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Supplementary Methods

In this Supplementary Methods we first derive the theory of virtual receivers for
acoustic and elastic media using methods similar in part to those of Wapenaar'? and
van Manen et al.>*. It seems straightforward to extend the theory in various forms to

attenuative media, to diffusive propagation, and to other wave propagation regimes™ .

In the Supplementary Discussion below, we apply the new methods to two examples
additional to those in the main text. These examples demonstrate the ability to
measure both purely horizontal and purely vertical strain fields due to passing seismic
waves. Measuring these fields directly has not previously been possible in

seismology.

Theory

In time-reversed acoustics, invariance of the wave equation for time-reversal can be
exploited to focus a wavefield through a highly scattering medium on an original
source point’. Cassereau and Fink'®'" realized that the acoustic representation
theorem'” can be used to time-reverse a wavefield in a volume by creating secondary
sources (monopole and dipole) on a surface surrounding the medium such that the
boundary conditions correspond to the time-reversed components of a wavefield
measured there. In an acoustic medium, the expression for the time-reversed pressure

field Prgr(x,?) at location x and time 7 radiated from the boundary S can be written as:

P (X,1) = §% [G(x,11x") % V'P(x',~t) = P(X',~t) * V'G(x,11X")]- n dx’ (1)
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where G(x,¢1x") denotes the Green’s function of the medium, V'G(x,¢|x") denotes

its gradient with respect to primed coordinates, and star denotes convolution. The
medium density at the boundary and the normal to the boundary are denoted by p and

n, respectively. P(x',—t) and V'P(x',—t) denote the time-reversal of the pressure field

and its gradient. These secondary sources give rise to the back-propagating, time-
reversed wavefield inside the medium that collapses onto itself at the original source
location. Note that since there is no source term absorbing the converging wavefield

in the original source location, it will immediately begin diverging again.

In wavefield interferometry, waves recorded at two receiver locations from a
surrounding boundary of wave sources are correlated to find the Green’s function

between the two locations (main text, Figure 1 - left). Interferometry has been

14,15 16-21

applied successfully to helioseismologyB, ultrasonics °, exploration seismics

2 Recently it was shown that a link exists between the time-

and seismology
reversed acoustics and passive imaging disciplines, when Derode et al.* analyzed the
emergence of the Green’s function from field-field correlations in an open scattering
medium in terms of time-reversal symmetry. As discussed in the main text, the
Green’s function can be recovered as long as the sources in the medium are
distributed forming a perfect time-reversal device, although these geometrical
constraints can often be relaxed in practice (main text, Figure 1 — right). A more

rigorous proof for the general case was derived by Wapenaar'="2.

Say the initial pressure wavefield P(x',—t) and V'P(x',—t) was that recorded

on S from an impulsive source at some point x; within the interior of S. Equation (1)

reverses the entire wavefield throughout the interior of S, and hence can be used to
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compute the time-reversed wavefield (including all high-order interactions) at any
such location, not only the original source location. By measuring the time-reversed
wavefield in a second location Xx;, the Green’s function and its time reverse (due to the
expansion of the time-reversed source field after convergence at x;) between the

. . . 2
source point X; and the second point x; is observed 6,

G(x,,t1x,)-G(x,,~t1x,) =

2
{)l[G(Xz,t Ix)*V'Gx',~t1x,)-V'G(x,,t | xX)*G(x',~¢ | xl)]-n dx’ @)
Yo,

N

Source-receiver reciprocity gives G(x',¢1x,) = G(x,,¢1x"), so we can rewrite

equation (2) so that it involves only sources on the boundary enclosing the medium:

G(x,,t1x,) - G(x,,~t1x,) =

§l [G(x,.t1x")*V'G(x,,~ 1 X') = V'G(X,,11X') * G(X,,~ | X)|-n dx’ )
o

N

Thus the Green’s function between two points x; and X, can be calculated once the
Green’s functions between the enclosing boundary and these points are known.
Following the same reasoning for the acoustic case, a similar treatment for elastic

waves is possible2’4. Elastic equivalents of equations (2) and (3) are found to be:

