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Use of models in detection
and attribution of climate change

Gabriele Hegerl' and Francis Zwiers?

Most detection and attribution studies use climate models to determine both
the expected ‘fingerprint’ of climate change and the uncertainty in the estimated
magnitude of this fingerprint in observations, given the climate variability. This
review discusses the role of models in detection and attribution, the associated
uncertainties, and the robustness of results. Studies that use observations only
make substantial assumptions to separate the components of observed changes
due to radiative forcing from those due to internal climate variability. Results
from observation-only studies are broadly consistent with those from fingerprint
studies. Fingerprint studies evaluate the extent to which patterns of response to
external forcing (fingerprints) from climate model simulations explain observed
climate change in observations. Fingerprints are based on climate models of
various complexities, from energy balance models to full earth system models.
Statistical approaches range from simple comparisons of observations with model
simulations to multi-regression methods that estimate the contribution of several
forcings to observed change using a noise-reducing metric. Multi-model methods
can address model uncertainties to some extent and we discuss how remaining
uncertainties can be overcome. The increasing focus on detecting and attributing
regional climate change and impacts presents both opportunities and challenges.
Challenges arise because internal variability is larger on smaller scales, and
regionally important forcings, such as from aerosols or land-use change, are often
uncertain. Nevertheless, if regional climate change can be linked to external forcing,
the results can be used to provide constraints on regional climate projections.
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INTRODUCTION

ince the mid-1990s, a wide range of studies

have shown that anthropogenic greenhouse gas
increases have influenced the climate, globally and
regionally, affecting many variables (see Refs 1 and 2
for reviews). However, even to scientists, the role of
observations, physical insight, and climate models in
estimates of the human contribution to recent climate
change is not always clear. For example, some of the
discussions of Figure 2 (which is from Refs 2 and 3)
and Ref 4 fail to recognize that uncertainties in climate
model sensitivity or the amplitude of aerosol forcing
have little bearing on estimates of the contribution
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by greenhouse gases to recent warming. We discuss
here the role of models in our understanding of the
causes of climate change, review open questions and
major uncertainties, particularly those due to model
uncertainty, and discuss ways forward.

Detection and attribution methods attempt
to separate the observed climate changes into
components that can be explained by variability
generated within the climate system and components
that result from changes external to the climate
system. Examples for the latter include changes in the
earth’s energy budget due to increasing greenhouse gas
concentrations, affecting outgoing infrared radiation,
or changes in incoming solar radiation. Changes in
the radiative budget of the planet are called ‘radiative
forcing’. Detection and attribution has multiple goals:
The initial focus was on determining whether the
radiative forcing due to greenhouse gas increases has
indeed influenced climate. Subsequently, it has been
understood that detection and attribution methods
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also objectively evaluate the ability of climate models
to simulate observed climate change, assess the role of
external factors versus climate variability in observed
climate change, and enable prediction of future climate
change that is grounded in changes observed so far.>°

Before discussing model reliance and uncer-
tainty, it is worth mentioning that detection and attri-
bution studies are affected by uncertainties beyond
modeling. Observations are subject to uncertainty,
and ideally, results need to address this uncertainty
either by using several independently developed com-
pilations of observed changes’ or by estimating the
effect of observational uncertainties (Ref 8 assessed the
effect of random sampling uncertainty, while system-
atic uncertainty, for example due to bucket corrections
applied to sea surface temperature, is more difficult
to assess’). Another important uncertainty affecting
the accuracy of model simulations is radiative forcing
uncertainty. Forcing uncertainty is generally under-
stood to be small in the case of well-mixed greenhouse
gases!? that have well understood effects on the
planet’s radiative balance. Uncertainties are larger
for other types of anthropogenic forcing, including
aerosol forcing and forcing from land-use changes,
such as consequences from the conversion of forest
to agricultural land.!® The forcing picture is further
complicated because of feedback processes that may
either amplify or damp the direct effect of a given forc-
ing agent. For example, the emission of aerosols into
the atmosphere may alter cloud microphysical prop-
erties so as to increase cloud reflectivity and/or cloud
lifetime, both of which would reduce the amount of
solar energy reaching the surface, thereby inducing an
uncertain cooling effect on the climate.'® Our under-
standing of how aerosols affect cloud microphysical
properties remains limited at this stage. The climate
is also influenced by natural forcing agents, including
episodic volcanic activity and variations in the amount
of energy that is emitted by the sun. Explosive vol-
canic eruptions that eject reflective material (dust and
aerosols) into the stratosphere affect climate by reduc-
ing the amount of sunlight that reaches the surface.
This has a short-term effect on climate!! in the order
a few years, and may have a long-term effect leading
to cooling during multi-decade periods with greater
amounts of volcanic activity.!>!3 The recent history
of volcanic forcing is well understood, whereas forc-
ing prior to the 20th century has greater uncertainty,
particularly with respect to the magnitude of individ-
ual eruptions.'* Solar forcing influences climate on a
number of timescales, which are, prior to the satellite
era, indirectly (and incompletely) indicated by sunspot
number and by variations in the production of various
types of isotopes in the earth system.!%!® Estimates
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of solar forcing, particularly for the pre-satellite era,
remain uncertain. These uncertainties need to be kept
in mind when relating climate model results to obser-
vations.

The remainder of this review is organized as
follows. We first consider approaches that avoid using
models for distinguishing the response to external
forcing, particularly greenhouse gas increases. The
discussion shows that such a separation requires
substantial assumptions and thus motivates the use
of some form of climate model to derive an estimate
of the expected change in response to an external
forcing. The subsequent section discusses detection
and attribution methods using climate models. This is
followed by a section that discusses results based on
first simple and then complex climate models, a section
discussing the consequences of model uncertainty on
detection and attribution, and a section on difficulties
encountered when addressing regional climate change.

OBSERVATION-ONLY METHODS FOR
IDENTIFYING THE ANTHROPOGENIC
SIGNAL

Some work has, explicitly or implicitly, attempted to
distinguish anthropogenic or other externally forced
climate change from observations only. While it is
attractive to try to avoid models, substantial assump-
tions are required to separate an externally driven
change from variability based on observations only.

