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An efficient, probabilistic neural network approach to
solving inverse problems: Inverting surface wave
velocities for Eurasian crustal thickness
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Geodynamic Research Institute, Department of Geophysics, Utrecht University, the Netherlands

Abstract. Nonlinear inverse problems usually have no analytical solution and may
be solved by Monte Carlo methods that create a set of samples, representative of
the a posteriori distribution. We show how neural networks can be trained on these
samples to give a continuous approximation to the inverse relation in a compact
and computationally efficient form. We examine the strengths and weaknesses of
this approach and use it to determine the full a posteriori distribution of crustal
thickness from surface wave velocities. The solution to this inverse problem shows
significant asymmetry and large uncertainties due to trade-off with shear velocity
structure around the Moho. We produce maps of maximum likelihood crustal
thickness across Eurasia which are in agreement with current knowledge about
the crust; thus we provide an independent confirmation of these models. In this
application, characterized by repeated inversion of similar data, the neural network

algorithm proves to be very efficient.

1. Introduction

Geophysical inverse problems are characterized by
the nonlinearity of the physics and by the statistical
nature of the solution, the latter being partly due to
the physics and partly due to noise in geophysical mea-
surements. The solution to a general inverse problem
can be given in the form of a density function (df)
o(m,x) [Tarantola and Valette, 1982], where x rep-
resents a set of distinct measurements and m a set of
model parameters. A df, when integrated over a range
of values of m and x, defines the probability that m
and x assume a value in that range. Approximate prob-
abilistic solutions are given by linearizing the problem
[Matsu’ura and Hirata, 1982]; explicit analytical solu-
tions for nonlinear inverse problems do not usually ex-
ist. Instead, approximations are formed by a repre-
sentative set of samples, obtained by methods such as
Monte Carlo [Wiggins, 1996; Mosegaard and Tarantola,
1995], simulated annealing [Sen and Stoffa, 1991; Zhao
et al., 1996], and the genetic algorithm [Stoffa and Sen,
1991; Lomaz and Snieder, 1994]. Of these, the Monte
Carlo method yields most statistical information, but
forming the solution requires many forward calulations.
We show that when repeated inversions using similar
prior information are required, the cost of forming sub-
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sequent solutions can be reduced significantly by using

neural networks as an inversion tool.
In the past, feedforward neural networks (henceforth,

just networks) have been applied succesfully in a wide
range of geophysical situations: to classification prob-
lems (e.g., source characterisation [Pulli and Dysart,
1990; Dowla et al., 1990]), to first-break picking [Mc-
Cormack et al., 1993; Dai and MacBeth, 1997], and
to continuous inverse problems, e.g., yield estimation
[Leach et al., 1993], subsurface target location [Poulton
et al., 1992], and inversion for seismic velocity models
[Roth and Tarantola, 1994]. We will show later that
such networks yield mean solutions to problems which
are probabilistic in nature. We will refer to them as
sonnets (single output neural networks), since they use
a single output node to represent the mean value of each
model parameter.

The use of networks in probabilistic applications is
described in a general context by Bishop [1995]. We de-
velop specific criteria for constructing networks which
provide probabilistic information on geophysical inverse
problems by emulating the solution from samples ob-
tained with a Monte Carlo method. The resulting
methodology is referred to as neural network inversion
(NNI). With proper preprocessing of training data, a
sonnet can be used to estimate o(m,x) directly. An
alternative approach is to use networks with multiple
output nodes to represent the statistical properties of
each model parameter. We call these networks mon-
nets (multiple output neural networks). If we split o as
follows:

o(m,x) = P(m[x)Q(x), 1)
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where Q(x) represents the limitations on the data space
imposed by the physics and prior constraints on the
model space and P(m|x) defines the conditional df of
models fitting a datum, then a monnet can be used to
emulate P(m|x).

To demonstrate the effectiveness of our methodology,
we apply NNI to the nonunique and weakly nonlinear
problem of estimating the crustal thickness from ve-
locity dispersion curves of fundamental mode surface
waves. The thickness of the crust is an important tec-
tonic parameter, and we investigate how well it is con-
strained by the data, irrespective of the values of other
unknowns such as crustal and mantle velocities. Two
independent dispersion data sets are used, consisting
of regionalized phase [Curtis et al., 1998] and group
velocity [Wu and Levshin, 1994] maps of regions of
Eurasia. Thus we obtain a unique, consistent view of
the patterns of crustal thickness across the continent.

2. Neural Networks

A neural network may be thought of as a black box
which filters a given input vector x through weights
{w;}, offsets {0;}, and transfer functions (for which
we use sine functions) to produce an output vector
u(x, {w;}, {o;}). This output should approximate a de-
sired vector W (m) (W may have a different number of
elements than m), where x and m are samples from the
df o(m, x); the function W will determine the proper-
ties of the monnets. A measure of the misfit between
the network output u(x,{w;},{0;}) and the required
output W(m) over an infinitely large number of sam-
ples of o(m, x) is given by the global error:

E({w;},{o;}) =

+oo oo
Q) / P(mlx)

—00

N
xS efu (%, {ws}, {og), Wy(m)] dmdx,  (2)
Jj=1

where we have used the decomposition in equation (1).
A measure for the difference between vectors u and W
for each input x is given by the local error €. For the
moment, we assume that a suitable training algorithm is
used to optimize the weights and offsets of the network
such that the global error is minimized. In sections 2.1
and 2.2, we vary the form of € and W to train networks
to return different types of output to characterize the
density function. In these problems the input vector
x will represent some geophysical data, the values of
the output vector u(x, {w;}, {o;}) will be used to ap-
proximate a df. Henceforth, we will drop the explicit
dependence of u and E on the weights {w;} and offsets
{0j} in our notation.