G, (X, ~tlx,)-G, (X,,t1x,)=
§lG, (%, 1x) %1 6,40, (X' ~11%,) = 1,0,,0,G, (%,.11%) % G, (X'~ 1x,) | dx"” @
S

and

G, (X,~tlx)-G,, (x,,t1x,)=

§lG, (x,.01x) % 1,0,004G (X, 1 1X) = 1,0,,0,G (X, 11X) % G, (x, 1 X)) )
S

4 NATURE GEOSCIENCE | www.nature.com/naturegeoscience
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respectively. In the elastic case, c is the elastic stiffness tensor, n is the normal vector
to surface S, G, (x,,¢1x’) is the ith component of the particle displacement Green’s
tensor at location X, for a unidirectional point force in direction j at location x’, and
0,G, (x,,t1x") is the partial derivative of the Green’s tensor in the k direction with
respect to primed coordinates. van Manen et al. used equations (3) and (5) to create a
synthetic computational modelling method>**’. In what follows there are significant

differences in methodology between acoustic and elastic cases so we address each

separately.

NATURE GEOSCIENCE | www.nature.com/naturegeoscience 5
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Acoustic case

Equation (3) represents the Green’s state with impulsive sources at locations

x' on the surface S recorded at locations x; and x, Now, say instead an impulsive
source was fired at location x;, and the resulting pressure signals G(x',t1 X,) and
V'G(x',t x,) were recorded at points X" on S (using tilde to denote quantities

derived directly from measured data in practice). By reciprocity, we would record the

same signals as the case where the source occurred at x and was recorded at x,, i.e.,
G(x,,t1x") = G(X',l‘ Ix,) and V'G(x,,t1x') = V’é(x’,t Ix,) . If a second source fires
at location x; we obtain similarly G(x,,z1x") = 5(x’,t Ix,) and

V'G(x,,t1x") = V'G(x',t| x,). Hence, by applying reciprocity to either of the acoustic

equations (2) or (3) we obtain the result,

G"(x,,t1x,) =

~ ~ ~ ~ 6
fL[G0c %) * VEK 1 1%) = VG 11%,) * EX' o~ 1%,) ] m dx’ 2
D

N

which in the frequency domain becomes (dropping angular frequency dependence

from the notation),

G"(x,1x,) = §§l[€;(x' 1x,)V'G"(x'1x,) - V'G(x'Ix,)G" (x| xl)]-ndS’. (7)
Yo

N

The left side of equations (6) and (7) is the so-called homogenous Green’s function,
G"(x,1x,)=G(x,1x,)-G"(x, |x,) in the frequency domain, between the two
source locations, and is obtained using Green’s functions from x; and x; to the

boundary location x' (main text, Figure 1 - centre).

6 NATURE GEOSCIENCE | www.nature.com/naturegeoscience
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Elastic case

Equation (5) represents the Green’s state in which impulsive, unidirectional,
force sources at locations x’' on the surface S are recorded at locations x; and X, Now,
say three impulsive, unidirectional force sources in coordinate directions j were fired

at location x;, and for each the three resulting particle displacement vectors in
directions i, (N?l.j (x',¢1x,) and 8;{61.1. (x,t1x,), were recorded at points x' on S. We
can obtain the Green’s functions used in equation (5) by reciprocity:

G, (x,,tIx') = (N?y. (x,t1x,)and 0,G;(x,,t1x") = 6;(21. (x,¢1x,) . If a second source
fires at location x; we obtain similarly G (x,,¢1x’) = (N?l./. (x',¢1x,)and
0.G,(x,,t1x") = 8}(51.]. (x',¢1x,). Hence, by applying reciprocity to either of

equations (4) or (5) we obtain the result,

h
G (x,.t1x,) =

G, 1%, 10,815, (61 1%,) = 116,85, (X 11%,) # G (Kt 1) J
N

8)

which in the frequency domain becomes (dropping angular frequency dependence

from the notation),

Gi’fn (x, 1x,) =
~ 1A ! ~ ’ ! ~ ! ~ ’ [0 9
~$16, % 1%,0m,6,,0,G, (1) = 1,6,,0,5, (X 1%,)G,, (% 1) dx ©)
S