Methods Using Spatial Patterns to Separate
Between Variability and External Forcing
Wallace etal.!” observed that a large fraction
of hemispheric mean wintertime variability in the
Northern Hemisphere is associated with a pattern
of anomalies over land and ocean of opposite
signs, referred to as the ‘Cold Ocean Warm Land
(COWL)’ pattern. This pattern originates because
strong wintertime dynamics, for example, associated
with stronger or weaker than average westerlies,
moves more or less heat from the ocean mixed layer
to land, leading to positive or negative anomalies
of the Northern Hemispheric mean temperature. By
filtering out variations associated with this pattern,
a remaining trend in large-scale temperature can be
identified that is less affected by wintertime dynamic
variability and hence may reflect more clearly the
response to forcing. This technique was recently
applied to sea surface temperature data'® and led
to the identification of an inhomogeneity in sea
surface temperature data in the mid-20th century. The
result also shows a long-term warming that appears
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to have been externally forced and a short-term
cooling caused by volcanic eruptions (Figure 1, top).!?
While this method is well suited for detecting an
underlying globally uniform change, a weakness is
that the COWL temperature pattern correlates with
the pattern of stronger warming over land than oceans
which is anticipated from the greenhouse warming
fingerprints in models. Thompson et al.'® deal with
this in part by defining a COWL pattern in terms
of sea level pressure, which is less strongly affected
by anthropogenic forcing than temperature, although
there is also some evidence of human influence on the
sea level pressure distribution.!”

A number of further studies have analyzed, for
example, by empirical orthogonal functions (EOFs),
the evolution of observed global-scale surface or sea
surface temperature. One of the first few EOFs is
often associated with a long-term trend.?’ that does
not appear to be internal to the climate system.
However, EOFs may confound multiple aspects of
change from different physical processes that are
associated with long timescales. Spatial associations
of observed patterns of change can also be used
to analyze data in search for physical mechanisms
of a changing climate. An example is Portmann
et al.,>! who associate locations with high or low
climatological precipitation with locations where the
maximum daily temperature increases or decreases,
and then show that this spatial association is stronger
than expected by random variability early in the
growing season. This is an example of using the
spatial and temporal characteristics of an unexplained
change (here, the lack of warming in the warm
tail of daytime maximum temperature in the South
Eastern US) to suggest possible causes. However,
only model simulations would be able to reliably
confirm if hypothesized changes, for example, in
biogenic aerosols in response to long-term changes in
vegetation, can explain the observed lack of increase
in hot extremes.

Methods Separating Signal and Noise Based
on Timescales

Several studies have attempted to separate the
influence of long-term external forcing from changes
induced by short-term dynamics by focusing on
timescale differences. A simple example is the
identification of long-term trends in time series
usually dominated by short-term dynamics (such as
the positive trend in the Arctic Oscillation/Northern
Annual Mode into the 1990s).2> This approach
can be carried over to more sophisticated methods,
for example, methods that apply a prewhitening
transform to climate records to detect ‘unusual’
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patterns of change in time?? (see review in Ref 24).

Schneider and Held?® use a closely related technique
that discriminates between slow changes in climate
and shorter timescale variability to identify in
observations a pattern of surface temperature change
associated with long timescales (Figure 1, bottom).
These patterns show some similarity to model-
simulated patterns of response to anthropogenic
forcing, with peak warming over Eurasia and parts of
North America in winter and a smooth time evolution.
The authors speculate that regions of cooling in
summer may be related to aerosol forcing, although it
is also possible that aspects of these patterns are due
to climate variability on long timescales. The method
assumes that changes in external drivers, particularly
greenhouse gas increases, lead to patterns that
are statistically distinct from shorter-term patterns
recorded due to variability generated within the
climate system. However, internal climate variability
is present on all timescales,® and thus the separation
of anthropogenic change will be incomplete. This
method also cannot separate between anthropogenic
drivers and changes due to slowly varying external
drivers of climate change, such as low-frequency solar
radiation changes.

Methods Using Forcing History

A different approach is motivated by the fact that
recent greenhouse gas levels far exceed previous levels
(‘The combined radiative forcing due to increases
in carbon dioxide, methane, and nitrous oxide is
+2.30 [+2.07 to +2.53] W m~2, and its rate of
increase during the industrial era is very likely to have
been unprecedented in more than 10,000 years’*10),
This motivates comparisons between recent tempera-
tures and reconstructions of large-scale temperatures
over several centuries or millennia’’ to determine
whether recent temperatures are also unusual. The
Intergovernmental Panel on Climate Change (IPCC)
concluded that the average Northern Hemisphere
temperatures during the second half of the 20th cen-
tury were ‘very likely higher than during any other
50-year period in the last 500 years and likely the
highest in at least the past 1300 years’, thus confirm-
ing the unusual nature of recent temperatures.”® The
‘likely” assessment accounts for large uncertainties in
reconstructions of hemispheric temperatures based on
incomplete sampling, unclear relationships between
proxies and temperature, and questions about which
data fully preserve low-frequency variability. How-
ever, a comparison of different climatic mean states is
of limited use because climate variability and natural
climate forcings combined can also produce changes
in very long timescales>?® and because this method
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FIGURE 1] Results of studies filtering externally driven signals based on observational data only. Top panel: a time series of global mean monthly
surface temperature (topmost) is shown compared to contributions by variability from EI Nino, short-term dynamical variations in extratropics (Tdyn),
and the residual that remains after removing both (each time series is offset for presentation purposes; Reprinted with permission from Ref 18.
Copyright 2009 American Meteorological Society). The vertical lines indicate August 1945 and the timing of volcanic eruptions. Bottom: First
discriminants of interdecadal variations in (a) January and (c) July, based on separating climate variability between long and short timescales.
Changes are expressed relative to the 19161998 mean. Upper panels (a) and (c): discriminant pattern. Lower panels (b) and (d): canonical variates,
which give the time evolution. (Reprinted with permission from Ref 20. Copyright 2001 American Meteorological Society)

does not distinguish between climate change due
to slow changes in radiative balance and the rela-
tively rapid changes associated with greenhouse gas
increases. Furthermore, such a comparison has limi-
tations when forcing, such as from greenhouse gases,
increases rapidly. In that case, a substantial part of the
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warming is not realized instantaneously. For example,
Hansen et al.?? point out that in their climate model,
the response to 0.85 W m~2 of the recent greenhouse
gas forcing is still ‘in the pipeline’, suggesting that
there would be an estimated 0.6°C further warm-
ing even if immediate stabilization of the atmospheric
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composition was possible, consistent with Ref 3. Thus,
comparing the medieval warm period with the present
compares a climate state that was probably close to
equilibrium with our present, rapidly evolving warm-
ing that is not yet fully realized. Therefore, while the
present unusual warmth is suggestive, it is neither nec-
essary nor sufficient to demonstrate that greenhouse
gas increases have influenced climate.

A more quantitative approach to determining
the role of external forcings in climate variations
over the last millennium is to simultaneously correlate
past greenhouse gas increases, volcanism, and solar
forcing changes with reconstructed Hemispheric mean
temperature changes.>? The results indicate that the
recent increase in temperature in the reconstruction is
best explained by greenhouse gas increases. However,
this method also has drawbacks because as above it
does not account for the thermal inertia of climate
components, particularly the ocean, which delay
the response to forcing. This particularly affects the
response to volcanic eruptions (see below), where the
rapid short-lived forcing leads to a climate response
of several years'"»3! that is not well characterized by
the forcing time series.