2.1. Sonnet-Type Networks

The sonnet represents the traditional use of neural
networks. Their general structure is sketched in Figure
la. These networks use a single output to create an

DEVILEE ET AL.: NEURAL NETWORK INVERSION

x1 x2 : x1

e bt *

O\ /O
O OO0

} ® ¥ 49

f P1 P2 P3

(a)

Figure 1. Sketch of the structure of feedforward net-
works. Arrows indicate that information flows in one
direction. (a) Network representing a sonnet, which re-
turns a value f given a set of inputs x. (b) Network rep-
resenting a monnet, which returns M (M = 3) outputs.
These networks are trained to give a set of probabilistic
estimators P about a model parameter.

estimate of the average value of each parameter. This
property can be used to our advantage when the train-
ing data are preprocessed to carry probabilistic infor-
mation.

2.1.1. Averaging property of a sonnet. We
consider a sonnet which has N output values u;,j =
1,..., N which will be used to approximate the N model
parameters of m directly. Let the local error be given
by the L? norm:

elu;(x),my] = [u;(x) —m;]°. 3)
Then the misfit function in equation (2) has its minima
for values of un(x),n = 1...N given by

+oo
Up(x) = / P(m|x)m,dm.

— 00

4)

This result implies that once the network has been con-
figured to minimize the error E, u,, gives the mean value
of my. This strategy has been used in previous geophys-
ical applications [e.g. Leach et al., 1993; Poulton et al.,
1992; Roth and Tarantola, 1994]. A simple application
of a sonnet is shown in Figure 2a.

2.1.2. Using a sonnet to retrieve the full so-
lution. Tt is straightforward to use a sonnet to obtain
more detailed probabilistic information by proper pre-
processing of the training data. Suppose a Monte Carlo
method has been used to create a set of samples {t;}
from some parameter space, distributed according to
o(t) (for example, we may define t = {m,x}). We
compare each t; with K other samples. For any such
sample t; we assign a weight w(t;, tx) representative of
the distance between the two vectors. For large enough
K we can write

% > w(ty, te) = /w(t]-, t)o(t)dt. (5)
k
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Figure 2. Outputs of (a) a sonnet, (b) a histogram

network, and (c) a median network. The networks were
trained for fixed input 1.0 to recognize a single parame-
ter which takes values between 0 and 1 according to the
smooth distribution plotted in each figure. The sonnet
returns a single value, which is indicated by a circle at
offset 0. The outputs of the monnets were postprocessed
and plotted as discretized density functions.
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In particular, if w defines a cubic region around point t;
(i.e., returns a value 1 if point tj falls inside the region
and 0 if outside), then the left-hand side of equation
(5) equals K'/K, where K' is the number of occurences
that vector ty lies in the cubic region. If the region V
is small enough such that the value o(t) is represen-
tative of values within V, we can make the following
approximation:

K/

X = Vol(t). (6)

These values can be used to train a network to approx-
imate the df. During training, the network is averaging
over examples, so that effectively K — oo, and hence
the network outputs will approximate Vo (t) closely. In
practice, K should be chosen large enough to stabilize
the training of the network.

If measurements and model parameters are available,
i.e., t = {m,x}, and are preprocessed as follows,

Pi(mj,x) = 2 S w({m,x, {mx),), ()
k

we could train the network on a set of samples {m;, x;,
Pj(mj,x;)}, where {m;,x;} forms the input vector and
P; is the output value for each sample j. Thus the net-
work will return an approximation to Vo(m,x). How-
ever, a sample set usually does not include examples in
regions with zero probability when Monte Carlo meth-
ods are used. Indeed, even a random sampling of the
model space does not guarantee a random sampling of
(m, x) space, and hence the network remains untrained
on a large volume of inputs. Applying the network to
data it has not been trained on leads to unpredictable
outputs. In section 2.2 we describe monnets which can
be used in more general cases.

2.2. Monnet-Type Networks

We now introduce the histogram and median net-
works which emulate the conditional df P(m|x); their
general structure is sketched in Figure 1b. These net-
works use multiple output nodes to generate equidistant
and generalized median estimators of the solution, re-
spectively, and thus provide a finite discretization of the
solution distributions. Generally, this is sufficient since
the solution is often represented by a finite number of
samples from a Monte Carlo analysis. We show how
these networks emulate the distribution of a single pa-
rameter and conclude with a discussion of how this can
be generalized to multiple parameters.