NATURE GEOSCIENCE | www.nature.com/naturegeoscience 7
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The left side of equations (8) and (9) is the elastic homogenous Green’s function,
G! (x,1x,) =G, (x,1x,)— G, (x,x,) in the frequency domain, between the two

source locations.

Acoustic and Elastic case

The right side of equations (6) and (7) [(8) and (9)] involve only time-domain
cross-correlation (frequency-domain multiplications with complex conjugate) of
Green’s functions recorded on the surface S with sources at x; and x,. The left side, on
the other hand, gives the homogenous Green’s function between the two source
locations. That is, these equations convert the recorded data into the data that would
have been recorded if the previous source location x; had in fact been a receiver
location. This is achieved without any approximations, and without any synthetically-
modelled Green’s functions. For each source point the equations require one
(pressure) source in the acoustic case, and three (unidirectional force) sources in the
elastic case. It also seems that derivative (dipole) sources are required, but below we
will show that these can be dispensed with while still obtaining good approximations

to the results.

Non-Impulsive Sources

Now say the two sources at x; and x; emitted a wavefield with source
signatures represented by the temporal-frequency spectra W, (@) and W, (w),

respectively. In the acoustic case, recordings on S would take forms similar to

8 NATURE GEOSCIENCE | www.nature.com/naturegeoscience
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é(x’ Ix,) =W, G(x'Ix,) fori=1,2, and the cross-correlation operation in equation (7)
gives,

WW'G,(x,x,)=

1 ~ ~. ~ ~ . (10)
[ 1x)V'G" (' 1%) - VG 1x,)G" (x'1x,)) mdx’
P

N

In the time domain then, the same cross-correlation operation gives the homogeneous

Green’s function convolved with the cross-correlation of the two source wavelets.

In the elastic case, if all three components of each of the two sources are excited with
the same source temporal-frequency signature, W, (@) and W, (w) respectively for

sources 1 and 2, then the cross-correlation operations in equation (9) give,

W G, (x,1x,)=

m

~ 1A ! ~ 1 ! ~ ! ~ ’ ! . 11
~$16, & 1%,0m,6,,0,G, (' 1%) = 1,6,,0,5, (X 1%,)G,, (% 1) | dx (D
S

Again, in the time domain, the same cross-correlation operation gives the
homogeneous Green’s function convolved with the cross-correlation of the two source

wavelets.

NATURE GEOSCIENCE | www.nature.com/naturegeoscience 9
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Moment Tensor Sources

We wish to apply the above theory to recordings of earthquake sources from within
the earth. This requires that we create corresponding expressions from moment
tensor-style sources rather than unidirectional force sources. It also requires that we
develop approximations for cases where we do not have separate records for each
individual component of the Green’s function but instead have a set of recordings
from a single source comprising a combination of different source components. In
order to adapt the interferometric formulae to include moment tensors we must first
apply changes that allow for the inclusion of strain sources, which correspond to
single components of the moment tensor matrix. To do this we apply spatial
derivatives to each of the source locations in equation (9), i.e.

8p8th (x,Ix))=

m

[ oG, x1x,)m,0,,010,G,, (X 1))~ n,0,,040,G, (' 1%,)0, G, (X Ix))|dx' . (12)

mn

where 0, is the spatial derivative applied at X, and 0, is the spatial derivative applied

at Xx,. Note that the resulting Green's function is the elastic homogeneous Green's

function modulated by two independent spatial derivatives.

We can consider these strain components to represent single force couples (i.e., a pair
of opposing forces defined as M, acting in the i-direction, separated in the j-
direction). If the sources at x, and X, consist of single couples then we may use
equation (12) to construct spatial derivatives of the homogeneous Green’s function.