In conclusion, while methods that do not use
climate models directly avoid explicit assumptions
about the shape and timing of the expected response,
they do use other strong assumptions, such as
the assumption that the response to forcing is
instantaneous or that climate change and variability
can be separated by timescale. Such methods there-
fore use implicit ‘models’ of the climate system’s
reaction to a change, for example that the response
is proportional to radiative forcing, different in
timescale, or otherwise separable. The fact that results
from analyses based on observations only very often
show similar results to those based on detection and
attribution methods that use climate models lends
strength to the overall assessment that the recent
warming is largely due to greenhouse gas forcing.?
Furthermore, observation-only studies can play an
important role in identifying changes that are either
not reliably simulated by climate models or whose
forcings are not yet fully understood (such as in the
case of Ref 21).

DETECTION AND ATTRIBUTION
METHODS USING CLIMATE MODELS

The previous section motivates using some form of
physically based climate model to derive an estimate
of the expected change in response to an external
forcing, and the use of ‘fingerprint methods’ that use
model-simulated response patterns to quantify the
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role of external forcing in observed climate change.
Thus, the next short section introduces detection and
attribution methods.

Methods Comparing Climate Model Data
with Observations

As the climate is not purely deterministic, but also
displays chaotic variations due to the internal dynam-
ics of the system, all observed changes in climate will
be combinations of deterministic, externally driven
changes and changes caused by internal climate
dynamics. Thus, detection and attribution approaches
need to account for differences between models and
observations that are due to internal variability.

The simplest use of climate models is to compare
the recent temperature evolution directly with climate
model simulations. For example, one approach is
to show that recently observed global warming is
significantly stronger than model-based estimates of
the internal variability of the climate system,3?33 and
thus, that the warming is detectably stronger than
internal variability. Estimates of internal variability
are largely based on models, as past observed climate
variability includes the response to external drivers.
As this inference relies directly upon estimates of the
internal variability from climate models, it is subject
to uncertainties discussed below.

Direct comparisons with climate model simula-
tions have also been used to tentatively attribute recent
temperature changes to a combination of anthro-
pogenic and natural forcing. For example, Figure 22
shows that coupled climate models are able to largely
reproduce the observed temporal evolution of global
mean temperature (in the areas covered with observa-
tions) if both natural and anthropogenic forcings are
included, while they fail to reproduce the warming
in the recent decades without anthropogenic influ-
ences, particularly greenhouse gas increases. A similar
method has been used to assess observed climate
change in individual grid boxes®3** by comparing
trends in observations with those in unforced model
simulations and in anthropogenically forced simula-
tions. For many grid boxes, the observations are again
only consistent with simulations that include anthro-
pogenic forcings, which is interpreted as indicating
that anthropogenic forcing is needed to explain the
data. Again, this agreement is subject to model uncer-
tainty, which is large on grid box scales, and to the
possibility of compensating errors.

It has been pointed out* that the sample of
best-effort simulations available for the IPCC AR4
shown in Figure 2 does not fully span the space of
combinations of external forcing (particularly aerosol
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FIGURE 2 | Comparison between global mean temperature changes
relative to the 1901-1950 average (°C) from observations (black) and
simulated by climate model simulations that include (a) both human
and natural influences on climate (for example, the effect of strong
volcanic eruptions, marked by vertical gray bars) and (b) natural
influences only. Individual model simulations are shown by thin lines,
their average by a fat line (red in panel (a), blue in panel (b)). (Reprinted
with permission from Ref 2. Copyright 2007 Cambridge University Press)

forcing) and climate sensitivity, raising the question:
Is the agreement with data ‘too good’ and could there
be compensating errors, for example, due to high cli-
mate sensitivity that is countered by too much indirect
aerosol forcing? Fingerprint methods, which we dis-
cuss next, improve upon such simple comparisons by
using both spatial and temporal information on cli-
mate change. Fingerprint methods can be used to esti-
mate the contribution by individual signals separately,
thus identifying, for example, if greenhouse warming
in models is consistent with an estimate from observa-
tions or similarly, how the observationally estimated
change due to aerosols compares to simulations. We
will discuss below how this can help to fully describe
the range of greenhouse gas and aerosol response that
is consistent with the observations and hence address
the possibility that the models shown in Figure 2 may
not fully span uncertainties in the climate’s sensitivity
to forcing and our knowledge of aerosol forcing.
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Fingerprint Methods

Fingerprint methods use the anticipated spatial, tem-
poral, or space-time patterns of response to external
forcing and determine whether these fingerprints are
present in the observations and whether they are
significantly stronger than expected from climate
variability randomly projecting onto them. Thus,
detection and attribution aims at distinguishing the
externally driven changes from those that are inter-
nally generated.

Early work used pattern correlation statistics
to obtain evidence of fingerprints in observations.
Such studies calculate the spatial correlation between
expected and observed patterns of climate change.
For example, Santer et al.>> calculated the correlation
c(t) of a fixed fingerprint pattern of expected climate
change with time-averaged patterns of observed
temperature change for consecutive blocks of time.
The results showed that the correlation improved over
time and that the trend in the resemblance between
the patterns is greater than expected from internal
variability. The latter is assessed by using blocks
of climate model output with the same length and
spatial coverage as the observations that are obtained
from climate model ‘control’ simulations run without
external forcing. A disadvantage of pattern correlation
techniques is that they cannot be optimized to increase
the detectability of the expected pattern of change or
to effectively identify in observations the responses to
more than one forcing agent simultaneously.

A general paradigm that is used either explicitly,
for example, in optimal detection methods, or
implicitly in pattern correlation methods, is that an
observed climate change y is regarded as a linear
combination of externally forced signals X and
residual internal climate variability u?®37 (see also
appendix of Ref 2):

y=Xa+u. (1)

In this expression, vector y is a filtered version of
the observed record (it can be the full space-time
pattern of recent climate change or a subset of it), the
columns of matrix X contain the estimated response
patterns to the external forcings (signals) that are
under investigation, and a is a vector of scaling factors
which adjusts the amplitudes of those patterns, with
one scaling factor for each fingerprint in matrix X
(Figure 3). As shown in Figure 3, the model data used
in this method are reduced to the coverage of observed
data for a like-with like comparison. Vector u contains
the regression residuals and represents internal climate
variability. Vector u is usually assumed to be a
Gaussian random vector with covariance matrix C,
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FIGURE 3| Schematic for detection and attribution. The observed change (shown here: pattern of temperature change over the 20th century,
left) is composed of a linear combination of fingerprints for all forcings combined (top, right) and for natural forcings only (center right, this
combination allows rescaling of natural vs anthropogenic fingerprints in simulations of the 20th century) plus residual, unexplained variability. The
resulting scaling factors and warming per fingerprint can be used to derive contributions to warming such as shown in the bottom panel, labeled
panel (c), although in this instance the latter is derived from three fingerprints. It shows attributable warming estimated from a detection and
attribution analysis for the 20th century, using a fingerprint of the spatial pattern and time evolution of climate change forced by greenhouse gases
(red), other anthropogenic forcing (green), and solar and volcanic forcings combined (blue). The best estimate contribution of each forcing to
warming in the 50-year period 1950-1999 is given by the vertical bar and the 5-95% uncertainty in that estimate is given by the black whiskers. The
observed trend over that period is shown by a black horizontal line. The different estimates are derived using fingerprints from different models.