2.2.1. Histogram network. First, we discuss the
histogram network, which returns an equidistantly sam-
pled approximation to the df P(m|x). We consider the
case of a scalar m and apply the following operator to
discretize its values using M segments with lengths Am:

1 jAm<m < (j+1)Am
0 otherwise

W (m) = { ®)

Then define the local error for training sample (m,x)
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to be

eu;(x), Wi (m)] = [u;(x) — Wj(m)]*. 9)
The M outputs u,(x) of the optimally trained network
which minimize this error for a given input z can be in-
ferrred from the relation 0E/Oun(z) =0,n =1,..., M.
With E defined as in equation (2) this gives:

mo+(n+1)Am
Un(x) = / P(mix)dm = pa(x).  (10)

mo+nlAm

For each set of inputs x, the trained network has M out-
puts u;(x) which return the probabilities (not densities)
p;(x) that m takes a value in the jth window of width
Am. With M = 2, we obtain a classical application of
networks, namely, the classification of an input into one
of two states [Dowla et al., 1990; McCormack et al.,
1993]. Note that the solution satisfies the constraint

> opi=1 (11)

hence one output node is redundant and one output
would suffice in this particular example. However, this
relation is better used to check consistency of the so-
lution. A simple application of a histogram network is
shown in Figure 2b.

2.2.2. Median network. Next, we consider the
median network, which contours the topography of the
cumulative distribution of P(m|x). Again we use M
output nodes to obtain information about a scalar m
given an input x. The error measure is now defined to
be

uj(x) —m uj(x) <m
(30, W () = { 0 43%) = m
—¢j(uj(x) —m) u;(x) >m

(12)

for some constants c;. Using this local error, the opti-
mally trained set of u;(x) for which 0E/dun(z) =0 is
given by:

Cm

14+cm

um (2)
/_ P(m|x)dm = (13)

Hence if we set ¢; = j/(M + 1 — j), the output val-
ues u;j(x) subdivide the df P(m|x) into M + 1 equal
areas (the two outer areas are only bounded on one
side). For M = 1, the value of u;(x) equals the me-
dian of the distribution. Areas of high probability are
subdivided more densely by u;(x) than areas of low
probability. Fixed outer bounds can be defined sep-
arately for the two outermost areas, but it is prefer-
able to let the network approximate these by setting
c1 = 0.001 and cpr = 999.0 which approximately give a
lower bound and an upper bound that separate regions
of nonzero and near-zero probabilities. The median net-
work is preferable to the histogram network if the dis-

DEVILEE ET AL.: NEURAL NETWORK INVERSION

tribution has sharp peaks which need to be mapped in
more detail. Note that to emulate a distribution, the
histogram and median networks do not require smooth-
ing over the inputs, unlike the smoothing applied in
preprocessing when using a sonnet, and that by default
the whole model space is sampled. A simple application
of a histogram network is shown in Figure 2c.

2.2.3. Multidimensional distributions. For a
more general problem with N model parameters m;...
my, a histogram network requires M% output nodes
to describe the solution; however, this is not possible
for the median network, This approach leads to an ex-
plosive growth of the number of required outputs; the
output vector becomes extremely sparse, which makes
training quite difficult. Now consider the following de-
composition:

P(mi,...,mn|x) = Pi(mq|x)P2(ma|x,m1) ...
PN(mN|x,m1,...,mN_1). (14)
This can be approximated using N separate histogram
or median networks, each with M outputs dedicated to
one of the distributions P,. Equation (14) introduces
a continuous mapping similar to the one in the sonnet
approach which may be poorly approximated by the
networks in regions with insufficient training samples.

2.3. Training Algorithm

The optimization of the weights and offsets of the
network itself represents an inverse problem. For this
purpose we use the backpropagation rule, which is an
iterative learning algorithm which uses values of the lo-
cal error to perform approximately gradient descent of
the global error in equation (2) [Hecht-Nielsen, 1991].
However, the global error is a highly nonlinear func-
tion of the weights and offsets, and in its pure form
the backpropagation algorithm is almost sure to end up
in a local minimum. Furthermore, the local error can
never become zero if conflicting samples are presented
to the network during training, which means that the
values of the weights do not converge. Since we train
on distributions of samples, this problem occurs in all
our applications unless we make the step from the local
to the global error.

A momentum applied to the weight updates during
training may be used to smooth the error function and
hence to avoid local minima [Hecht-Nielsen, 1991]. If
we increase the momentum during training, we create a
long running average over the local error and we could
achieve convergence in the presence of conflicting data.
Training can also be stopped when a state of smallest
rms error over some independent data set is reached
[Jarvis and Stuart, 1996] which is a costly procedure,
since the independent data set needs to be comparable
in size to the training data set. We use a momentum
term and additionally force convergence by scaling the
local error by a factor a, which has a value of 1 at the
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Figure 3. Development of the rms error of a sonnet
during training. Each rms error is calculated over 5000
samples randomly selected from the training data set.

start of training and O after ip,x iterations:

. N 2
a= (==t
Tmax

The value for i,.x is determined by trial and error. Al-

though this empirical rule cannot guarantee that a state

of smallest error is reached, the chaotic development

of the error (Figure 3) during training indicates that

the network jumps out of local minima, probably due

to conflicting updates in subsequent iterations. As the

value of a is gradually reduced, the oscillations become
smaller and the overall error decreases.

Networks trained on similar data are different but
comparable in performance. They represent different
samples from the space spanned by the weights and
offsets that yield identical fit to the training data.

(15)

3. Bayesian Approach to Solving for
Crustal Thickness.

We aim to invert for crustal thickness from disper-
sion data of surface waves. The inverse solution will be
constructed in a probabilistic framework, using density
functions (df’s) [Tarantola and Valette, 1982).