However, if the source consists of a combination of couples (e.g., a double-couple

DOI: 10.1038/NGEO615
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Earthquake source, or an explosion) then we must make alterations to equation (12).

For such sources we define a moment tensor M,

M=\M, M, M,|, (13)

and from Aki and Richards™ the displacement at x; due to this moment tensor source

at x, is given by M, 0, G, (X, |x,), where Einstein’s summation convention applies.

This Green’s function is the ith component of displacement, u, (X, 1x,) at X, due to a

moment tensor source at X,.

For the case where we would like to obtain the Green’s function between two
earthquake sources we alter equation (12) by inserting moment tensors, M' and M at

the corresponding source positions X, and X,:

M:)M, 0,0,G, (X, X)) =

I s Wfiapém‘ (x'1x;) njcnjkla;cMrlnqaqé;;n x'1x,)

0,0 M20,Gy(x' 1 x,) M 8,6l (x1x,)] dx. (14)

ip~p mq~ q

The resulting interferometric Green’s functions are modulated by both of these

moment tensors. The term n;c,, 0, M ,lnqc’i qélm (x'Ix,) is the nth component of

traction, 7 (x'Ix,) at the boundary due to a moment tensor source. Using this

NATURE GEOSCIENCE | www.nature.com/naturegeoscience n
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definition, and the definition of displacement above we re-write equation (14) in

terms of displacement and traction,

MM)\,0,0,Gh (%, 1%) = [ {u, (x1%,) T, (51X~ T, (x'1%,) -, (X1 X,) %

mq=—p-q

(15)

Monopole Seismometers

The right hand side of equation (14) requires both monopole (displacement, u, ) and
dipole (traction, 7)) recordings of the energy from both moment tensor sources. Real-

world seismometers only record displacement (or a time derivative thereof). In the
case of particle-displacement seismometers one can usually approximate equation
(14) as

210

mqg-p-q

M)M,,0,0,Gr(x,1%,) = iKo [ u,(x'Ix,) u,(x' I xDldx’ (16)

for some constant K. This is similar to approximations made in virtual source
interferometry where only monopole sources are typically available (for example,
Halliday and Curtis’ show how such an approximation can be made for surface

waves, and derive a value of K specific to that case).

If particle-velocity seismometers are used, the time-derivatives u, of each of the

displacements u, on the right of equation (16) are measured. The left side of equation

DOI: 10.1038/NGEO615
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(16) is then obtained by taking minus (due to the complex conjugate in u, (x'1x,)) a

double integration in time of the right side, giving

mq~ p~q " im

MZ2M 3,0/ Gl (x,1x,) = _% [ i, 1%,) ) (x'Ix,) dx (17)

Equivalently we obtain the strain rate on the left using,

M)M) . 0,0,G(x,1x) = -K jsun(x'lxz)u,’j(x'lxl)dx', (18)

mq~ p-gq m

Surface Waves

We illustrate the above in the particular case of surface waves since to-date most
applications have used that wave type. This elucidates results from real data presented

in the main paper and in the Supplementary Examples.

NATURE GEOSCIENCE | www.nature.com/naturegeoscience 13
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Supplementary Figure 1: Plan view showing geometric variables used to describe the surface
wave Green’s function. The dashed line indicates the North-South fault geometry at the virtual

receiver.