(Reprinted with permission from Ref 2. Copyright 2007 Cambridge University

although this assumption is not necessary to make
statistical inferences about the scaling factors. It can
be shown that a best (in a least square sense) linear
unbiased estimator (BLUE) of the vector of scaling
factors is given by

a=X'C'X)'XTCly = (X' X)Xy, (2)

Matrix X and vector ¥ represent the signal patterns
and observations after normalization by the climate’s
internal variability. The normalization transform
maximizes the signal-to-noise ratio.>3%3” However,
it is also possible to omit the use of the inverse
covariance and use the Unit matrix instead, in a regular
Euclidean regression approach.!%36-38:3

Uncertainty in the vector of scaling factors is
estimated either by repeatedly superimposing samples
of internal variability on the observations or by

Press)

estimating ranges of scaling factors from fingerprints
that can be caused by analyzing samples of internal
climate variability.

Most recent detection and attribution work
uses fingerprints that vary in time and space. These
fingerprints are almost always obtained from climate
models, particularly, Atmosphere-Ocean General
Circulation Models (AOGCMS). AOGCMs consist
of an atmospheric and an oceanic general circulation
model, based on first principles of thermo- and
fluid dynamics, together with sea-ice and land
surface models, and augmented by approximations
(called parameterizations) for processes that cannot
be realistically simulated at the given resolution of
approximately one to several degrees latitudinally and
longitudinally.*® Some recent models also contain
interactive vegetation, carbon cycle and chemistry,
and dynamic representations of the large ice sheets
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on Greenland and Antarctica, moving toward an
earth system model. Because AOGCMs simulate
natural internal variability as well as the response
to specified anomalous external forcing, climate
signals are typically estimated by averaging across
an ensemble of AOGCM simulations to reduce the
effects of internal variability on the signal estimates
or fingerprints (for a discussion of optimal ensemble
size and composition, see Ref 41). When ensembles
are small or signals weak, the noise remnants in the
fingerprints may bias ordinary least squares estimates
downward. This can be avoided by estimating a
with the total least squares (TLS) algorithm, which
accounts for noise in the fingerprints.*>

The vector a accounts for possible errors in the
amplitudes of the external forcing and the climate
model’s response by scaling the signal patterns to best
match the observations. If a chosen uncertainty range
(e.g., 5-95%) does not include ‘0, this indicates that
the fingerprint is likely present in observations and
hence detectable. If the signal is detected, but the
estimated uncertainty range does not include ‘1°, this
indicates that the model response has to be rescaled
to match the observations. The model fingerprint,
scaled with the range of scalings, thus provides an
estimate of the range of forcing responses that are
consistent with the observed change. This is shown
in Figure 3, where the bar diagram results from scal-
ing the model’s warming over the recent 50 years in
response to different external forcing by the range
of scaling factors (best guess shown by bar, range
by whiskers) that is consistent with the observations.
Thus, even if a model’s sensitivity was overestimated
or its aerosol forcing underestimated, the estimated
scaling factor would correct for this. This is why
fingerprint methods can yield more rigorous and com-
plete assessments of the cause of observed changes
than methods that assess whether climate model sim-
ulations are consistent with the observations, given
the natural variability. The scaling that has thus been
estimated for greenhouse gas forcing can further be
used for probabilistic predictions of future change that
is anchored in observations.’**3

Use of the BLUE estimator is particularly helpful
if the signal-to-noise ratio of forced signals to inter-
nal variability is low or if several signals are to be
separated from each other and noise, improving the
power of the method substantially. Application of the
BLUE estimator requires an estimate of the covari-
ance matrix C (i.e., the internal variability) and its
inverse. This is usually obtained from unforced vari-
ation simulated by AOGCMs (e.g., from long control
simulations) because the instrumental record is too
short to provide a reliable estimate and may be affected
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by external forcing. AOGCMs may not simulate natu-
ral internal climate variability accurately, particularly
on small spatial scales, and thus a residual consistency
test’’ is generally used to assess the model-simulated
variability on the scales that are retained in the analy-
sis. To avoid bias, uncertainty of the estimated scaling
factors is usually assessed with a second, statisti-
cally independent estimate of the covariance matrix C
which is ordinarily obtained from an additional, inde-
pendent sample of simulated unforced variation.**
The inversion of the covariance matrix presents
problems unless very large samples of natural variabil-
ity data are available. Thus, usually the dimension of
the problem needs to be reduced substantially to make
it treatable. The dimension used for optimal detec-
tion generally needs to be fairly small, to ensure that
sufficiently many samples of long-term trends from
internal variability are available from control simula-
tions or other sources to span the covariance matrix
(this is often in the order of magnitude of 5-20 degrees
of freedom). Carefully thinking about the dimension
of a problem is also useful because retaining dimen-
sions that do not provide information about the signal
of interest will reduce the signal-to-noise ratio.3® The
dimension reduction is often achieved by expanding
the problem in the space of EOFs of the internal
variability. EOFs are a convenient choice, but other
choices for basis vectors can be advantageous to well
represent the pattern of the climate change signal, par-
ticularly if it is not well captured by a combination of
EOFs of climate variability.’%* A method related to
optimal fingerprinting was recently suggested by Del
Sole et al.,*> who use Discriminant Analysis to identify
slowly varying components in internal variability.
Thus far, we have described the so-called ‘fre-
quentist’ approaches to making inferences about
the contribution of external forcing to an observed
change. Bayesian approaches are gaining interest in
climate research because they can often be used to
more formally describe the sources of uncertainty that
enter into a given analysis. They also provide a means
for integrating information from multiple lines of evi-
dence. In Bayesian statistics, inferences are based on
a posterior distribution that combines evidence from
the observations with prior information. In principle,
the latter may include information on observational
uncertainty, forcing and forcing uncertainty, climate
response and response uncertainty, climate model
uncertainty, internal variability, and so on, thereby
describing probabilistically all information that enters
into the analysis. Information from climate models is
an important aspect of the formulation of Bayesian
approaches, but as with the standard approach, infor-
mation from observations is paramount in making an
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inference about whether the observed system is being
influenced by a given forcing agent. An advantage of
the Bayesian approach is that detection and attribu-
tion criteria can be articulated similarly, whereas the
criteria are more asymmetric in the case of standard
frequentist approaches.*®#” Inferences can be made
on the basis of the posterior distribution directly*” or
by means of Bayes factors.*3 Bayes factors quantify
how evidence in the observations changes the pos-
terior odds of a pair of hypotheses relative to their
prior odds.*’ Large changes, such as 10- or 100-fold
increase in odds ratio, are required to claim obser-
vations contain ‘strong’ or ‘decisive’ information in
support of a prior hypothesis.*’

Most Bayesian detection and attribution studies
currently available have used some variant of Bayes
factors. Schnur and Hasselmann*® described a filtering
technique that optimizes the Bayes factor in a manner
similar to the way in which optimal fingerprints
maximize the ratio of the anthropogenic signal
to natural variability noise in the conventional
approach. Other studies by Min et al.’%=53 use similar
approaches. In contrast, Berliner et al.*® and Lee
et al.*” make inferences on the basis of a posterior
distribution that is calculated using the scaling factor
estimates from conventional optimal fingerprinting.
Bayesian studies published to date have drawn
conclusions consistent with those obtained via non-
Bayesian approaches, so they will not be discussed in
further detail in this review.

