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Volumetric wavefield recording and wave equation inversion
for near-surface material properties

Andrew Curtis∗ and Johan O. A. Robertsson‡

ABSTRACT

“Volumetric recording” of the seismic wavefield im-
plies that the local receiver group or array approximately
encloses a volume of the earth. We show how volu-
metric recording can be used to measure several spa-
tial derivatives of the wavefield. By making use of the
full elastic wave equation, the free surface condition on
elastic wavefields, and derivative centering techniques
analagous to Lax-Wendroff corrections used in synthetic
finite-difference modeling, these derivative estimates
can be inverted for P- and S-velocities in the near surface
directly beneath the receiver group.

The quantities estimated are the effective velocities
of the P- and S-components experienced by the wave-
field at any point in time. Hence, the velocity estimates
may vary with both wave type and wavelength. The es-
timates may be useful to aid statics estimation and are
exactly the effective velocities required for separation
of the wavefield into P- and S-, and up- and down-going
components.

INTRODUCTION

Characterising subland reservoirs often requires the analysis
of seismic data recorded on the surface. The spatio-temporal
structure of observed seismic arrivals reflects the structure of
the reservoir and overburden, whereas the amplitudes of the
same arrivals contain information about subsurface contrasts
in petrophysical or fluid properties. It is the objective of the seis-
mic interpreter to extract both structural and reservoir prop-
erty information from the data.

Seismic data are always contaminated with various forms
of noise that must be removed before a correct analysis can
be carried out. Noise types specific to land recording are de-
rived from at least two factors. First, receiver static variations in
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the data are local traveltime anomalies due to the propagation
of most of the seismic energy through the sub–receiver-group
shallow structure. Static variations from receiver group to re-
ceiver group can be large due to changes in sub–receiver-group
velocities, and to variations in base topography of the upper-
most weathered layer of the earth. Such static variations look
similar to structural variations in the deeper subsurface. Sec-
ond, the land surface is exactly the point at which the up-going
wavefield (including the signal from the reservoir) is reflected
and converted into a down-going wavefield. Data recorded at
the earth’s surface contains both up- and down-going compo-
nents superimposed. This distorts the observed seismic ampli-
tudes, biasing any interpretation of subsurface properties. The
up-going wavefield must therefore be isolated in order to anal-
yse the nature and true amplitudes of the signal reverberations
from the reservoir.

In the accompanying paper (Robertsson and Curtis, 2002),
we show how the seismic wavefield recorded in a land seis-
mic survey can be decomposed into its P- and S-, and up- and
down-going components. This allows the P- and S-amplitudes
of the up-coming part of the wavefield to be analysed inde-
pendently and without interference from down-going compo-
nents. As shown in that paper, removal of this interference
significantly changes the wavefield.

Performing P/S and up/down separation of the wavefield re-
quires that the elastic properties of the near–receiver-group
earth structure are known. These properties vary on all length
scales and, in practice, we are always most concerned with ef-
fective properties averaged over some volume of the earth.
Specifically, we require the effective properties of the medium
that are experienced by the seismic wavefield as it is recorded
at the surface. These effective properties may vary both with
wavetype and with frequency corresponding to differences in
effective medium averaging (Aki and Richards, 1980).

This paper presents a method to estimate near–receiver-
group subsurface material properties of the type described
above. The method uses a single buried three-component
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geophone and several surface geophones in each receiver
group (Figure 1). The tetrahedral receiver group in Figure 1a
was originally proposed by Robertsson and Muyzert (1999) for
P/S separation. All of these receiver groups approximately en-
close a volume of the near-surface material and, as long as the
spatial receiver distribution is finer than the spatial Nyquist
wavelength, the wavefield everywhere within the volume can
be calculated. We refer to this situation as “volumetric wave-
field recording.” The important property of such receiver group
geometries is that spatial derivatives of the wavefield can be
calculated. In particular, we will consider the case where the
receivers are sufficiently close that the wavefield can be linearly
interpolated between any neighboring geophones with negligi-
ble error. Then spatial wavefield derivatives can be calculated
by taking finite differences of the wavefield across the group.

The new method for subsurface property estimation makes
use of these spatial wavefield derivatives in addition to two
conditions that the recorded wavefield must satisfy close to
the earth’s surface: The wave equation and the free-surface
condition. All of this information about the wavefield can be
combined to form tight constraints on the material properties.

We begin by presenting the theory required to implement
the method. We then illustrate typical constraints offered by
the method on a simple synthetic example. In the discussion,
we also introduce a second method for velocity estimation
that offers the maximum possible constraints on near–receiver-
group velocities of any similar method, but which we could not
demonstrate synthetically for reasons explained in that section.
Finally, we conclude with a discussion of various practicalities
that should be considered in the field.