3.1. Data and Modeling

We will constrain Earth structure by using dispersive
surface wave data. These data are parameterized by a
set of Np distinct velocities s = {s;},j = 1,.., Np at
different periods. Phase velocities are used at periods
of 30, 40,..., 90, 100 s [Curtis et al., 1998] and group
velocities at periods of 10, 15, 20, 25, 30, 40, ..., 90,
100 s [Wu and Levshin, 1994]. An upper limit of 100
s is chosen since dispersion at greater periods is hardly
sensitive to Earth structure around the Moho. These
data were obtained at each period by a linearized in-
version for discretized regional dispersion curves using
measurements over many paths with different source-
receiver geometries across the region under study. We
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assume that they represent "noiseless” data s;, which
have uncertainties due to noise in the raw data used to
create the maps, and that these uncertainties can be
described by a normal distribution with average value
r; (given by the values of the velocity maps) and a stan-
dard deviation A, which we take to be constant over all
periods:

Np
p(sjr,A) = cexp | — Z (s; — 1) J2A%

Jj=1

(16)

We represent uncertainties in all velocities with a fairly
high standard deviation of A = 0.1 km/s, estimated
by Curtis et al. [1998]. The data may be biased by
noise with nonzero mean and may contain additional
errors due to limitations in resolution in some areas.
However, these contributions cannot be quantified and
will introduce an unknown error in the solution.

It is worth noting that in principle, group and phase
velocities carry the same information, although group
velocities are more sensitive to the shallow structure.
Since a larger part of the signal is affected by the crustal
structure, the latter type of data will constrain Moho
depth better in the presence of noise. The two are re-

lated by @
(T
U(T) = T dC(T) ?

= (17)
1+ o(T) dT

where T is period, U(T) is group velocity, and ¢(T') is
phase velocity. This explains why the sensitivity kernels
(Figure 4) of group and phase velocity of a particular
mode are fairly similar. However, Love waves are sensi-
tive to horizontally polarized SH velocity, which is fun-
damentally different from the Rayleigh waves, which are
sensitive to both P and vertically polarized SV veloci-
ties. The sensitivity kernels show that Rayleigh phase
velocities are more affected by the velocity structure at
Moho depth than Love velocities. Hence the Rayleigh
wave data may be more robust for the identification of
the crustal thickness if noise is present. Nevertheless,
Love waves do yield information, especially about the
upper crustal velocity structure, and therefore a com-
bination of the two data types is expected to constrain
Moho depth most effectively (assuming Vsg ~ Vsy to
a first isotropic approximation).

Noiseless synthetic data s are calculated for a given
model m using normal mode theory G [Mendiguren,
1977], which is represented by the conditional df 6(s|m):

0(s|m) = d[s — G(m)]. (18)

The physics of the problem (modeled using G(m)) are
such, that crustal thickness can not be uniquely con-
strained by dispersion data, since each part of each dis-
persion curve contains information about an average of
the velocity structure of the Earth (Figure 4). In prin-
ciple, if data are available over a wider range of periods,
this nonuniqueness can be reduced.
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Figure 4. (a) The shear velocity V; of reference model PEMc. (b)-(e) Sensitivity kernels

of group (U) and phase (c) velocities of Rayleigh and Love waves for several periods.

Vs was

perturbed around each depth by 0.2 km/s in a layer 1 km thick. Compressional velocity V, was
perturbed such that the ratio V,/V; of the PEMc model is preserved. The resulting fractlonal
changes dc/dV, and dU/dV; in phase and group velocities are shown.

We parameterize Earth structure by a set of param-
eters {m;} (Table 1). Models are constrained by data
and theory but also by prior information, which is rep-
resented by the df pps(m). We define prior information
of each parameter by a uniform probability density cen-
tered around the PEMc model [Dziewonsky et al., 1975]
with values given in Table 1. We impose the additional
constraint that the Moho is defined by a single inter-
face, with a shear velocity jump of at least 0.3 km/s. In
the true Earth, however, the transition between crust

Table 1. Model Parameterization Consisting of Seven
Velocities at Different Depths and Variable Thicknesses
for the Crust (Heryst) and the Sediment Layer (Hgeq)

Interface H Midvalue, km Half Width, km
Hsed 2.5 2.5
Herust 40.0 30.0
Interface, km Vi Midvalue, km/s Half Width, km/s
0 1.5 0.50
Hsed 3.45 0.75
Herust 3.75 0.75
Hcrust 469 075
100 4.69 0.75
150 4.46 0.75
250 4.66 0.75

Prior information used for depth and shear velocities
consists of independent boxcar-like distributions, with cen-
tral values equal to the PEMc model [Dziewonsky et al.,
1975] and halfwidths as given. The V,/V; ratio, density,
and @ factors of the PEMc model are preserved.

and mantle may involve a transition zone with a grad-
ual velocity variation. Since our data will barely allow
us to resolve these geometrical differences due to the
width of the averaging kernels in Figure 4, inversions
will locate the Moho at some average depth within this
zone and, indeed, nearly at halfdepth in case of a linear
gradient. Acceptable Moho depths are between 10 km,
above which the data have identical sensitivity kernels,
and 70 km, which we take to be the maximum depth in
the Tibetan region. Furthermore, to keep the problem
tractable, we assume a constant V,/V; ratio. In ar-
eas where this ratio is significantly perturbed, Rayleigh
inversion (which depends on both shear and compres-
sional velocities) may yield biased results. In addition,
inversion of a combination of Love and Rayleigh disper-
sion curves may be biased by the effect of transverse
anisotropy [Muyzert, 1998] which is not included in
the models of our training set. We expect errors due to
these assumptions to be small compared to uncertain-
ties arising from trade-offs in the physics of the problem.