Results of Large-Scale Detection and
Attribution Studies Using Climate Models
The previous section showed that fingerprint methods
take advantage of using a physically based form of
climate model that translates changes in radiative
forcing into an estimate of the expected climatic
response. The detection paradigm can use knowledge
of the form of these expected responses together
with estimates of internal variability to maximize
their detectability in observations. In this section,
models that have been used to estimate the responses
are discussed, starting from very simple physical
concepts to comprehensive earth system models, along
with detection and attribution results based on such
models.

A simple model of temperature changes would
be required for deriving fingerprints of climate change,
at the very minimum, to be able to account for the
fact that the earth’s climate responds to changes in its
energy balance (i.e., to radiative forcing), and that a
fast change in forcing will be translated into slower
climate responses because of the ocean’s thermal
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inertia. As an example, Held et al.>* describe a very
simple model that resolves the response of global
temperature to radiative forcing, with thermal inertia
separated into that due to heat uptake by the ocean’s
mixed layer (which occurs on timescales of years)
and that due to heat transfer from the mixed layer
to the deep ocean (which is a very slow process).
This simple model is related conceptually to other,
more complex energy balance models (EBMs).’5=7
The timescale of volcanic response in an EBM can be
shown to be very similar to that derived from a tree
ring-based reconstruction of Northern Hemispheric
mean temperature,’® while Held etal. show that
the response of their simple EBM represents well
the transient and recalcitrant response in the GFDL
general circulation models.>*

As an example of the application of a
simple climate model in detection and attribution
studies, we consider detection and attribution of
changes resolved in palaeoclimatic reconstructions of
Northern Hemispheric temperature'? (Figure 4). The
fingerprints shown in Figure 4, which in this case are
obtained from a two-dimensional EBM, illustrate that
the response to forcing reflects the time evolution
of forcing and a time delay in the climate system’s
response. Fingerprints obtained with both simpler
and more complex coupled climate models are very
consistent with those obtained using the EBM,2-28-58
and show that the driving factors in the detectability of
past large-scale changes in temperature are relatively
simple. The detection and attribution results shown
in the lower panel of Figure 4 were obtained with
a multiple regression approach (as discussed above)
to estimate the contribution by solar, volcanic, and
anthropogenic forcing to multiple reconstructions of
past climate change. This study'? showed that past
climate has been affected by solar, volcanic, and
anthropogenic forcing combined, that the responses to
individual forcings can be separated from each other
and climate variability in the reconstructed record, and
that greenhouse gas increases are needed to explain
recent warming in almost all analyzed records of
the past millennium. Furthermore, the study showed
that the influence of volcanic eruptions on the past
millennium could be detected both through the short-
term cooling response to volcanic eruptions and the
occurrence of overall cooler multi-decade episodes
that correspond to periods with multiple eruptions.
In contrast, solar forcing alone could not be robustly
detected, although it was detectable in some records
over some time periods.

EBMs have also been used in the detection
and attribution of the causes of observed changes
in the instrumental record, for example in work
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FIGURE 4| (a) Energy balance model simulations of the response to greenhouse gas increases, moderated by aerosols in the 20th century (red),
solar forcing (green), and volcanic forcing (blue) (Reprinted with permission from Ref 58. Copyright 2003). (b) Results obtained using these
simulations as fingerprints for the effect of all forcings combined in a palaeoclimatic reconstruction (black, fitted to best match the reconstruction
with gray shading indicating the uncertainty in the scaling factor) compared to a fit of a coupled model (grey). The lower half of the panel shows the
estimated contribution by each individual forcing time series scaled to match the reconstruction in a multiple regression, with shading again
indicating the uncertainty in the scaling factor and hence in the estimated contribution by individual forcings. The uncertainty in the solar signal
(green) is not shown as the effect of that forcing could not be distinguished from noise ; note that similar results are obtained using a number of other
reconstructions, see paper). (Reprinted with permission from Ref 12. Copyright 2007 American Meteorological Society)
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by Wigley et al.’®7 or North et al.’*% or other
recent approaches, some of them focusing on the
role of the sun.®'=% A range of simple models and
models of intermediate complexity have also been
very useful for studies determining which range of
climate sensitivity yields results that are consistent
with observed changes, using methods closely related
to attribution techniques®—°" (see review in Ref 64).

Nevertheless, most applications of detection and
attribution methods use fingerprints and estimates of
climate variability from AOGCMs or, occasionally,
from atmosphere-only GCMs (AGCMs). In the
early 1990s, fingerprints were usually derived
from equilibrium change or future climate change
simulations, as simulations of the 20th century only
became available later. For example, Santer et al.?’
used fingerprints of the zonally averaged change in
atmospheric temperature to discover that radiosonde-
recorded atmospheric temperature changes showed an
emerging trend toward the expectation from AGCMs
of tropospheric warming and stratospheric cooling,
consistent with expectations from radiative balance
considerations. Similarly, it has been shown3%68
that recent surface temperature trends projected well
onto fingerprints of greenhouse warming derived
from 21st century simulations. In a first multi-
fingerprint attribution study it was also shown that
the fingerprint of aerosol cooling was detectable in
recent summer temperature trends, while the recent
trends did not agree with expected changes from solar
forcing alone.** While the latter article used data
from simulations of the 20th century to compare
the amplitude of fingerprints in observations with
those presently expected based on models, it was
the availability of ensembles of simulations of the
20th century that enabled Tett etal.®” to pioneer
the derivation of fingerprints of climate change
from contemporaneous transient climate change
simulations rather than the 21st century simulations.
Fingerprints from simulations of recent climate change
are much more suitable for estimating the contribution
to recent observed changes from non-greenhouse
gas forcings, which show a more complicated time
history than simply emerging linear trends. The use of
ensembles enables these more subtle fingerprints to be
estimated successfully despite the presence of robust
amounts of internal variability within the climate
model. Fingerprints based on ensembles of AOGCM
simulations of the 20th century have been applied in
most recent detection and attribution studies and are
assessed and reviewed in Refs 1 and 2. Only with full
climate models was it possible to extend the detection
of anthropogenic climate change to precipitation’%”!
(Figure 4) and sea level pressure.!’
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The key assumptions that are made when using
fingerprint methods are that the response to external
forcing is, apart from climate variability, a deter-
ministic change, and that to first order, signals and
noise superimpose linearly. This assumption has been
tested and found valid for large-scale temperature
change,’>”3 although deviations from linearity have
been found for non-temperature variables such as
precipitation in the tropics.”> Although inferences
about scaling factors can be made without mak-
ing an assumption about how internal variability is
distributed, most studies have assumed Gaussian vari-
ability. This is generally well justified because finger-
print methods are typically applied to data that have
been averaged over space and/or time, ensuring via the
central limit theorem”* that the Gaussian assumption
is satisfied. While the Gaussian framework is generally
satisfactory for fingerprint methods, another distribu-
tional framework may be more appropriate if large-
scale space/time filtering has not been performed.”®