FIG. 1. Possible receiver layouts that enable first-order (a, b, c,
and d), second-order (b, c, and d), and third-order (c) horizon-
tal spatial wavefield derivatives, and all second-order spatial
derivatives centered at a single location (d) to be estimated us-
ing finite-difference stencils. Note that both geometries in (d)
are in 3-D perspective, that the upper receivers may be either
buried or on the surface, and that the guidelines are inserted
only to enhance visual depth.

At various stages, we illustrate the theory using 3-D syn-
thetic data generated by a plane-layered reflectivity code. The
isotropic earth model used is shown in Figure 2. A Ricker
wavelet with 50-Hz central frequency was injected at the source
location. The receiver group may have various geometries (as
shown in Figure 1).

METHOD

We first introduce the free-surface condition and free-
surface wave equations. In the next subsection, we show how
spatial finite-difference derivative estimates can be re-centered
at any location. In the final subsection, we bring together the
seemingly disparate results from the two preceding sections
to form a set of linear equations in seismic velocities. These
can be solved to provide sub–receiver-group P- and S-velocity
estimates.

Properties of a free surface

At the surface of the earth, an elastic wavefield must satisfy
the free-surface condition. This states that stress across the sur-
face is zero. Robertsson and Curtis (2002) show that in a locally
isotropic medium, this implies three independent conditions on
the particle velocity field v:

∂3v3 = −
(
α2 − 2β2

α2

)
(∂1v1 + ∂2v2), (1)

∂3v2 = −∂2v3, (2)

∂3v1 = −∂1v3, (3)

where ∂i is the derivative operator with respect to coordinate
direction xi , and α and β are the P- and S-wave velocities,
respectively. Thus, vertical spatial derivatives of the waverfield

FIG. 2. Earth model used to generate synthetic data in this
study.
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can be expressed purely in terms of horizontal derivatives. Note
that the subsurface P- and S-velocities (α and β, respectively)
only occur in equation (1), not in equations (2) and (3).

In land acquisition, dense, spatial distributions of three-
component receivers on the earth’s surface allow us to com-
pute horizontal spatial derivatives of particle velocities (or
time derivatives thereof, if particle acceleration is recorded,
etc.)—see Appendix A. Invoking the free-surface conditions
[equations (1)–(3)] allows these to be converted into first-
order vertical derivatives using the same configuration of three-
component receivers at the surface, provided that we know the
ratio between the P- and S-velocities. In fact, if either of the
receiver geometries in Figures 1b or 1c (including one buried
receiver) is used, the free-surface condition allows all second-
order derivatives of the wavefield to be estimated, as shown in
Appendix A.

The recorded wavefield must also satisfy the equation of
motion and local constitutive relations, hence the local wave
equation. For isotropic media, the elastic wave equation for
particle displacement u (actually three dependent equations)
can be written as:

ü = f
ρ
+ α2∇(∇ · u)− β2∇ × (∇ × u), (4)

where ρ is the density, f denotes the distribution of body forces,
and ∇ = [∂1, ∂2, ∂3]T . The P- and S-velocities α and β, respec-
tively, are given by

α =
√
λ+ 2µ
ρ

, β =
√
µ

ρ
. (5)

where λ and µ are Lamé’s constants.
The free-surface conditions [equations (1)–(3)] can be used

to rewrite the wave equation (4) into a different form that is
valid only at the free surface of an isotropic medium. Let us
define the following terms:

∇H = [∂1 ∂2]T , (6)

vH = [v1 v2]T . (7)

Using the free-surface conditions (1)–(3), the free-surface
wave equations can be derived (see appendix B):

∂t tv1 = β2(∇2v1)+ 2
(
β2 − β

4

α2

)
∂1(∇H · vH )+ ḟ 1

ρ
, (8)

∂t tv2 = β2(∇2v2)+ 2
(
β2 − β

4

α2

)
∂2(∇H · vH )+ ḟ 2

ρ
, (9)

∂t tv3 = α2(∂33v3)− (α2 − 2β2)
(∇2

Hv3
)+ ḟ 3

ρ
. (10)

Here, the vertical derivatives are taken downwards, and re-
peated subscripts on the derivative operator ∂ denote multi-
ple derivatives (e.g., ∂33= ∂3∂3). The body-force term will be
set to zero in all that follows. The second term on the right-
hand side of each of equations (8)–(10) contains only horizon-
tal derivatives. The only depth derivatives in these equations
are contained in the first term on the right of each equation,
and these terms only involve the pure second-order depth
derivatives ∂33v.