Surface Wave Green’s Functions

We assume that the portion of the earth in which we are interested can be
approximated by a lossless, horizontally layered medium, and that in this medium the
wavefield is dominated by (or can be represented by) surface waves. Further, to
simplify our expressions by avoiding cross-mode inter-correlations we assume that
only a single surface wave mode is present or dominant (or that modes have been
separated prior to any application of interferometry31). We use a strain operator E” to

define the spatial derivatives,

ik, cos @
E'(p) =] ik, sing |, (19)

0z

where £, is the wavenumber associated with the vth surface wave mode and ¢ is the

azimuth of the horizontal projection of the source-receiver path (Supplementary
Figure 1). The Green’s function representing a single force couple is given by

applying the strain operator to equation (14) of Snieder™,

14 NATURE GEOSCIENCE | www.nature.com/naturegeoscience
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i(kvx+%]
e

aqGim(Xz IXI)=piv(22’¢)E;'pr‘:z*(Zl’¢) >
5k, x
2

where z is positive downwards. Here p; is the ith component of the polarisation

(20)

vector, given for Rayleigh waves as,

r,(z)cos @
p* " (z.0)=| r(z)sing |, 1)

ir, (z)

and for Love waves as,

-1, (z)sing
p (o) =| L (2)cosp |, (22)
0

where, X is the horizontal offset between the locations x; and X, and #’(z) and
r, (z) are the horizontal and vertical Rayleigh wave eigenfunctions, respectively, and
[/ (z) is the horizontal Love wave eigenvector. To simplify the expression the modal

normalization 8c'U"I" =1 is assumed32, where ¢”, U", and I/ are the phase
1 1 p

velocity, group velocity and kinetic energy for the current mode respectively. This
Green'’s function is for a single frequency, and in the following we assume summation
over the relevant frequency range. Note that when we refer specifically to Rayleigh

waves or Love waves we use superscripts R and L, as in equations (21) and (22).

NATURE GEOSCIENCE | www.nature.com/naturegeoscience 15
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First we use equation (20) to define the surface wave Green’s function representing

the particle displacement u(x, 1x,) at X, due to the general moment tensor source at

x, . For Rayleigh waves this is u”(x,1x,) with components,

v ov* e
ug (%, 1x,) = M, 0 Gy (x,1x,) =r,(z,)cospM | E! p (z,,0)—=  (23)
V4
—k,X
2
el(kvX+%)
uf(lexl) MmqaqGR (x, Ix )—rl(zz)sm(pMmq . pm (zl, p)——— (24)
T
—k,X
2
i[k X+%]
uSR(X2 Ix,) = MmqﬁqGR (x,1x,)= 1r2(zz)Mmq . pm (zl,(p) (25)
k, X

T
2

and where G* denotes the Rayleigh wave component of the Green’s function.

For Love waves the equivalent displacements u” (x, x,) are defined as,

ulL(x2 Ix,) = MmqfﬂqGL (x, 1x,)= 1(22)31n(0Mmq . pm (zl,(o)—, (26)
|
—k,X
2
. ei[k‘,X+%]
us(x,1x,) = M,lnqaqGL (x, Ix)) =1 (ZZ)COS¢Mqu:; P (z,,0)——, 27
Vs
—k,X
uy (x, 1x,) = MmqaqGL (x, 1x,)=0. (28)

NATURE GEOSCIENCE | www.nature.com/naturegeoscience
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where G" denotes the Love wave component of the Green’s function.

Surface Wave Interferometry
We can now define the forward time part of the interferometric surface wave Green’s

function (the left side of equation (17)) as,

M:M, . 0,0,G,(x,1x) =

mq 4 L

i(kvx%j
e

[M;E;pl‘/(z2’¢)] M;]ancl]/*pr‘:z*(Zl’qj)ﬂ_—
N
2

On the right side of this equation, the right square bracket is equal to the displacement

(29)

u of the appropriate surface wave. The left square bracket shows that the virtual

2

receiver strain-response function is represented by all M, ,

the components of the

moment tensor of event 2, since £} p;(z,,¢) is simply the p,i component of strain.

Hence, the virtual receiver measures the same components of strain as occurred in the

original earthquake source mechanism.

Using equation (29) we can predict phase differences between interferometric
estimates using different source types of moment tensor form M' and M?, since we
know the form of the strain operator (equation (19)). While we may not necessarily

know the different eigenvectors required to define p“(z,,¢) and p“(z,,¢) the above

equation also shows their effect on the phase of the surface wave.