3.2. Forming the Solution

The dependency between model m and the noise-
less data s is formed by using Bayes theorem (which
applies to conditional df’s). To assess the combined
information carried by two independent unconditional
df’s, two measures are often used, the entropy [Rietsch,
1977] and the conjunction [Tarantola and Valette, 1982;
Tarantola, 1987]. In a geophysical context the latter is
normally used. We integrate out s, which forms a link
between r and m but provides no independent informa-
tion. The solution is then defined as
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Figure 5. Sonnets were applied (a)-(c) to synthetic phase velocities for periods in the range 30-
100 s and (d)-(f) to group velocities for periods in the range 10-100 s. We varied the complexity
of the network (Figures 5a and 5d), the types of input data (Figures 5b and 5e), and the amount
of white noise added to the input data (Figures 5¢ and 5f). The rms errors are calculated with

respect to the independent test data (see text).

o(mr) = /p(s|r)0(:ir(rsl;pM(m) ds. (19)
Using relations (16) and (18) this yields
Np (m) — 12
o(m|r) =cexp | — Z LG_J_%#]_ pm(m), (20)
j=1

where the constant ¢ provides some scaling factor, which
is not important for the construction of the df. The
nulldistribution has shape wp(v) = 1/v, where v rep-
resents a velocity [Tarantola and Valette, 1982], and
has been assumed to be approximately constant for our
range of velocities. We may form a solution o(H|r) for
crustal thickness H by integrating out all other model
parameters other than H in equation (20).

Owing to the complex form of G(m), an analytical
solution to equation (20) is not available. We proceed
by randomly sampling the space of possible model/data
pairs by (1) drawing a model m from the prior distri-
bution, (2) calculating the corresponding synthetic da-

tum G(m) using the assumed physics, (3) reproducing
the average r using the normal distribution in equa-
tion (20), and (4) removing all parameters except H
from the sample. These samples can then be used to
train neural networks to provide statistics about, or to
approximate, o(m|r). For this purpose, we create a
data set of 400K (400,000) models and their correspond-
ing dispersed velocities. We will only invert for crustal
thickness and do not require perfect resolution of the
solution; hence this number of samples is satisfactory.

4. Neural Network Approach to Solving
for Crustal Thickness.

We will use the networks introduced in section 2 to
emulate function P(H|cr,cr) or P(H|ug,ug). These
return the df of depth H of the Moho discontinuity
given a set of Love or Rayleigh phase velocities ¢, cgr
or group velocities ur,ug. In this section we investi-
gate the performance of network inversion using only
synthetic velocities.
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4.1. Choosing a Network for Inversion

We train sets of sonnets with three and four layers
(a layer refers to a group of neurons) for 4M (4 x 10°)
iterations to return the average value of crustal thick-
ness. Afterward, we check the approximation error by
applying the networks to an independent test data set
of 50K models. These latter models are varied down to
a depth of 520 km to include possible effects of varia-
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Figure 6. Histogram networks were applied to syn-
thetic phase velocities in the period range of 30-100 s,
calculated for PEMc models with adapted crusts of (a)
10 km, (b) 40 km, and (c) 70 km. The complete so-
lutions of crustal thickness are shown for inversion of
combined Love and Rayleigh data (solid), Rayleigh data
(dashed), and Love data (dotted).
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tions in deep earth structure in the data. They contain
more complexity than the training set models in order
to check that the networks interpolate correctly between
the training models and that the simpler training mod-
els contain sufficient complexity to represent all possible
trade-offs between crustal thickness and velocity.

Figure 5 shows that sonnets with four layers, applied
to combined Love and Rayleigh phase velocities in the
period range of 30 s to 100 s, perform better than ones
with only three layers. This indicates that the inverse
relation is quite nonlinear. If the data contain white
noise, the errors made by the networks increase and the
advantage of increased complexity decreases, since noise
obscures rapid variations in the function to be mapped.
We also see that the training process is stable, since each
independently trained network of similar architecture
yields approximately the same rms error; that is, the
complexity of the neural network is the only parameter
influencing the accuracy of the mapping. Networks with
four layers will be used for all subsequent inversions.

For phase and group velocity data, input curves have
8 and 12 samples respectively, and either Love, Rayleigh,
or both sets of velocities are input to the network. Let
us denote the number of input nodes by N. We use
M outputs to provide statistics about the df of crustal
thickness, which we then use to approximate the df.
For the sonnets which produce only average model val-
ues we use relatively simple networks with two sets of
15 hidden nodes, which we write as (N, 15,15, M); the
nodes in subsequent layers are fully connected. The his-
togram networks have to perform a more complicated
mapping and thus receive a more complex structure,
namely (N, 60,120, M), with one modification: to re-
duce the (huge) number of weights, we allow each of
the 120 nodes in the last hidden layer to connect only
to three nodes in the output layer.