Note that we can not simplify the first of the two depth
derivatives in ∂33v using the free-surface conditions. A single
depth derivative ∂3v can be simplified in this way, but the re-
sulting expressions given in equations (1)–(3) are only valid
exactly at the surface. It is therefore invalid to differentiate
these expression a second time with respect to depth.

Lax-Wendroff corrections

If we could measure simultaneously both the first-order ver-
tical and horizontal wavefield derivatives at a single point on
the free surface, we could solve equation (1) for the ratio
α/β. Unfortunately, it is not possible to measure the vertical
derivatives exactly on the free surface using a simple finite-
difference approximation across two vertically offset receivers
(for instance, using the central receivers in Figures 1a, 1b or
1c; such derivative estimates are always centered below the
surface [equation (A-14)]). In this section, we show how finite-
difference estimates can be recentered to lie exactly on the
free surface. In so doing, we inject information from the wave
equation into the solution we derive from equation (1). As we
will see in the next subsection, this allows us to estimate α and
β independently rather than their ratio only.

The effect that miscentering has on vertical derivative esti-
mates is illustrated in Figure 3, which shows that for conven-
tional seismic frequencies and typical near–surface velocities,
differences in centering of only 12.5 cm can cause large de-
viations in the estimates obtained. The first order vertical
derivative estimated using the free-surface condition is calcu-
lated directly from the horizontal derivative estimates using
equation (1), and hence is centered exactly on the free sur-
face. The vertical derivative estimated explicitly using finite-
difference stencils centered only 12.5 cm below the surface
is shown to provide very poor approximations to the surface
value in the example given (this is the case in many realistic
examples tested).

Centering can be corrected as follows. At any point x0 on the
earth’s surface, we can use a Taylor expansion of velocity v to
write

v(x0+∆x3)= v(x0)+1x3∂3v(x0)+ 1x2
3

2
∂33v(x0)+O

(
12

3

)
,

(11)

where ∆x3= [0, 0,1x3]T for any small depth increment 1x3.
From here on, we refer to the order of the derivative being
estimated as usual by first order, second order, etc., and refer to
the accuracy of the Taylor approximation used for the estimates
as O(1x2

3 ),O(1x3
3 ), etc. Rearranging equation (11) gives

∂3v(x0)=
[

v(x0+∆x3)− v(x0)
1x3

]
−1x3

2
∂33v(x0)+O

(
1x3

3

)
.

(12)
Hence, if we can estimate ∂33v(x0) then the conventional
O(1x3) finite-difference stencil for ∂3v(x0+∆x3/2) [the
square-bracketed term, right-hand side of equation (12)] can
be modified to give ∂3v(x0) up to O(1x2

3 ).
Derivatives ∂33v(x0) can not be measured directly by the vol-

umetric receiver geometries. However, these derivatives can be
related to measureable horizontal and temporal derivatives by
rearranging the free surface wave equations (8)–(10). This al-
lows the calculation of corrections, L1 say, defined to be equal
to the second term on the right side of equation (12):
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∂33v1 = ∂t tv1

β2
− (∇2

Hv1
)− 2

(
1− β

2

α2

)
∂1(∇H · vH ) (13)

∂33v2 = ∂t tv2

β2
− (∇2

Hv2
)− 2

(
1− β

2

α2

)
∂2(∇H · vH ) (14)

∂33v3 = ∂t tv3

α2
+
(

1− 2
β2

α2

)
∇2

Hv3 (15)

L1 = −1x3

2
∂33v. (16)

In modeling wave propagation using finite-difference tech-
niques, the method of computing this type of correction term
using the wave equation to calculate any derivatives that can
not be computed is known as a Lax-Wendroff correction (Lax
and Wendroff, 1964; Dablain, 1986; Blanch and Robertsson,
1997). In explicit finite-difference modeling, it is typically ap-
plied to enhance the accuracy of time-derivative approxima-
tions (time derivatives are converted to spatial derivatives). To
our knowledge, this is the first time that analogous techniques
have been used to correct measured data.

Figure 3 shows examples of the Lax-Wendroff correction L1

applied to first-order derivative estimates of ∂3v3 using finite-
difference stencils centered 12.5 cm below the surface. The cor-
rected derivative estimate is virtually identical to that obtained
exactly on the free surface. Hence, as long as the second-order
horizontal and temporal derivatives in equations (13)–(15) can
be estimated with sufficient accuracy, all first-order derivatives
can be estimated to O(1x2

3 ) exactly at the free surface.
Figure 4 shows the Lax-Wendroff correction for ∂3v3 in the

frequency domain. This illustrates that the contribution of the
Lax-Wendroff corrections is highly frequency dependent. In
particular, they do not have maximum amplitude at the same
frequency as the maximum of the signal itself. This is expected
since L1 contains second-order derivatives in both space and
time (the second-order time derivative is equivalent to multi-
plication by −ω2 in the frequency domain).

