 - Offers 3D import/export into Oracle Spatial, PostGIS, IFC, Shape
 - Also offers functionality such as extrusion
- CityGML
 - XML based exchange format for 3D city data
 - OGC standard in 2008
 - Models both 3D vector data and the attributes associated with the data

3D Data Management - Research

- How to efficiently transmit 3D data to mobile devices over low bandwidth
- How to best store 3D data to be efficient for visualisation and analysis

Overview

- Introductions
- The Need for 3D GIS
- Current Status of 3D GIS
 - Data Capture
 - Data Management
 - Editing and Analysis
 - Presentation/Visualisation
- 3D Futures – Drivers for Change

3D Editing and Analysis

- Can the data be edited
 - In the database using SQL?
 - In the GIS using GUI tools?
 - What type of analysis functionality is available?

3D Editing and Analysis - SQL

```
INSERT INTO "OSBUILDINGS" (GEOM) VALUES
(ST_GEOMFROMTEXT('POINT(0 0 3).27700'));

INSERT INTO "OSBUILDINGS" (GEOM) VALUES
(ST_GEOMFROMTEXT('POLYHEDRAL_SURFACE(((0 0 0.0
1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
(0 0 0, 1 0 0, 1 0 1, 0 0 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)),
(1 0 0, 1 1 0, 1 1 1, 1 0 1, 1 0 0), ((1 1 0, 0 1 0, 0 1 1, 1 1
1, 1 1 0))'),.27700));
```
3D Editing and Analysis - SQL

SELECT ST_3DMAXDISTANCE(A.LOCATION, B.LOCATION)
FROM THREEDBUILDINGS A, THREEDBUILDINGS B
WHERE A.ID = 6 AND B.ID = 5;

SELECT ROUND(MIN(A.DATA AVERAGE), 2) AS MIN,
B_NAME
FROM 3D NOISE DATA A, CHADWICK IFCSPACE SOLID B
WHERE SDO INSIDE (A.GEOM, B.GEOM) = 'TRUE'
GROUP BY B_NAME
ORDER BY MIN ASC

3D Editing and Analysis – Desktop GIS

- Some good functionality in ESRI ArcScene and 3D Analyst (mostly 2.5D)
 - Size of a shadow cast by a building
 - Visibility analysis
- ArcGIS Pro Links 2D and 3D in one environment
- However can’t easily create new 3D geometry
 - Need to find a balance between the complex tools provided by CAD/BIM and usability

3D Editing and Analysis – Research

<table>
<thead>
<tr>
<th>Room Number</th>
<th>Number of Noise Points</th>
<th>Minimum dB</th>
<th>Average dB</th>
<th>Maximum dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>4</td>
<td>50.82</td>
<td>51.2</td>
<td>51.5</td>
</tr>
<tr>
<td>103</td>
<td>11</td>
<td>51.55</td>
<td>50.48</td>
<td>56.23</td>
</tr>
<tr>
<td>120</td>
<td>2</td>
<td>41.69</td>
<td>41.27</td>
<td>41.44</td>
</tr>
<tr>
<td>1509A</td>
<td>2</td>
<td>51.42</td>
<td>54.34</td>
<td>57.63</td>
</tr>
<tr>
<td>15001</td>
<td>2</td>
<td>58.76</td>
<td>45.95</td>
<td>59.93</td>
</tr>
</tbody>
</table>

3D Editing and Analysis - Research

Comparing Querying Data in 2D and 3D

Assessing suitability of 3D roof structures for Solar Panels

Overview

- Introductions
- The Need for 3D GIS
- Current Status of 3D GIS
 - Data Capture
 - Data Management
 - Editing and Analysis
 - Presentation/Visualisation
- 3D Futures – Drivers for Change

Presentation

- Can 3D datasets be displayed in a useful manner?
- What interfaces/tools are offered?
- Do concepts similar to 2D GIS exist?
 - Info tools?
 - Layers/themes?
 - Thematic mapping of different features?
ESRI ArcScene

QGIS – Threejs Plug-In

3D PDF

Presentation – Research
- How to handle the different interaction paradigms:
 - Many 3D viewers have controls such as viewer position and lighting, observer location
 - These derive from 3D visualisation requirements
 - But are not familiar to users of 2D GIS
 - Walking through walls
 - Requirement for Standardised Controls

Presentation - Research
- Investigating Usability of 3D Building Models for Notaries @ University of Laval
- Investigating Performance and Usability of 3D PDF @ UCL

Presentation - Research
- More intricate ‘Levels of Detail’ @ Karlsruhe Institute of Technology, Germany
- 3D Generalisation and Performance @ UCL
Overview

• Introductions
• The Need for 3D GIS
• Current Status of 3D GIS
 – Data Capture
 – Data Management
 – Editing and Analysis
 – Presentation/Visualisation
• 3D Futures – Drivers for Change

3D GIS - Futures

• Encouraging Signs - Growth in 3D GIS Functionality
 – C. 2005
 • Arc scene in ArcGIS 8.3, Virtual London
 • Oracle supported 3D indexing but not solid features
 • 3D GIS is visualisation only, no IS
 • 3D GIS was 2.5D (surfaces, TINS)
 – C. 2010
 • Oracle supports 3D solids + some 3D functionality
 • Bentley Map links to Oracle 3D solids
 • ArcGIS 10 will support 3D editing
 • ViDOS, City GML from OGC, Google Earth + Sketch-Up
 – C. 2015
 • MapInfo and Geomedia both have 3D Products
 • PostGIS supports 3D
 • ArcGIS + Oracle have extended their 3D functionality
 • OS establishing a 3D dataset

Why isn’t 3D GIS on our Desktops?

• But still to be done (1):
 – Applications
 • Legacy of 2D
 • Do we need a “killer app” for 3D GIS?
 • Review of what is required
 – Is it the lack of tools or data that is driving the lack of implemented applications, or vice-versa?

Why isn’t 3D GIS on our Desktops?

• But still to be done (2):
 – Data
 • Sourcing, quality, integration of G and IS, roof structures
 • Generalisation and Levels of Detail
 – Structuring
 • Detail versus performance on mobile devices
 – Editing and Analysis
 • Linking Information Systems for analysis and CAD for 3D geometry manipulation
 • Missing analytical functionality (topology)
 – Presentation
 • Paradigm shift from 2D to 3D
 • Standardisation of interfaces
 • Usability

Futures: Making Use of Graphics Processing Units

• GPUs on mobile phones becoming more powerful

Futures: Combining 3D GIS and Augmented Reality

http://www.port.ac.uk/mappingandgeoinformatics/3dGIS/3dGIS_30.jpg
http://www.port.ac.uk/mappingandgeoinformatics/3dGIS/3dGIS_28.jpg
Futures: Learning from 3D Gaming

Futures: Integration with BIM

Futures: Indoors, Outdoors and Bridging the Gap

Futures: From Desktop to Web - Web GL

Futures: Time, Sensors, Smart Cities and the Internet of Things

3D GIS – Special Interest Group (AGI)

- "3D Pilot UK" - starting this year
 - See: https://www.youtube.com/watch?v=PhijuAhQw8
- Join the LinkedIn Group to find out more:
http://tinyurl.com/uk3dgis
Thank You

c.ellul@ucl.ac.uk