Sonnets produce a single parameter of the distribu-
tion and can, in principle, be trained in a relatively
small number of 1M iterations. To train a histogram
network which approximates the distribution of crustal
thickness with a resolution of 10 km (i.e., using six out-
put nodes), we need about 4M iterations. If the resolu-
tion is increased to about 5 km, we find that we need
many as 12M training iterations. This increase is due to
the lower density of sampling of each thickness interval;
that is, we need a larger number of iterations to find an
equal number of samples per interval.

4.2. Representing the Solution

To investigate the asymmetry of the posterior df of
crustal thickness, we invert synthetic phase velocity
curves which are derived from PEMc velocity structure
but with three different crustal thicknesses (Figure 6).
For this purpose we use a histogram network and a dis-
cretization interval of 10 km to approximate the solu-
tion. The solutions are asymmetric for the 10 and 70
km crusts, which is partly caused by prior constraints
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Figure 7. Estimates of crustal thickness from synthetic dispersion data from the training set
are shown against the crustal thicknesses of the underlying models. The number of occurrences
of pairs of values in 10 x 10 km ranges for 25K comparisons is contoured. (a) Estimations of
a sonnet for phase velocities in the period range of 30-100 s. (b) Maximum likelihood crustal
thicknesses obtained from the outputs of a histogram network. (c) Last experiment, repeated for
group velocities in the range of 10-100 s.
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Figure 9. (a) Synthetic Rayleigh phase velocities
calculated for the model of Table 1. We trained two
histogram networks on the probability of finding crustal
thickness given (1) the Rayleigh phase dispersion curve
d, and (2) both d and the shear velocity in the lower
crust. (b) Multiplication of the two distributions, giving
a contour plot of the trade-off between crustal thickness
and the shear velocity in the lower crust. The values of
the model used are indicated by the box.

on the models (the model space is cut at the 10 and
70 km bounds) and partly by the physics (distributions
decrease sharply to 0 for the 10 km thick case).

We invert Rayleigh phase velocities (30-100 s) for
crustal thickness and investigate uncertainties in the
crustal thickness estimations based on two definitions
of the solution. First, we define the best model by the
average crustal thickness, given all possibilities. Second,
we define the best value by the crustal thickness that
is most likely (the maximum likelihood value). Figures
7a and 7b show diagnostic plots created by inverting all
training data for these two definitions and showing them
as a function of model crustal thickness. The estimated
crustal thicknesses are clearly correlated to the model
thicknesses, although the average thickness shows a bias
at the smallest and largest values due to asymmetry of
the solution in these cases. The experimental standard
deviations are of the order of 10 km and are reduced
to 5 km when group velocities are used over a wider
period range (Figure 7c).
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Owing to the asymmetry, the values of average crustal
thickness predicted by a sonnet may be very different
from the maximum likelihood estimates obtained from
a histogram network. We prefer the maximum likeli-
hood models since these are related to the best observed
datum; however, this is a matter of taste; the only un-
biased way of viewing the result is by looking at the
whole distribution for each datum.

4.3. Trade-offs between Model Parameters

We examine the trade-off between crustal thickness
and other model parameters using a sonnet. This net-
work inverts synthetic Love and Rayleigh phase veloc-
ities for average crustal thickness. The data are in
the period range of 30 s to 100 s and are calculated
from various models having 10 x 10 combinations of
two free parameters while keeping all other parameters
fixed at values of Table 1. The crustal thicknesses ob-
tained from inverting these data are contoured in Figure
8. In the absence of trade-off the estimates would be
perfectly correlated to crustal thickness, giving vertical
contours as is approximately the case for the sediment
layer and the deep mantle. The estimated thicknesses
themselves are biased since the estimates of the aver-
aging sonnet are sensitive to asymmetry of the distri-
bution. As expected, crustal thickness estimates trade
off most strongly with velocity variations just above and
just below the Moho. At 150 km depth we see trade-offs
in the opposite sense and at 250 km depth we see no
correlation with crustal thickness estimates, since the
sensitivity kernels (Figure 4) that constrain the crust
hardly sample this depth range.

Next, we examine the trade-off in the inversion be-
tween the two parameters H, crustal thickness, and v,
the shear velocity just above the Moho (Figure 9), given
a single set of synthetic Love and Rayleigh phase veloc-
ities xpgmec calculated from the PEMc reference model
with 40 km crust. This is done using two histogram
networks which approximate

P(H,v|xppye) = P1(H|[xpEMC) P2 (v[xPEME, H)  (21)

similarly to equation (14), using 10-km intervals. The
first network is trained to emulate P, (H|xpEmc). The
second network emulates P (v|xpEMc, H), i.€., H is pro-
vided as an additional input. The contours show the
likelihoods for different combinations of H and v. Fig-
ure 9 shows that crustal thickness trades off almost lin-
early with velocity structure. Note that the average
solution of crustal thickness from this experiment pro-
duces a single estimation in the set of tests in Figure
8. For this particular datum, the maximum likelihood
point coincides with the parameter values of the input
model (shown as a box).

Thus we have shown that neural networks can be used
to describe trade-off between crustal thickness and ve-
locity structure. This trade-off causes the uncertainties
in crustal thickness estimates.
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Maximum likelihood crustal thickness maps obtained using a histogram network.