FIG. 3. Three estimates of ∂3v3 for a synthetic P-wave arrival (left) and surface-wave arrival (right) using the experiment geometry
in Figure 2 with a receiver array similar to that in Figure 1b with receivers spaced 25 cm apart. In each case, the solid curve is the
derivative calculated using the free-surface condition in equation (1) and, hence, is centered on the free surface. The thin dashed
curve is ∂ ′3v3 defined by equation (A-14) using a first-order finite-difference stencil in depth, and hence is centered 12.5 cm below
the ground surface. The thick dashed curve is derivative ∂ ′3v3 re-centered to the free surface using the Lax-Wendroff correction in
equations (15) and (16), and almost entirely overlays the solid curve. The horizontal axis is time in milliseconds (ms), the vertical
axis is the derivative value in 1/ms.

Linear equations in α and β

It is now possible to derive a set of linear constraints on the
P- and S-velocities. We do so by calculating the vertical deriva-
tives of the wavefield both using the free-surface condition in
equation (1) and using finite differences recentered at the sur-
face. For the vertical wavefield component, for example, we
obtain, respectively,

(∂3v3)fs = −
(
α2 − 2β2

α2

)
(∂1v1 + ∂2v2) (17)

and

(∂3v3)fd = v13 − v3

1x3
+ L1,3, (18)

where fs and fd refer to “free surface” and “finite difference,”
respectively, and v13 is the x3 component of velocity at dis-
tance1x3 below the point at which v3 is recorded. In summary,
equation (17) is really a definition of (∂3v3)fs using equation (1),
whereas equation (18) is a finite-difference approximation to
the vertical derivative ∂3v3.

Notice that in equation (18), the third component of the
correction L1 has been applied to ensure that the derivative
estimates in equations (17) and (18) are centered at exactly
the same location. Hence,

(∂3v3)fs = (∂3v3)fd (19)

provides a set of constraints on α and β. Expanding equa-
tion (19) using equations (15)–(18) gives

∂t tv3 = α2 A3(t)− β3 B3(t), (20)

where

A3(t) = 2
1x3

[∇H · vH + ∂ ′3v3]−∇2
Hv3 (21)

B3(t) = 4
1x3

[∇H · vH ]− 2(∇2
Hv3), (22)



1606 Curtis and Robertsson

and where ∂ ′3v3 is given by equation (A-14). Terms A3(t) and
B3(t) can be measured directly using the receiver geometries
in Figures 1b or 1c, for instance. This shows that a set of linear
equations (20) is obtained relating β2 and α2, one equation for
each point in time. Since the system is overdetermined, it can
be solved numerically.

We may form two more sets of constraints on α2 and β2 by
following a similar argument for ∂3v1 and ∂3v2 to that followed
for ∂3v3 in equations (17)–(20). This results in the following sets
of constraints:

∂t tv1 = β2 A1(t)− β
4

α2
B1(t) (23)

∂t tv2 = β2 A2(t)− β
4

α2
B2(t), (24)

where the measureable coeficients are

A1(t) = 2
1x3

(∂1v3 + ∂ ′3v1)+∇2
Hv1 + 2∂1(∇H · vH ) (25)

A2(t) = 2
1x3

(∂2v3 + ∂ ′3v2)+∇2
Hv2 + 2∂2(∇H · vH ) (26)

B1(t) = 2∂1(∇H · vH ) (27)

B2(t) = 2∂2(∇H · vH ). (28)

EXAMPLE

We now show how equations (20), (23), and (24) can be in-
verted to constrain P- and S-velocities given wavefield deriva-

FIG. 4. Fourier domain amplitude of ∂3v3 estimates and the Lax-Wendroff correction for the complete time series from which the
snapshots in Figure 3 were taken. The black, thin, solid curve is the amplitude of the derivative estimated using ∂ ′3v3 defined by
equation (A-14) using an O(1x3) finite-difference stencil in depth, and hence is centered 12.5 cm below the ground surface. The
thin, dashed curve is the same derivative re-centered on the free surface using the L1 Lax-Wendroff correction. The thick, solid
curve shows the Lax-Wendroff correction.

tive estimates. Equation (20) comprises a set of linear equations
inα2 andβ2. Since data will exist from a range of different times,
this system is greatly overdetermined and can be solved very
simply using standard linear inversion techniques (e.g., Menke,
1989; Press et al., 1992; Parker, 1994). In order to illustrate the
solution uncertainty graphically, we construct and display mis-
fit functions, which we define to be

EN = log
{

[L N − RN]T [L N − RN]
m(σ N)2

}
. (29)

Here L N and RN denote the left- and right-hand sides of equa-
tion number (N), respectively, and may be in the time or fre-
quency domain. These are vectors consisting of m samples in
time or frequency, where the signals may first have been filtered
in time to extract any desired wavefield arrival, and filtered in
frequency to extract any desired frequency component for dis-
persed arrivals. The derivative estimates in equation (N) are
assumed to have been centered at identical locations. The fac-
tor (σ N)2 represents the scalar variance of elements of L N , and
m times its reciprocal is a suitable weighting factor, so that if
several distinct misfit functions for different arrivals are consid-
ered, contributions from arrivals with large amplitudes or from
longer portions of the signal do not create dominant misfits.

