Natural flood management within the Flood Risk Management (Scotland) Act
The role of GIS

Neil Nutt - Halcrow CH2M Hill (SEPA secondment project)
Neil.nutt@ch2.com
Acknowledgements

Project Technical Advisory Group

- Andrea Johnstonova (Chair) - SEPA
- Heather Forbes - SEPA
- Kirsty Jack - SEPA
- Richard Jefferies - SEPA
- Mark McLaughlin - SEPA
- Nadeem Shah - Forest Research
- Mark Williams - SEPA

External reviewers

- Prof Alan Werritty (Dundee University)
- Dr Scott Arthur (Heriot-Watt University)
- Dr Tom Ball (Dundee University)
Introduction

- Key legislation relating to NFM
- NFM study catchments
- What is NFM
- NFM screening methodologies

NFM - Natural Flood Management
Natural Flood Management

Legislation
The Flood Risk Management (Scotland) Act 2009

Section 20 Identification of potential
Identify where NFM could help manage flood risk

Section 28 – Appraisals & Strategies
Consideration must be given to the Section 20 assessment when setting Flood Risk Management objectives and measures

Section 34 - Local FRM Plans
Requirement to detail how implementing the plan may alter (including enhance) or restore natural features and characteristics
The Flood Risk Management (Scotland) Act 2009

Section 20 Identification of potential
Running of Screening Tools (GIS)

Output: Section 20 maps

Section 28 Appraisals & Strategies
Develop and refine options (GIS)

Output: FRM Strategies – shortlist of preferred FRM measures

Section 34 Local FRM Plans
Refinement of preferred option (GIS)

Output: Local FRM Plans

2012
SEPA

2013 - 2014
SEPA / ‘Responsible Authorities’

2015 – 16
The relevant ‘Responsible Authority’
Natural Flood Management

Pilot projects
Pilot NFM projects

- Eddleston Water
- Allan Water
- Upper Clyde
- River Devon
- Borthwick Water
- Forth FutureScape

- Scottish Government funding additional pilot NFM/restoration catchments
General synopsis of pilot findings

- Technical challenges (hydrology, hydromorphology, ecology)
 - Does NFM work?
 - What can be achieved?
 - Where is NFM most effective?
- Land ownership/land manager issues
- Leadership/responsibility
- Funding
 - Is it economic?
 - Who should pay?
- Long timescales
- Maintenance
- Ambiguity over what NFM entails
… what is NFM?

“techniques that aim to work with natural hydrological and morphological processes, features and characteristics to manage the sources and pathways of flood waters. These techniques include the restoration, enhancement and alteration of natural features and characteristics, but exclude traditional flood defence engineering that works against or disrupts these natural processes.”

(SAFFF - The Scottish Advisory and Implementation Forum for Flooding, 2011)
...and what does that entail?

Natural flood management techniques

A set of techniques that aim to work with natural processes, features and characteristics to manage the sources and pathways of flood waters.

The techniques include alteration, enhancement and restoration of natural features and characteristics that could contribute to the management of flood risk.

Restoration

Return of natural processes to a more natural state, e.g. re-meandering, restoration of disconnected floodplains, upland grip blocking, restoration of native catchment woodlands, reinstatement of riparian woodlands and coastal realignment.

Alteration (including enhancement)

Improvement to, or enhancement of an existing function for the purpose of flood risk management, including partial restoration of natural processes and soft engineering e.g. enhancing the capacity for floodplains to store water (washlands), increasing channel roughness, SUDS and regulated tidal exchange.

(SAIFF, 2011)
Sustainable Flood Management

Sustainable flood management is an approach to planning and delivering measures to reduce flood risk.

Increasing resilience to flood risk is an important component of sustainable flood management. Resilience to flooding can be increased through a variety of measures, including flood warning, flood defences, natural flood management (e.g. floodplain storage) and quick and effective responses to flooding.

Where flood plains and wetlands are connected to rivers, the flood storage they provide can reduce the risk of downstream flooding.

Flood warning helps communities respond to flood risks.