Results (a), (¢), and (e) obtained from inversion of the group velocities of data set I (see text).
Results (b), (d), and (f) obtained from network inversion of the phase velocities of data set II

(see text).

4.4. Efficiency of NNI

Creating a training set of 400K samples of the poste-
rior distribution took 500 hours on a Sparc 20. How-
ever, this is an aspect of the inversion process which
needs to be done only once and is equivalent to the
time of a single run of a Monte Carlo inversion using
a similar number of examples. Training of a sonnet on
these data (plus added noise) during 1M iterations took
1 hour on a Pentium II 350 Mhz; training the most com-
plex histogram network during 12M iterations took 20
hours. Again, this part of the procedure needs to be
done only once for each network and may be improved

by using a more efficient training algorithm (which falls
outside the scope of this paper). The network then em-
ulates the distribution constrained by the samples of
the Monte Carlo run.

Applying a network to phase velocities to invert for
average crustal thickness or a crustal thickness distri-
bution takes a fraction of a second. This illustrates
that a trained network is an extremely fast inversion
tool, which can be reapplied almost instantaneously to
any new data set and which in principle provides ar-
bitrarily detailed information about the inverse prob-
lem solution. In contrast, an adaptive Monte Carlo
method would require a full inversion for every da-
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The full crustal thickness distributions for several coordinates in the Tibetan area,

given combined Love and Rayleigh data from sets I (solid) and II (dashed). A set of inversions
was performed; only representative solutions are shown.

tum, which is extremely expensive. Nonadaptive Monte
Carlo methods would require millions of samples (thou-
sands of hours) to obtain the same level of precision
as the networks, since the latter interpolate between
training samples. Although this calculation would also
need to be done only once, comparing a single newly
measured datum to this massive database of samples
to obtain a solution would itself take tens of minutes
on the same machine. NNI (with trained networks) is
also about a factor of 10K faster than linearized inverse
procedures and has the additional advantage that the
solution is independent of a reference model (although
not independent of other types of prior information).

5. Application of NNI to the
Continent of Eurasia
Now we invert real phase velocity data for crustal

thickness using two data sets: (1) the set of group veloc-
ity data having a period range of 10-100 s and covering

the area around Tibet [Wu and Levshin, 1994] (now re-
ferred to as data set I), and (2) the set of phase velocity
data in the period range 30-100 s across Eurasia [Curtis
et al., 1998] (now referred to as data set II). Thus the
effectiveness of different data types to constrain crustal
thickness can be assessed. A crustal thickness map of
Eurasia based on data set II is presented.

5.1. Inversion of Group and Phase Velocities
for a Small Region of Eurasia.

We use a histogram network to invert the data from
set I for the df of crustal thickness, using a discretiza-
tion interval of 10 km. The maximum likelihood crustal
thicknesses are extracted from the full solution obtained
from inverting the Love data (Figure 10a), the Rayleigh
data (Figure 10c), and paired Love and Rayleigh data
(Figure 10e). The inversion based on the Love wave
data shows a band of thick crust outlining the Pamir,
Tien Shan, and the Altai mountains.
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Maximum likelihood crustal thickness map across Eurasia obtained from the

inversion of combined Love and Rayleigh wave data of data set II with a histogram network. The
discretization interval of the solution is 10 km. Only areas in which phase velocities are resolved

at length scales of < 1000 km are shown.

The maximum likelihood crustal thicknesses, obtained
from the inversion of combinations of Love and Rayleigh
data from data set II with a histogram network, are
shown for the same region in Figures 10b, 10d and 10f.
This data set has less spatial resolution and a shorter
period-range; hence only the major features can be iden-
tified reliably.

The two inversions of the two data types agree on
the main pattern of crustal thickness. However, results
from Love and Rayleigh data show strikingly different
thickness estimates in the mountaineous regions. Given
that trade-offs such as those in Figure 8e will vary be-
tween different data types, this may be indicative of
the presence of very low shear velocities in the upper
mantle.

The full solutions of crustal thickness obtained by
histogram networks are shown in Figure 11 for several
locations within the region of Figure 10. Solutions ob-
tained from a set of identically trained networks are
only slightly different, and a representative result is
shown. The group velocity data, which have a broad
period range, constrain shallow crusts better than the
phase velocity data but yield similar results for thicker
crusts. The distributions are very asymmetric in some
cases and show large uncertainties. We emphasize that
the maximum likelihood map gives a best solution for
Earth structure but shows rather limited information
about the complete solution. The results for the Ti-

betan Plateau, Tarim Basin, and Indian Shield, ob-
tained from data set II, correspond very well to the es-
timates of Curtis and Woodhouse [1997], who also used
interevent phase velocity data. The group velocity data
do not resolve the crust in the Tarim Basin, which in-
dicates that the data contain significant noise there.