Figure 5 shows two views of the misfit function E(20). Misfit
function E(20) was constructed for the medium in Figure 2 and
using the complete time series data of which seismograms are
illustrated in Figure 3. It is immediately apparent that the misfit
function has a well-defined minimum at the correct solution
(α= 1500 m/s, β = 500 m/s). Hence, if sufficiently accurate data
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are available, the constraints offered by equation (20) (at each
point in time) are sufficient to estimate both P- and S-velocities.

In this example, equation (24) provides no constraints since
all crossline derivatives are zero. Equations (23) and (24) be-
tween them capture all constraints offered by the horizontal
components, so in this example equation (23) provides all such
constraints. Figure 6 shows plots of misfit function E(23). The
principal information offered by equation (23) is a constraint
on the P-velocity with little additional information about the
S-velocity.

The accuracy of such estimates will decrease with decreas-
ing time series length or frequency content, or increasing signal
noise. Even when using the complete modeled time series in
this case, there exists a linear trade-off that degrades the esti-
mate ofβmore than that ofα. However, noting that the contour
scale in Figure 5 is logarithmic [equation (29)], the minimum in
this surface at α= 1500 m/s and β = 500 m/s still gives at least
a factor of ten better fit to the data than α± 2% or β ± 7%.
Also, since time series from many sources can be inverted for
the same P- and S-velocities, the estimate accuracy can be im-
proved still further.

DISCUSSION

The inversion schemes presented above are made possible by
new acquisition geometries involving receiver arrays that allow
spatial and temporal derivatives of the wavefield to be recorded

FIG. 5. Two views of the misfit function E(20) defined in equation (29) for the medium shown in Figure 2 and signals used in Figure 3.

explicitly (Robertsson and Muyzert, 1999). Muijs et al. (2000)
have studied the stability of such recording methods under
perturbations in receiver locations and show that whereas esti-
mates of divergence and curl of the wavefield from volumetric
recordings are relatively robust under perturbations in element
location or amplitude, they are more sensitive to perturbations
in the orientation of the individual recording sensors.

It is also crucial to estimate the necessary derivatives with
identical centering. When some highest order of horizontal
derivative estimates are available, Lax-Wendroff corrections
can be used to shift the centering of lower order vertical finite-
difference derivative estimates. There is a trade-off between
the precision of the derivative calculation (high precision may
require either larger spacing between receivers, or more re-
ceivers allowing higher order finite-difference stencils) and
spatial localization (the requirement that we obtain a deriva-
tive estimate that is effectively valid at a single point in the
medium). However, if derivative values are sufficiently small
that we require very large stencils to obtain accurate estimates,
it is likely that the contribution of those derivatives to the Lax-
Wendroff corrections will be small.

The particular values of α and β that we recover using the
current method are those that control the propagation of waves
as they pass the receivers. Hence, these are effective P- and
S-velocities averaged over at least the volume spanned by the
receiver group, and may depend on both frequency and wave
type (e.g., Aki and Richards, 1980). These effective material
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properties are exactly those required for separation of P- and
S-, and of up- and down-going components of the wavefield
(Robertsson and Curtis, 2002).

Notice that, in principle, we can invert the wave equation (4)
directly for material properties, simply by forming misfit func-
tion E(4) using equation (29). In a source-free region, this full
wave-equation inversion would require that all second-order
wavefield derivatives in equation (4) be measured at identical
locations, which could be achieved using a receiver geometry
similar to that in Figure 1d. Again, the system of equations be-
ing solved is linear in α and β. At the free surface, this would
be equivalent to inverting the free-surface wave equations (8)–
(10). As noted previously, these equations involve only hori-
zontal derivatives and second-order pure vertical derivatives.
Although all of these derivatives can be estimated using the
receiver geometry in Figures 1b or 1c, the second-order depth
derivative estimates are again centered below the free surface.
To recenter these on the surface using a Lax-Wendroff correc-
tion requires third-order horizontal derivatives (as shown in
Appendix C) and, hence, requires a receiver geometry similar
to that in Figure 1c.