ROBUSTNESS OF RESULTS TO MODEL
ERROR

The fact that many detection and attribution methods
rely on model data makes them vulnerable to
model error. This section therefore discusses how
the robustness of findings can be assessed and which
findings are more or less uncertain given that climate
models are necessarily incomplete and that their
simulations contain errors.

Robustness to Uncertainty in Fingerprints

As indicated above, most detection and attribution
methods use models to estimate the expected responses
to external forcing (the fingerprints) and often also use
models to estimate the internal unforced variability of
the climate system. Uncertainty in the fingerprints
derives from a number of sources, including forcing
uncertainties, so-called structural uncertainties in
models, and the contamination of fingerprints by
internal variability. Forcing uncertainties are discussed
in Introduction and are particularly substantial for
aerosol forcing and solar forcing.

Internal variability generated by AOGCMs or
earth system models masks some of the true under-
lying change fingerprint in the model. Thus single
simulations do not always provide good estimates
of fingerprints, particularly when the signal-to-noise
ratio is low. A common strategy for reducing the
extent to which a fingerprint is affected by inter-
nal variability is to average across a small ensemble
of simulations (typically 3-10 from a given model),
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each started from different initial conditions. (Note
that some experiments with models having simplified
oceans or reduced resolution may have orders of mag-
nitude more ensemble members®®7°). This averaging
removes some, but not all, traces of internal vari-
ability in the fingerprint. As individual realizations
can be regarded as being statistically independent, the
uncertainty from internal variability in such finger-
prints decreases with increasing ensemble size. As has
already been discussed, uncertainty from this source
can negatively bias scaling factor estimates from ordi-
nary least squares regression, particularly in variables
such as precipitation,”’ for which the response to
forcing is weak relative to the background variability.
Consequently, many recent studies use the TLS regres-
sion fitting technique*? that is able to take this effect
into account.

Greater sources of uncertainty in fingerprints
are parameter uncertainty (uncertainty in parameters
of stochastic approximations’®) and the structure of
the approximations used in climate models (so-called
structural error). Here we use the term ‘structural
error’ to refer to the combined effect of both types of
error. Differences between models due to structural
error are not always readily apparent. For example,
Figure 2 shows results of 20th century simulations
from the 14 models in the CMIP3 multi-model archive
that included both natural and anthropogenic forc-
ings. At the global scale, the simulated responses to
anthropogenic forcing are quite similar and corre-
spond well with observed changes (Figure 2), with
the magnitude of the differences between models and
individual simulations being consistent with internal
variability. Differences between models are somewhat
more apparent when looking at spatial patterns of
change, particularly when considering projections of
future change. Overall, the multi-model mean better
represents late 20th century climate than the ensem-
ble means of simulations produced with individual
models.”” Thus a strategy to further reduce finger-
print uncertainty is to construct fingerprints from
multi-model means rather than from single model
ensembles.”® Confidence can be further increased by
evaluating the robustness of results using ensembles of
models of different quality as assessed by one or more
metrics of model skill” (see guidance in Ref 80). Even
s0, uncertainty remains because the available ‘sample’
of models is finite and because this ‘sample’ cannot
be considered to be representative of the population
of all equally plausible representations of the climate
system of a given complexity. Using model ensem-
bles with perturbed parameters’® helps to span more
of the space of possible models, but some structural
uncertainty remains.
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The choice of statistical treatments of model
uncertainty has had little effect on overall findings in
situations when the signal-to-noise ratio is relatively
robust, as with surface temperature over the past
half decade. These choices range from ordinary
least squares, to TLS, and to the errors-in-variables
approach used by Huntingford etal.®! Figure 3
illustrates that the estimated contribution to recent
warming using a BLUE and total least square
estimators is quite similar for greenhouse gas forcing
when using fingerprints from individual models (red
bars). In contrast, the estimated contribution from
natural and other anthropogenic forcings varies more
as a function of the model providing the fingerprint.
Treating the available collection of models as a
statistical sample allows one to account at least
partially for the effects of both model differences and
internal variability on the specification of fingerprints
in the regression problem that is heart of detection
and attribution studies.®! The use of large multi-
model ensembles and more sophisticated regression
approaches has also had a great impact on our ability
to detect change in non-temperature variables, such as
precipitation.”? While it is clear that the reliability
of an attribution result increases when using the
multi-model mean, it is presently not clear to what
extent this is because of the reduction of variability in
the estimated fingerprints, particularly for high-noise
variables such as precipitation, and to what extent
this is because of the improvement of other aspects of
the estimated fingerprint such as a possible reduction
in bias from sampling across multiple models.

A further source of robustness derives from the
fact that detection and attribution methods do not
require the models to simulate the correct amplitude
of the response to forcing. In the case of tempera-
ture, while there is some uncertainty in the shape of
the fingerprint, studies generally restrict themselves
to the large-scale features of the response that are
well simulated by most models and that are deter-
mined by large-scale geographic or climatic features
(e.g., the land—sea distribution) and the characteristics
of the dominant feedback processes such as snow/ice
albedo feedback.?? This implies also that uncertainty
in the strength of the transient climate response should
not significantly influence detection and attribution
results, as the scaling factor will match the amplitude
of the response to observations irrespective of the
amplitude of the model fingerprint (see discussion in
Ref 2). On the other hand, there is greater uncertainty
in the shape of fingerprints for other variables, such
as precipitation and surface pressure, both of which
have response patterns that are less strongly linked
to geographic features and more strongly determined
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by changes in large-scale circulation features, such
as the location of the Intertropical Convergence Zone
(ITCZ) and the positioning and strength of the Hadley
circulation.