NATURE GEOSCIENCE | www.nature.com/naturegeoscience 17
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To give a feeling for what recordings at virtual sensors detect, we consider a general

moment tensor source M' at location x, recorded at a virtual receiver at location X,

constructed from a range of canonical example moment tensor sources. This range
includes a strike-slip, a thrust, and a normal earthquake event. For a fault oriented in
the North-South direction (dashed line in Supplementary Figure 1) we derive explicit
expressions for both Love and Rayleigh waves from an event with a general moment
tensor recorded at a virtual receiver with the three different source types. Although we
have fixed the orientation of the fault plane to be North-South trending, we allow a
general azimuth of the (horizontal projection of the) virtual receiver—to-source path.
All of the following equations can therefore be applied to any fault plane geometry
simply by rotating the co-ordinate axes such that the fault-plane at the virtual receiver

lies in the i, direction.

Strike-Slip Virtual Sensor
The scalar moment tensor for a pure left-lateral strike-slip event on a North-South
trending fault (denoted MSS) is then given by M;=My;=1 with all other M;=0.

Equation (29) then becomes

M*M'! 0 0, Gr(x,1x,)=

mq = p~ g im

i[kvXJi)
4

2ik,7,(z,) cos @sin ¢ M,lan;*p,:*(zl,go)e—, (30)

TkX
2

18 NATURE GEOSCIENCE | www.nature.com/naturegeoscience
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Hence, a virtual receiver constructed from such a strike-slip event (left side of the
above equation) measures the quantity on the right side, which is a scaled version of

one of the horizontal components of particle displacement at location x,, i.e.

M*M' 6 6 GE(x,1x,) = [2ik,sing] u®(x, Ix,) (31)

mq= p~q = im

or

M*M' 0 0 .GR(x,1x,) = [2ik, cosp]| uf(x,1x,). (32)

mq~ p~q " im

The terms ik, cose and ik, sing correspond to horizontal spatial derivatives (cf.

equation (19)). Hence, the resulting surface waves in the preceding two equations are
spatial derivatives in the i, (i;) direction of the horizontal component of particle
displacement in the #; (i) direction, respectively. In terms of strain, the equations
represent recordings of twice the e;; and e;; components at the virtual receiver,

respectively.

For Love waves we obtain

M*M! o 6qun (x,1x,)= [ikv cosgo] ul(x, Ix,) + [ikv sin go] ul(x,1x,).  (33)

mq P 1

Hence, for Love waves the virtual receiver measures the sum of the horizontal
derivative in the i; direction of the particle displacement in the i, direction, with the

horizontal derivative in the i, direction of the particle displacement in the i; direction.

NATURE GEOSCIENCE | www.nature.com/naturegeoscience 19
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Again, this corresponds to the sum of the e and e;; components of strain at the

virtual-receiver position.

Thus the strike-slip vertical receiver for this fault configuration is equivalent to
recording various combinations of horizontal strain for both Love and Rayleigh

waves.

Thrust Virtual Sensor
The moment tensor (M'") for a thrust event on a North-South trending fault is given

by Mi;=-1 and M33=1 with all other M;;=0. For Rayleigh waves we then obtain,

M"™M! 0 0 GE(x,1x,)=

mg~ p~ q " im

i[kvxij
a . . 2 1 v _p* e N
gzrz(zz)—zkvrl(%)cos oM, E p, (z,p)——, (34)

TkX
2

and from equation (23) and (25) this is equivalent to

M™M! 0 0.GE(x,1x,) = %uf(xz Ix,) — ik, cospu(x,|x,). (35)

mq~ p~q " im

So in this configuration, a virtual receiver constructed from a reverse fault measures

the difference between the e33 and e;; components of strain.