Unfortunately, we had no access to waveform modeling soft-
ware that worked to an accuracy appropriate for local, third-
order derivative estimation. Hence, although we introduce the
methodology for full wave-equation inversion, we can not cur-
rently demonstrate the uncertainty expected in the α and β
estimates obtained. However, we can deduce that this tech-
nique provides the maximum possible information on isotropic
P- and S-velocities from any waveform inversion technique

FIG. 6. Two views of the misfit function E(23) defined in equation (29) for the medium and signals used in Figure 3.

that does not introduce additional physics. This is because our
spatial wavefield data (plus isotropic assumption) includes suf-
ficient information to determine completely the stress and ve-
locity fields, and hence to determine the local wavefield entirely
within the recorded bandwidth. There exists no other informa-
tion about the wavefield that could possibly be introduced to
improve constraints on the P- and S-velocities.

CONCLUSIONS

In summary, we have introduced two distinct methods of in-
verting for near-receiver group P- and S-velocities: (1) the free-
surface methodology introduced in the body of this paper, and
(2) full wave-equation inversion. Third-order horizontal spa-
tial wavefield derivatives are likely to be more difficult to mea-
sure than second-order derivatives, and the former could not
be modeled synthetically using available modeling software.
Hence, we have concentrated on the first method that uses
a single buried receiver and only requires up to second-order
spatial wavefield derivatives to be measured. These derivatives
could be modeled, and our example shows that the method of-
fers very tight constraints on P- and S-velocities.

No survey shots are required to estimate P- and S-velocities
using either of these methods. The systems of equations to be
solved to obtain these estimates hold for any incoming wave-
field, including that derived from background noise (including
ground roll). Hence, these estimates could be obtained before
a survey is shot, using either the first test shots or any noise
generated while deploying the receiver spread.
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APPENDIX A

ESTIMATING FIRST- AND SECOND-ORDER SPATIAL WAVEFIELD DERIVATIVES

Using the receiver geometry in Figure 1a, it is possible to
estimate all first-order spatial derivatives of the wavefield, al-
though the vertical derivative will be shifted vertically down-
wards relative to the horizontal derivatives. Using either of the
receiver geometries in Figures 1b or 1c, it is possible to estimate
all first- and second-order derivatives in the wavefield. Using
receiver geometry 1c, for instance, we may estimate horizontal
derivatives centered at the free surface above the central point
using the finite difference formulas:

∂1v = 1
2

 v(2)−27v(6)+27v(10)−v(14)
241x1

+
v(3)−27v(7)+27v(11)−v(15)

241x1

+ O
(
1x4

1

)
(A-1)

∂2v obtained by rotation of the above (A-2)

∂3v


obtained from ∂1v and ∂2v using

the free surface condition

[e.g., equations (1)–(3)]

(A-3)

∂11v = 1
2


v(2)−v(6)−v(10)+v(14)

21x2
1

+
v(3)−v(7)−v(11)+v(15)

21x2
1

+ O
(
1x2

1

)
(A-4)

∂22v obtained by rotation of the above (A-5)

∂12v =
[

v(11) − v(10)

1x2
− v(7) − v(6)

1x2

]
1
1x1
+ O

(
1x2

1 ,1x2
2

)
,

(A-6)

where bracketed superscripts denote the receiver number in
Figure 1c. Second mixed derivatives in the vertical direction
can be obtained by using the free surface condition:

∂13v1 = −∂11v3 (A-7)

∂23v1 = −∂12v3 (A-8)

∂13v2 = −∂12v3 (A-9)

∂23v2 = −∂22v3 (A-10)

∂13v3 = −∂1(∇H · vH )
λ

λ+ 2µ
(A-11)

∂23v3 = −∂2(∇H · vH )
λ

λ+ 2µ
. (A-12)

All first- and second-order derivatives above can be estimated
using only receivers on the surface. Finally, however, second-
order pure derivatives in depth must be obtained using both
the free-surface condition and receiver 17 at depth as follows.

Define the velocity vs to be that estimated at the free surface
directly above receiver 17:

vs = v(6) + v(7) + v(10) + v(11)

4
. (A-13)

The finite-difference first-order derivatives in depth (denoted
∂ ′3) are centered vertically above receiver 17 half way to the
surface:

∂ ′3v
(
1x3

2

)
= [v(17) − vs

] 1
1x3
+ O

(
1x2

3

)
. (A-14)

In addition, equation (A-3) estimates the same derivative ex-
actly at the surface. Hence, the difference between these two
estimates can be used to obtain the second-order depth deriva-
tives centered at depth 1x3/4:

∂33v
(
1x3

4

)
= 2

∂ ′3v− ∂3v
1x3

. (A-15)