Confidence in results estimating the contribution
by individual forcings to a recent change increases
when it is clear why we can separate the influences of
individual external forcings. For example, for global-
and large-scale surface air temperature, a feature that
helps in separating the effects of different types of forc-
ing is their different time histories. Whereas forcing
from the well-mixed greenhouse gases has increased
steadily over the instrumental record in concert with
increasing fossil fuel use, aerosol forcing has flat-
tened out in recent decades due to fuel switching,
economic changes, and emissions controls designed
to improve air quality. In contrast, solar forcing has
fluctuated both up and down slowly in time, and vol-
canic forcing, which is episodic, is marked by clearly
identifiable events in time, with greater activity during
the second half of the 20th century than during the
first half of the century. Spatially, the response to forc-
ing from well-mixed greenhouse gases is also distinct
from that of other forcings, such as aerosols, although
this can be affected by feedbacks. The greenhouse
gas fingerprint is characterized by a slowly increasing
forcing in time and a spatial response characteristic
for such an increasing forcing: more warming over
land than oceans, more warming in regions where
the cryosphere is affected, and because of the ther-
mal capacity of the oceans, relatively long delays in
response to forcing. This contrasts with the response
to aerosol forcing, which as well as having a differ-
ent time history from greenhouse gases is also more
prevalent in the Northern Hemisphere than in the
Southern Hemisphere, with the result that aerosols
have retarded warming more in the NH than in the
SH (see discussion in Ref 2). These types of spatial
and temporal features, which are distinct from the
patterns of variation associated with natural internal
modes of variability, ensure that the fingerprints are
not ‘multi-collinear’, and therefore that they can be
identified in the observations if they are present with
sufficiently large amplitude.

Finally, a further point that increases confidence
concerns the similarity of fingerprints for the time
evolution of global mean temperature from AOGCMs
and simpler models (compare Figures 2 and 4) and
their similarity with results using observations only
(Figure 1). This similarity across a very broad range
of approaches for identifying the response to forcing
in observations shows that the key features of the
evolution of global temperature with time are robust
to the type of model used or to not using a model at all.
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However, the situation is more complex for
other climate variables, for example, sea level pressure
or precipitation. The time evolution of forcing should
be able to help separate the response to volcanism from
that to slowly increasing greenhouse gas emissions
in precipitation.”! On the other hand, it is difficult
to separate the response to ozone depletion from
that of greenhouse gas increases in the observed
trends in the Northern and Southern Annular Modes,
and while models appear to simulate a change
similar to that observed in the Southern Hemisphere,
they substantially underestimate the change in the
Northern Hemisphere.>!? Similarly, climate models
appear to underestimate the observed change in
zonal precipitation,”® and the aerosol impact on
precipitation, including its pattern, is very uncertain.'”
This limits confidence in attribution results for
non-temperature variables at present, and with it,
confidence in projections of future changes.

To reduce model uncertainty, it is vital to
gain a clear physical understanding of mechanisms
involved in observed changes and to quantitatively
confront models with observations along the chain of
mechanisms involved. For example, the precipitation
response to greenhouse gas forcing is influenced by
a warming atmosphere, a direct radiative response
in precipitation (see discussion in Ref 71), and,
more uncertainly, through circulation changes. Other
forcings, such as aerosols, may show characteristics
that will eventually help separating their influence
from that of greenhouse gases and allow for a better
estimate of the greenhouse gas-driven precipitation
change.

Robustness to Uncertainty in Estimates

of Climate Variability

As indicated previously, climate models also play
a critical role in detection and attribution studies
by providing information about the natural internal
variability of the climate system—chaotic variability
from weather and other sources that would be
present irrespective of any external influence on
the system. This information can play two roles
in detection and attribution; most importantly, to
make inferences whether the postulated signals are
present in the observations or whether an observed
change can be explained by variability, and secondly
in optimization that aims to maximize signal-to-
noise ratios. While optimization can be important
for improving the detectability of a given signal, error
in the transformations that optimize the signal-to-
noise ratio does not greatly affect robustness. Incorrect
transformations result when the covariance structure
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FIGURE 5 | Comparison of variability as a function of timescale for continental mean surface air temperature over the 20th century, comparing
instrumental data (black) and 20th century all-forcings simulations (colors) from 14 models. The 5-95% uncertainty ranges are given by bars. Ref 2
gives details on estimation procedure. (Reprinted with permission from Ref 2. Copyright 2007 Cambridge University Press)

of the observations is incorrectly represented by the
climate model and would have the effect of reducing
delectability, effectively making the statistical criteria
for detection and attribution more stringent.

Error in the estimate of the magnitude of
internal variability, on the other hand, is a more
serious issue because it directly affects estimates
of the uncertainty of the scaling factors that are
applied to the fingerprints—when internal variability
is underestimated the uncertainty of the scaling factors
is also underestimated. A number of approaches are
used to ensure that detection and attribution results
are robust to reasonable uncertainty in the estimates of
internal variability. First, model-simulated variability
is compared against observed variability. This can
be done either by removing an estimate of the
response to forcing from the observations, and
then comparing the variability that remains against
control runs,’> or by comparing the variability
of observations directly to that simulated in 20th
century simulations that include both anthropogenic
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and natural forcings? (Figure 5). In both cases, it
is seen that model-simulated surface temperature
variability is consistent with observed variability on
continental scales, although within large uncertainty
ranges. In contrast, model-simulated precipitation
variability may be underestimated, particularly in
the tropics.”” Second, the residuals estimated from
the regression that is used in fingerprinting provide
an estimate of internal variability that is based on
the observations and can be compared with model-
based estimates via the residual consistency test.3’
Ideally, the results of this test should be robust
to reasonable changes in the analysis, for example
in truncation level (see above). As a third step,
model-simulated variability is often inflated by an
arbitrary factor of two or more so as to assess
the robustness of detection and attribution findings
under the conservative assumption that models
have underestimated internal variability. Global-scale
detection and attribution results for temperature are
typically found to be robust even with very substantial
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variance inflation factors.>? For precipitation, key
results are robust to inflating variance by a factor
of two,”? and uncertainty in precipitation variability
is further discussed below. And finally, the variability
in reconstructions of climate of the last millennium
that is not explained by external influences (Figure 4)
can be used as a comparison against climate model
unforced variability. On interdecadal timescales, this
residual variability is similar to or smaller than that
of several AOGCMs.'2%8 Thus, the assessment that
greenhouse gas increases has very likely influenced
recent temperatures is based on robustly assessed
temperature variability, while detected signals in non-
temperature variables are more affected by uncertainty
in model variability.

TOWARD DETECTION AND
ATTRIBUTION OF REGIONAL
CHANGES AND IMPACT RELEVANT
CLIMATE VARIABLES

Increasingly, attention has been focused on regional
questions and changes in impact relevant variables,
such as regional patterns of temperature change33-83-8¢
(see also Ref 1), precipitation,’®8” the hydrological
cycle,3%3% and temperature and precipitation extremes
or impacts (Box 1).20%3 Also, regional models or high-
resolution models are becoming important to derive
fingerprints,’* and the use of earth system models
will enable fingerprints to extend to variables such
as carbon cycle feedbacks® or vegetation, or derive
fingerprints for greenhouse gas concentrations from
the combination of emissions and feedbacks.