For Love waves on the other hand we obtain,

NATURE GEOSCIENCE | www.nature.com/naturegeoscience
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M™M! 0 0 GE(x,Ix,) =ik, (cosp)] u"(x, Ix,), (36)

mq~ p~qim

or

M™ M) 8,0,GL(x,1x,) =ik, (sinp)] us (x,1x,), (37)

mq "~ p

which is equivalent to recording the -e;; or e;; components of strain. This is because
there is no component corresponding to M33 in the Love wave Green’s function in a

horizontally-layered, isotropic, 1-dimensional medium, and in this case ez = -ey;.

Thus the thrust vertical receiver for this fault configuration is equivalent to recording

various combinations of horizontal and vertical strains for Love and Rayleigh waves.

Normal Virtual Sensor
The moment tensor for a normal fault is simply the negative of that for the thrust
fault. Hence, by applying sign reversals to the above moment tensors we obtain the

results for a normal virtual sensor.

Exploding receiver

Finally we consider the case of a virtual receiver constructed from an explosive
source. The moment tensor, MEX, then has M| = My = M3 = 1, with all other M;= 0.
The result is simply the sum of the diagonal components of the strain tensor

ej1t+extess, 1.e.
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M*M! 0 0 GE(x,1x,)=

mq= p-q m
. R . . R a R
[zkv cos (p] u, (x,1x,)+ [zkv sin ¢] u, (x,1x,) +a—u3 (x, 1x,), (38)
z

for Rayleigh waves and,

MM 6.0.G:(x,1x,) =

mq~ p~q " im

ik, cos ] ul (x,1x,) +[ik, sin @] ul(x,1x,), (39)

for Love waves (since again there is no component corresponding to M33 in this Love

wave Green’s function).

Moment Tensor Summary

The above examples illustrate how we can use theoretical Green's functions to
investigate the effect of cross-correlating recordings from two sources that can be
represented by moment tensors. We find that, by using moment tensor sources at
virtual-receiver locations the resulting surface wave estimates can be considered to be
combinations of spatial derivatives of particle displacement (i.e. strain sensors).
Moment tensors are readily available for most sizeable earthquakes, hence similar
analysis to the above can be used to understand the different Green's functions
estimated using virtual receiver seismic interferometry for real earthquakes. This may
be important as in conventional earthquake seismology, data contains a receiver
response function and a moment tensor source function. However, in virtual receiver

interferometry the moment tensor at the virtual receiver location becomes a moment
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tensor sensor. Conventional approaches to data analysis may therefore require some

development in order to use this new data type.
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Supplementary Discussion

Supplementary Figure 2 shows that the distribution of sources and receivers of
seismic energy are spatially strongly biased. Consequently most of the Earth’s
subsurface can only be interrogated using long earthquake-to-receiver, or receiver-to-
receiver paths of energy propagation. The methods presented here allow source-to-
source paths to be used, potentially spanning some of the previously poorly sampled

regions of the Earth with relatively short paths.

Supplementary Figure 2. Global distribution of earthquakes of magnitude > 5 since 1973 (circles)

and 13,000 NEIC-listed seismometers (triangles).
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Supplementary Figure 3. Comparison of Real and Virtual Seismograms. Comparison of recordings
of earthquake 1 by the strike-slip virtual receiver 3 and the real seismometer MLAC: seismograms
(top) and envelope functions (bottom) recorded at the virtual receiver (solid line) and the inverted time-
derivative of the radial-component seismogram from MLAC (dashed). Signals are constructed by
cross-correlation and stacking of 20 stations from the USArray and Berkeley seismic networks (Figure

3 in main text). Amplitudes are normalised and all traces are band-passed between 15 and 33 seconds.