Thus, we may estimate all first-and second-order derivatives
of the wavefield using the receiver geometry in Figure 1c. For
any other surface geometry (e.g., the minimal five-star spread
in Figure 1b), only the horizontal spatial derivative finite dif-
ference estimations (A-1)–(A-6) and the surface velocity es-
timate for vs in equation (A-13) change in form; equations
(A-7)–(A-12) and (A-14)–(A-15) remain the same.
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APPENDIX B

DERIVATION OF THE FREE-SURFACE WAVE EQUATIONS

To derive expressions for the free-surface wave equations,
it is necessary to take derivatives in depth. These will always
be taken in the downwards direction. In these derivations, one
must be careful never to apply the free-surface conditions prior
to taking a depth derivative because the expression to be dif-
ferentiated would then only be valid exactly at the surface and
vertical differentiation would be invalid. It is assumed that no
body forces are present.

Equation (10) is the simplest to derive (comments refer to
the previous line of equations). From the equation of motion,

∂t v = 1
ρ
∇ · σ, (B-1)

and neglecting body forces for the moment, we obtain

ρ∂t tv3 = ∂1σ̇13 + ∂2σ̇23 + ∂3σ̇33 (B-2)

= ∂3σ̇33 (B-3)

[by free surface conditions (1)–(3)]

= 2∂3[µε̇33]+ ∂3[λ(ε̇11 + ε̇22 + ε̇33)] (B-4)

[using the isotropic constitutive relation
(Robertsson and Curtis, 2002)]

= 2µ∂3ε̇33 + λ∂3[ε̇11 + ε̇22 + ε̇33] (B-5)

(assuming local homogeneity downwards)

= 2µ∂33v3 + λ∂3[∂1v1 + ∂2v2 + ∂3v3] (B-6)

[using definition of strain; see Robertsson
and Curtis (2002)]

= 2µ∂33v3 + λ[∂13v1 + ∂23v2 + ∂33v3] (B-7)

(reversing order of differentiation)

= 2µ∂33v3 − λ[∂11v3 + ∂22v3 − ∂33v3] (B-8)

[using free surface conditions (1)–(3)]

= −λ∇2v3 + 2(λ+ µ)∂33v2. (B-9)

We obtain equation (10) by substitution of relations (5) and
introducing the body force term.

To obtain equation (8), we follow a similar sequence of steps
and note that

∇ · v = 0∇H · vH , (B-10)

where 0 = 2µ
λ+ 2µ

= 2
β2

α2
(B-11)

at the free surface [from equations (6), (7) and (17)]. Then,

ρ∂t tv1 = ∂1σ̇11 + ∂2σ̇21 + ∂3σ̇31 (B-12)

= ∂1[λ(ε̇11 + ε̇22 + ε̇33)+ 2µε̇11]

+ 2∂2[µε̇12]+ 2∂3[µε̇13] (B-13)

= λ∂1[ε̇11 + ε̇22 + ε̇33]+ 2µ[∂1ε̇11 + ∂2ε̇12 + ∂3ε̇13]

(B-14)

= λ∂1[∇ · v]+ µ[2∂11v1 + (∂21v2 + ∂22v1)

+ (∂31v3 + ∂33v1)] (B-15)

= λ∂1[∇ · v]+ µ[∂1(∇ · v)+∇2v1
]

(B-16)

= µ∇2v1 + 0(λ+ µ)∂1(∇H · vH ). (B-17)

We obtain equation (8) by substitution of relations (5) and in-
troduction of the body force term. A similar set of operations
result in

∂t tv2 = µ

ρ
∇2v2 + 0

(
λ+ µ
ρ

)
∂2(∇H · vH ), (B-18)

and we obtain equation (9) by substitution of relations (5) and
introduction of the body force term.

APPENDIX C

DERIVATION OF EXPRESSIONS FOR ∂333v

Similarly to the Lax-Wendroff correction for ∂3v described
in the body of this paper, the second-order derivative estimates
obtained using equation (A-15) in Appendix A are centered
at a depth 1x3/4 and must be re-centered to give estimates at
the surface. These re-centered estimates can be obtained by
expanding the Taylor series in equation (12) to one additional
term. Rearranging the terms yields

∂33v(x0) =
[

v(x0 +∆x3)− v(x0)
1x3

− ∂3v(x0)
]

2
1x3

−1x3

3
∂333v(x0)+ O

(
1x2

3

)
. (C-1)

Hence, the correction L2 for second-order derivatives is given
by

L2 = −1x3

3
∂333v. (C-2)