5.2. Inversion of Phase Velocities
for the Whole of Eurasia.

A histogram network has been used to invert com-
bined Rayleigh and Love phase velocities from data set
IT across the whole of Eurasia. The most likely crustal
thickness is extracted from the full solution (discretized
at 10 km) and plotted at each coordinate in Figure 12.
The continental crustal thicknesses lie in the range 41
+ 6.2 km given by Christensen and Mooney [1995] for
the global average continental crustal thickness. Some
areas, such as Greece, Zagros, and some places in the
Pacific, show anomalously large maximum likelihood
crustal thicknesses. We show the complete distributions
in Figure 13. In Greece, there is no unambiguous prefer-
ence for a crustal thickness between 20 and 70 km. The
same holds for the Pacific, where any value between 10
and say 50 km seems reasonable. In the Zagros region
the inversion using Love waves is significantly differ-
ent from the inversion using Rayleigh waves. This may
indicate that our assumption that P and S velocities
are coupled is wrong. Other regions such as Tibet and



28,854

Greece (25E 38N)

I i I ! 1 1

I
10 20 30 40 50 60 70
H (km)

Zagros (60E 30N)

| Il 1 L Il

10 20 30 40 50 60 70
H (km)

Pacific (142E 25N)

-0.1 T T T T T T T
10 20 30 40 50 60 70

H (km)

Figure 13. Full distributions from inversions of Love
and Rayleigh (solid), Love (dashed) and Rayleigh (dot-
ted) velocities of data set 1I. Three points were exam-
ined, in Greece (25°E,38°N), Zagros (60°E,30°N) and
the Pacific (142°E,25°N).

Europe show thickness patterns that are in reasonable
agreement with current knowledge about the crust.

6. Discussion

We compare the maximum likelihood thicknesses ob-
tained with NNI of the Love and Rayleigh data from set
I (Figure 10e) to the crustal thicknesses of a shear ve-
locity model obtained with a linearized inversion (Fig-
ure 14) ( [Wu and Levshin, 1994]). The patterns are
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very similar, indeed the correlation coefficient is 0.70;
in Figure 15a we show in more detail the scatter of
values between these two models. Some clustering of
the model of Wu and Levshin (1994) around 40 km
could be due to their choice of reference model. Some
differences between the two models could be due to
the fact that from the histogram network we obtain
the model at the maximum of the crustal thickness
marginal distribution, whereas linearized inversion in
principle obtains the most likely combination of all rel-
evant crustal parameters, of which only Moho depth is
plotted here. Also, linearized inversion requires a start-
ing model, whereas our inversion does not (this could be
an important consideration in the Tarim Basin area).

Model CRUST5.1 [Mooney et al., 1998] which gives
5°x5° averaged features (Figure 16), represents current
knowledge about the crust. In Figure 15b we compare
the values of this model with crustal thickness values
from our phase velocity inversion (Figure 12). Vertical
alignment of points at, e.g., 60 km results from the tec-
tonic zonation of CRUSTS5.1. The region under study is
dominated by continental structure, which is reflected
in the large number of observations in the 30-50 km
range. The correlation factor is 0.68; hence we can say
that the crustal thicknesses from our inversion correlate
well with those of CRUSTS5.1.

The comparison to the model of Wu and Levshin
[1994] shows that NNI compares favourably to linearized
inversion. Since the pattern of crustal thickness we find
is also similar to that of CRUST5.1, NNI of these data
provides robust results.

7. Conclusions

We have shown that for nonunique inverse problems
for which a set of possible models exists for each da-
tum, a classical application of a (neural) network will
return the mean model. By properly treating the input
data, such a network can map the distribution of out-
put values, but this approach fails if the input and out-
put space are poorly sampled. Alternatively, we have
developed networks whose outputs produce histogram-
like information about the model distribution, or whose
outputs subdivide the distribution into segments with
equal areas. Thus we have several approaches to obtain
probabilistic estimators of the solution.

We apply these networks to estimate crustal thickness
given fundamental mode group or phase velocity curves.
Regionalized phase [Curtis et al., 1998] and group [Wu
and Levshin, 1994] velocities across Eurasia are inverted
to produce maximum likelihood crustal thickness maps.
Histogram and median networks are used to find a dis-
crete approximation to the complete crustal thickness
distribution, showing asymmetry of the solution. This
inverse problem is weakly nonlinear, but in principle,
networks can also be applied to more strongly nonlin-
ear problems.
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Figure 14. The crustal thickness from a linearized inversion model [Wu and Levshin, 1994]
using group velocity data with periods between 10 and 200 s.
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Figure 15. (a) The maximum likelihood crustal thicknesses (obtained in 10-km intervals)

obtained from data set I shown against the (continuous) thickness values of the model by Wu
and Levshin [1994]. (b) The maximum likelihood crustal thicknesses from the inversion of data
set II, averaged onto 5 x 5 degree blocks like those of CRUSTS5.1, pairwise shown against the
crustal thicknesses of model CRUST5.1. Values outside the nonresolved region of the data of
Curtis et al. [1998] are not included.
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Figure 16. The crustal thickness of model CRUST5.1 [Mooney et al., 1998] which shows 5 x

5 degrees averaged values.

The large-scale patterns of crustal thickness and many
of the smaller-scale features which we found are consis-
tent with current knowledge of the crust in Eurasia and
largely follow the patterns of topography of the Earth’s
surface. We found no new crustal thickness results, but
we provide further evidence supporting existing mod-
els. This is valuable in itself, since we obtained the
results from independent data sets. We can also turn
this around: the fact that the results are similar means
that the data we used are reliable and that the network
approach works.

The speed of the inversion and the possibility of cre-
ating complete probabilistic information about the so-
lution makes the neural network an important tool for
applications that require many similar inversions.
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