A virtual sensor constructed from the strike-slip earthquake 3 oriented at 45
degrees to the East-West energy propagation path (Figure 3, main text) measures the
sum of e, and e;; components of strain (Supplementary Table 1). A comparable

scaled strain measurement can be calculated from the neighbouring seismometer by

NATURE GEOSCIENCE | www.nature.com/naturegeoscience 25



SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO615

26

Mormalised Amplitude

Amplitude

taking the (negative of the) time-derivative of the radial component of velocity.
Supplementary Figure 3 shows a comparison between this time derivative and the
virtual receiver record. The group arrival of the main energy matches to within 5Ss, as
does the phase. A phase mismatch of 5s is easily accounted for by the difference
between temporal responses of virtual and real seismometers as described in the

Methods section.

| 1 |
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Delay Time (seconds)

0 50 100 150 200 250 300 350 400
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Supplementary Figure 4. Comparison of Real Vertical Component, and Virtual Vertical Strain
Seismograms. Similar to Supplementary Figure 3, but here using the normal virtual receiver 4 (solid),
and the direct recording is the inverted, vertical-component seismogram from seismometer RO6C
(dashed). Virtual receiver records are constructed using 15 stations from the USArray and Berkeley
seismic networks (Figure 3 in main text).
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Supplementary Figure 4 shows the same event recorded by the virtual sensor

constructed from the N-S oriented normal-faulting earthquake 4. This virtual receiver
measures the difference between the e33 and e;; components of strain. There is no
easy way to construct a comparison measurement for the es3 component from the real
seismometer so in Supplementary Figure 4 the comparison seismogram is simply the
vertical component of particle velocity. As expected, while the energy group arrival

times are again well matched, the phases differ markedly.

Mormalised Amplitude

"o 50 100 150 200 250 300 350 400
Delay Time (seconds)

1 I i i | | | | x|

MNormalised Amplitude

5 1 1 L L L L L
0 50 100 150

200
Delay Time (seconds)

Supplementary Figure 5. Comparison of Current Method with that of Hong and Menke.

Top: comparison of seismograms of earthquake 1 recorded by the normal virtual receiver 4 (solid) with
the directly-recorded, inverted, time derivative of the radial-component measurements from
seismometer RO6C (dashed), as in Figure 4 of the main text. Lower panel is the equivalent result

obtained using the method of Hong and Menke (2006).
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In Figure 4 of the main text and in the top plot of Supplementary Figure 5 we show
that the recording from the virtual sensor constructed from the N-S oriented, normal-
fault earthquake 4 compares remarkably well with the measurement of the e,
component of strain (estimated from the time derivative of the horizontal seismogram
from the neighbouring sensor). Previously, Hong and Menke™ estimated virtual
seismograms by constructing pseudo-noise sequences from earthquake coda waves. In
the lower plot of Supplementary Figure 5 we show that their method produces
relatively inaccurate seismogram approximations for reasons explained in the main

text.

Vertical strains are fundamentally new measurements provided by the virtual sensors.
We can isolate the vertical derivative measurement by looking at seismograms from
earthquakes occurring along-strike of the normal virtual sensor. In this geometry the
ei1 component is zero, leaving only the e33 component (equation (35) — SM).
Supplementary Figure 6 shows the vertical strain seismogram recorded on the
normal virtual receiver from the southernmost earthquake in Figure 3 of the main text.
Again, the energy group arrival time is reasonable given that observed on the vertical
particle velocity record, while the phase of the vertical strain is an example of a new

type of measurement to seismology.
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Supplementary Figure 6. Comparison of Real and Virtual Vertical Strain Seismograms.
Similar to Supplementary Figure 3, but compares recordings of earthquake 2 at the normal virtual
receiver and the real seismometer RO6C: the inverted, vertical component seismogram is shown
(dashed). Signals are constructed by cross-correlation and stacking of 14 stations from the USArray

and Berkeley seismic networks (Figure 3 in main text).
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Thrust Fault Earthquake €33 - ey

Normal Earthquake e - €33

Strike-Slip Earthquake epn + e
Isotropic Explosion e+ exntess

Supplementary Table 1: Combinations of strain components ¢; measured for each canonical
source mechanism. We use a left-handed coordinate system with axes 1, 2 and 3 pointing East, North
and down, respectively. The earthquake fault plane is assumed to be oriented (strike) Northwards, the
strike-slip fault plane is vertical while the thrust and normal fault planes have 45 degrees dip. No fault

is assumed for the explosion.
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