As has been discussed above, uncertainties in
both forcing and response are of significantly greater
concern for regional detection studies” and for non-
temperature variability such as precipitation.”%”18”
Regional signal separation is limited by lower signal-
to-noise ratios that arise because there is less opportu-
nity to spatially filter out the effects of low-frequency
internal variability. Also, there is often a lack of suffi-
cient signal detail in space and time to permit signals
from different sources to be distinguished. It may be
possible to overcome the former problem through
more sophisticated temporal filtering than used pre-
viously or by borrowing information from adjacent
regions. For example, Christidis et al.”® make infer-
ences about the contributions from anthropogenic and
natural forcings to regional temperature change based
on a global-scale detection and attribution analysis.
A related approach that may be useful in instances
when the detection and attribution study involves a
spatial index, such as sea-ice extent, is to add struc-
ture to the signal by considering the evolution of the
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annual cycle over time.”” The increasing resolution
of global and regional climate models, together with
more detailed specification of regionally important
forcings, such as land-use change and the inclusion
of short-lived forcings including absorptive as well
as reflective aerosols, will help to resolve the lat-
ter problem. Additionally, dynamical and statistical
downscaling may be an option for developing impact
relevant signals with more specific spatial structure.?$

Obtaining credible estimates of internal vari-
ability can be more challenging in cases, such as
precipitation,’%8793 where models are suspected of
undersimulating internal variability due to differences
in the scales that are represented by models and obser-
vations (Figure 6(b)). Precipitation observations from
rain gauges represent point values and display tempo-
ral and spatial variations in intensity that are generally
not simulated by global climate models. Aggregation
of available gauge data within grid boxes can ame-
liorate this ‘scale problem’ somewhat’®®° but does
not seem to completely resolve the issue. Additionally,
transformations of precipitation into dimensionless
units that are applied separately to observations and
models, such as the probability integral transform
that maps precipitation onto a (0,1) scale, may be
useful.”® Restricting the analysis to periods with
greater data coverage may also be helpful in con-
structing more robust estimates of internal variability
because sparse coverage reduces the ability to filter
short space—timescale noise from observations and
model output alike. Available detection and attribu-
tion studies on precipitation’%87:23:100-102 haye gone
to great lengths to assure the quality of the observa-
tional data and to examine the robustness of detection
results to variations in the construction of fingerprints
and model-simulated internal variability, including by
inflating the model-simulated variability in detection
and attribution studies.

BOX1

USING MODELS TO ATTRIBUTE IMPACTS OF
CLIMATE CHANGE TO FORCING

The information obtained by confronting
models with observations in detection and
attribution studies tells us much about the
reliability of models and can be used to constrain
projections of future change and to quantify
their uncertainty.'® Detection and attribution
techniques can also be used to understand
changes in impacts. The challenges in attribut-
ing impacts to changes in external drivers are
often substantial. Data for variations of species
distribution, human health, migration patterns,
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CONCLUSION

Climate change detection and attribution is first,
and foremost, about understanding observed changes.
However, detection and attribution requires a model
of why climate may be changing to be able to
draw conclusions from observations. Models used
in the interpretation of observations can range from
simple conceptual ‘models’ to climate models of
intermediate complexity, and ultimately to coupled
atmosphere—ocean general circulation models and
earth system models.

Conclusions on observed large-scale tempera-
ture changes are robust to the choice of model that
is used to express how temperature is expected to
have changed in response to forcing. Simple con-
ceptual models, for example, based on a separation
between signal and variability on timescale, allow
the identification of changes in observations that are
qualitatively consistent with expectations from more
physically based models. Results using the most com-
plete and complex climate models provide results that
are consistent with those using simpler models, but
provide much more information on expected signals.
This additional information improves the signal-to-
noise ratio of individual climate change signals and
improves the ability to distinguish between the com-
ponents of observed climate change corresponding to
the responses to different external forcings.

The different methods used in detection and
attribution research differ in their robustness to
assumptions and to model error. Simple methods that
compare changes in response to one hypothesized
cause to that due to other hypothesized causes
are sensitive to errors in the magnitude of climate
change, and with that, to errors in transient climate
response and in the magnitude of external forcings.
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FIGURE 6| (a) Comparison of precipitation in zonal latitude bands between a multi-model mean (blue time series, trend shown by red dashes)
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The figure shows box and whisker plots of the ratio of 5-year 10° zonal mean precipitation variances between all-forcing simulations and that
estimated from station observations. The upper and lower ends of each box are drawn at the 75th and 25th quartiles, and the bar through each box is
drawn at the median. The two bars indicate the range that would cover approximately 90% of variance ratios if the upper or lower halves of the
variance ratio distribution were roughly Gaussian in shape. Individual points beyond the horizontal bars indicate outliers. (Reprinted with permission

from Ref 70. Copyright 2007 Nature Publishing Group)

Pattern correlation methods and regression methods
that estimate the magnitude of fingerprints from
observations are insensitive to the magnitude of
changes simulated in response to forcing but are
sensitive to uncertainties in the pattern of response
or forcing. Regression methods have advantages
over pattern correlation methods in that signal-
to-noise ratios can be optimized, multiple signals
can be considered simultaneously in a straight
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forward manner, and signal uncertainty from internal
variability, and to some extent structural error,
can be taken into account. To the extent that
existing estimates of forcing cover the true forcing,
forcing uncertainty can be assessed by using model
simulations driven with different forcing estimates,
and the effect of error between models can be assessed
by using multi-model fingerprints and by using large
perturbed physics ensembles. However, the effect of
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errors common to all models cannot presently be
assessed. Similarly, the effect of errors in observa-
tions has been estimated, but can only be assessed
to the extent that the space-time characteristics of
uncertainty are known. Here, arguments of physi-
cal consistency of observed changes between variables
and with assumptions are helpful and improve the reli-
ability of results. Further studies of multiple climate
models with perturbed parameters (such as in Ref 76)
will help to better understand this remaining model
uncertainty, and emulators''? may help to more fully
explore model uncertainty.

The attribution results for large-scale temper-
ature changes are supported by a large number of
different lines of evidence and are robust to using very
simple to fully complex models. They are also robust
to using different methods and to using different
assumptions and even approaches that avoid direct use
of models altogether. They are also physically consis-
tent with detection and attribution results from other
climate variables, including, for example, tropopause
height, vertical temperature of the atmosphere, atmo-
spheric humidity, and to some extent, precipitation
changes (see discussion in Refs 2 and 71). The process
understanding of the way the different forcings work
and the ability of climate models to simulate key char-
acteristics of observed changes increase confidence
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