Land management, including upland forest management, can help reduce run-off and flood flows to downstream areas.

Flood defence structures play a critical role in holding back floods, particularly where communities, infrastructure and valuable land is at risk.

Urban centre

Defence

Forest

Flood warning

Wetland

Flood plain
Natural Flood Management

Screening for opportunities

Early identification of potential NFM locations
GIS screening methods

- Production of maps showing NFM potential for Section 20
- GIS toolboxes
- Nationally available data
- Nationally applicable
- Screenings looked at:
 1. Runoff generation
 2. Floodplain restoration
 3. Sub-catchment desynchronisation
 4. Hydraulic constrictions
 5. Hydromorphology
 6. Estuarine surge attenuation
 7. Wave energy attenuation
Screening: Runoff generation

Subjective scoring method (Environment Agency)
Entirely subjective scores (1-4) given to land cover, soil, slope and rainfall
Score = \[\frac{\text{Combined sensitivity}}{4} = \frac{\text{land cover class} + \text{soil class} + \text{slope class} + \text{rainfall class}}{4} \]

Restatement of the QMed by catchment descriptors
Dropping FARL & AREA
Score (runoff per unit area) =
\[q = 8.3062 \times 0.1536 \times \frac{1000}{\text{SAAR}} \times 0.0460 \times BFIHOST^2 \]

Hybrid method
Weight QMed based runoff per unit area with scores for slope and
Score (weighed runoff per unit area) =
\[q = 8.3062 \times 0.1536 \times \frac{1000}{\text{SAAR}} \times 0.0460 \times BFIHOST^2 \times \text{slope_weight} \times \text{landuse_weight} \]
Screening: Floodplain restoration

\[
ISP = \frac{\frac{3}{2}}{S^4} \left(\frac{\frac{3}{2}}{n_{\text{max}}} - \frac{3}{2} \right)
\]

- Calculation based on Manning’s equation
- Gives an indication of the increase in water level due to floodplain roughening (Increased Storage Potential)
- High scores (red above) indicate greater potential
- Morphological Pressures Database and Wetland Inventory used to give an indication of floodplain connectivity
- Need to consider backwater extents

\(v = \) flow velocity
\(s = \) hydraulic gradient
\(n = \) Manning’s roughness
Screening: Sub-catchment desynchronisation

- Potential to desynchronise sub-catchment hydrographs
- Based on similarity of FEH Time to Peak for the two sub-catchments (*Time to Peak Similarity*)
- Controversial due to uncertainty (storm movement and quality of Tp estimate)
- Requires difficult to access data

\[
TS = \left(\frac{T_{p,\text{min}}}{T_{p,\text{max}}} \right)^5
\]
Screening: Hydraulic constrictions

- Identification of artificially constricted flow paths
- National fluvial flood hazard mapping

(Early draft of national fluvial hazard mapping, SEPA/Halcrow - ongoing)
Screening: Areas of heightened morphological activity

- Sediment budget modelling using ST:REAM (Parker in press)
- Overview of probable areas of:
 - Source
 - Transport
 - Deposition
Screening: Estuarine surge attenuation potential

- Latest national coastal maps
 - Projection of estimated extreme water levels
- Simple process of overlaying flood maps with known defence locations
 - SFDAD & coastal hydromorphology database
- Direction on where to consider in more detail
Screening: Wave attenuation potential

- Identifying high energy coastlines that potentially have adequate space to permit (semi) natural wave energy dissipation measures
- Poor data
 - Incident wave power
 - Shore width/slope
 - Shore substrate
Summary

- Overview of Flood Risk Management (Scotland) Act 2009
- Overview of pilot projects

- GIS screening tools have been presented that allow the rapid national identification of NFM opportunities Assessment

 1. Runoff generation
 2. Floodplain restoration
 3. Sub-catchment desynchronisation
 4. Hydraulic constrictions
 5. Hydromorphology
 6. Estuarine surge attenuation
 7. Wave energy attenuation
Thank you

Any questions?

Neil.nutt@ch2m.com