The first term on the right-hand side of equation (C-1) is the
approximation to ∂33v(x0+∆x3/4) given by equation (A-15).
Equation (C-2) provides a linear (in1x3) correction that shifts
the derivative centering to x0 on the surface. The third-order
derivatives with depth can be obtained by differentiating the
wave equation (4) once with respect to x3 and by applying
the free-surface condition to simplify mixed derivatives in
depth. Notice that we can not achieve this by differentiating
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expressions (13)–(15) with respect to depth because these ex-
pressions are only valid exactly on the free surface. As shown
below, the third-order vertical derivatives at the free surface
can be written as

∂333v1=
(
β2 − 2α2

α2β2

)
∂t t (∂1v3)+

(
3α2 − 2β2

α2

)
∂1
(∇2

Hv3
)

(C-3)

∂333v2=
(
β2 − 2α2

α2β2

)
∂t t (∂2v3)+

(
3α2 − 2β2

α2

)
∂2
(∇2

Hv3
)

(C-4)

∂333v3=
(

2α2β2 − α4 − 2β4

α4β2

)
∂t t (∇H · vH )

+
(

3α4 + 4β4 − 6α2β2

α4

)
∇2

H (∇H · vH ). (C-5)

Equations (C-3)–(C-5) express third-order vertical derivatives
in terms of second-order time derivatives of first-order horizon-
tal derivatives (first terms on right-hand side of each equation)
and third-order horizontal derivatives (second term on right-
hand sides). These can be substituted into equation (C-2) to
obtain the required Lax-Wendroff correction.

We now derive the expressions for ∂333v used above. We be-
gin by illustrating the derivation for expression (C-5). Equation
(B-1) gives

ρ∂t tv3 = ∂1σ̇13 + ∂2σ̇23 + ∂3σ̇33 (C-6)

= (λ+ µ)[∂13v1 + ∂23v2]+ µ[∂11v3

+ ∂22v3]+ (λ+ 2µ)∂33v3 (C-7)

by the free-surface conditions (1)–(3) and the isotropic consti-
tutive relation (Robertsson and Curtis, 2002). Differentiating
with respect to x3 gives

ρ∂t t3v3 = (λ+ µ)[∂133v1 + ∂233v2]+ µ[∂113v3 + ∂223v3]

+ (λ+ 2µ)∂333v3. (C-8)

This equation can be rearranged to give an expression for ∂333v3,
and the following terms can be expanded:

∂133v1 using equation (13), (C-9)

∂233v2 using equation (14), (C-10)

∂113v3 and ∂223v3 using equation (1). (C-11)

Thus, we obtain

α2∂333v3 =
(
α2 − 2β2

α2

)
[∂t t (∂1v1 + ∂2v2)]

+β2
(

2β2 − α2

α2

)
[∂111v1 + ∂112v2 + ∂221v1

+ ∂222v2]− (α2 − β2)
[
∂t t1v1

β2
− ∂111v1

− ∂221v1 − 2
(
α2 − β2

α2

)
(∂111v1 + ∂112v2)

]

− (α2 − β2)
[
∂t t2v2

β2
− ∂112v2 − ∂222v2

− 2
(
α2 − β2

α2

)
(∂221v1 + ∂222v2)

]

⇒ ∂333v3 =
(

2α2β2 − α4 − 2β4

α4β2

)
∂t t (∇H · vH )

+
(

3α4 + 4β4 − 6α2β2

α4

)
∇2

H (∇H · vH ),

(C-12)

which is equal to expression (C-5).
Expressions (C-3) and (C-4) may be derived in a similar man-

ner. However, note that in the derivation of equation (B-17)
from the wave equation (B-12), the only time that the free-
surface conditions are applied is in the step between equations
(B-16) and (B-17). Hence, instead of differentiating the wave
equation in its original form with respect to x3, we begin with
equation (B-16). Rearranging gives

∂33v1 = ρ

µ
∂t tv1 −

(
λ+ µ
µ

)
[∂11v1 + ∂12v2 + ∂13v3]

− [∂11v1 + ∂22v1]. (C-13)

Differentiating with respect to x3, we obtain

∂333v1 = 1
β2
∂t t3v1 −

(
α2 − β2

β2

)
[∂113v1 + ∂123v2 + ∂133v3]

− [∂113v1 + ∂223v1].

Expanding ∂133v3 using equation (15) and applying the free-
surface condition to other terms results in

∂333v1 =
(
β2 − 2α2

α2β2

)
∂t t (∂1v3)+

(
3α2 − 2β2

α2

)
∂1
(∇2

Hv3
)
,

(C-14)
which is the same as equation (C-3). Similar operations applied
to the second wave equation result in

∂333v2 =
(
β2 − 2α2

α2β2

)
∂t t (∂2v3)+

(
3α2 − 2β2

α2

)
∂2
(∇2

Hv3
)
,

(C-15)

which is the same as equation (C-4).


