Abstract

Intuitive and meaningful interpretation of geographical phenomena requires their representation at multiple levels of detail. This is due to the scale dependent nature of their properties. Considerable interest remains in capturing once geographical information at the fine scale, and from this, automatically deriving information at various levels of detail and scale via the process of generalisation. Prior to the cartographic portrayal of that information, model generalisation is required in order to derive higher order phenomena associated with the smaller scales. This paper presents a technique for automatically identifying settlement boundaries based on our understanding of what constitutes ‘citiness’. From this, partonomic structures can be created that link the broad settlement with its constituent parts. The benefits of the resultant system include the automated populating of multiple representation databases (MRDB), better spatial analysis and the creation of semantic reference systems capable of supporting intelligent query or zoom. The creation of such hierarchical partonomic structures provides a very useful framework within which generalisation can take place. The methodology and implementation are presented together with an evaluation of the results. Future developments are proposed. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Urban modelling; Settlement boundary; Density modelling; Model generalisation; Partonomic relationship

1. Introduction

The idea that we can abstract and portray geographic information at multiple scales in map form has existed for thousands of years (Turnbull, 1989). The process of abstraction allows humans to readily communicate various aspects and qualities of reality. Cartographers have long understood the link between scale (level of detail), the phenomena being represented and the task (theme). Various web based map services now support multi-scale browsing of geographic information. As an example, if a user wished to view individual houses then Ordnance Survey’s (OS) 1:25,000 product would be appropriate. A more generalised ‘block view’ is available at 1:50,000 scale and in order to see an entire urban settlement, it would be necessary to view this information at smaller scales (say 1:250,000 scale) (Fig. 1). We represent geographic information at different levels of detail in order to discern fundamentally different patterns, processes and properties (Mackaness, 2007), in support of both conventional multi-scale mapping (in qualitative map form), and for the purposes of spatial query, quantitative analysis and Exploratory Data Analysis (EDA).

To fulfil this requirement National Mapping Agencies (NMAs) maintain spatial databases at different levels of detail – databases that store multiple representations of the same geographic phenomena. In the absence of links between these multiple representations, it is necessary to apply any changes across the scales. A more efficient alternative would be to reflect changes once, at the finest scale, and to use generalisation techniques that automatically reflected the knock-on changes at lower levels of detail (Kilpeläinen & Sarjakoski, 1995), so that for example, recording of a new building development on green field...
sites would lead automatically to revision of the urban settlement boundary. Several researchers have proposed various ways of linking different representations of the same geographic phenomenon in such databases (Devogele, Trevisan, & Ranal, 1996; Harrie & Hellström, 1999; Jones, Kidner, Luo, Bundy, & Ware, 1996; Kilpeläinen, 2001; Kilpeläinen & Sarjakoski, 1995; Timpf & Frank, 1995; van Oosterom, 1995) for the purposes of multi-scale display and updating. The resultant database is called a multiple representation database (MRDB). These MRDBs can either be created by connecting objects among existing databases or by generating smaller scale representations from a single large scale database via automatic generalisation (Sarjakoski, 2007). It is not always easy to link objects among existing databases because different cartographic operations (such as typification) complicate the matching process (Harrie, 2001). The second approach is more systematic (repeatable and reversible) and rigorous; one in which a series of target databases can be created via the process of model generalisation enabling description of the precise method by which the various scaled representations are derived.

1.1. Model and cartographic generalisation

Populating MRDBs with objects associated with low levels of detail is achieved via model generalisation (Kilpeläinen, 1997). Thus model generalisation forms the basis from which these representations can then be optimally visualised using cartographic generalisation (Kilpeläinen, 1997; Weibel & Dutton, 1999). In creating these ‘higher order’ or ‘composite’ objects we wish to preserve those salient or characteristic qualities appropriate to the intended scale, thus revealing a different set of interdependencies, topological qualities and patterns among higher order phenomena. This differs from cartographic generalisation which aims to improve the visual effectiveness and readability of a map (Brassel & Weibel, 1988), with the final output being dependent upon the synergistic operation of both sets of techniques (Kilpeläinen, 1997) (Fig. 2).

1.1.1. Modelling boundaries

Model generalisation is more than a process of subselecting the data. It is about the creation of higher order objects such as cities, forest regions, and mountain ranges from lower order objects in the source database (such as buildings, trees and groups of hills). Several techniques in the past have been proposed for creating such transformations based on classification hierarchies or taxonomies (Downs & Mackaness, 2002; Liu, 2002; Molenaar, 1998). Such techniques are appropriate over small changes in scale (van Smaalen, 2003) but over large scale changes new classes of objects need to be created from different classes of objects. In this research we are interested in automatically detecting boundaries of urban settlement from the building class. These boundaries can then act as ‘containers’ for all the other types of objects that are ‘part of’ any given urban settlement. There are many ways by which we might define urban settlements. They may be large and densely populated regions; they often have special administrative, legal, or his-
torical status. Generally speaking large settlements (cities) are places of trade, in which benefits arise through reduced transportation costs, and the sharing of natural resources (Fujita & Mori, 1999) – places with ‘physical, social, economic and cultural dimensions’ (Esnard & Yang, 2002).

There is no standard international definition of a city and many of the administrative definitions of a city are rather circular in their definition (Angel, Sheppard, & Civco, 2005; Heikkila, Shen, & Yang, 2003; Small, Pozzi, & Elvidge, 2005). Yet having systematic measurements for the extent of a city is important in comparator studies, in the measurement of change over time, in governance and urban planning, environmental impact assessment and in mapping and land classification. Various measures and techniques have been proposed for measuring characteristics of settlement (such as sprawl, compactness and contiguity) (Crouch, 2006). These include modelling the size and number of districts and wards, and the use of remote sensing and classification techniques. Examples include analysing anthropogenic light (Small et al., 2005) and classifying Landsat imagery (Heikkila et al., 2003; Mesev, Longley, Batty, & Xie, 1995). Population density is commonly used (Bulger & Hunt, 1991) though research has shown there to be disparity between population growth and land consumption (Esnard & Yang, 2002). Similar to measures of population density, what is proposed in this paper is a definition of the urban extent based on the area and density of buildings (stored in vector format) – the assumption being that the built environment reflects a set of social and economic activities that define ‘city’. Though this work has relevance in a range of applications, it is in anticipation of being used in a cartographic context, in the creation of mapping for notional display at 1:250,000 scale mapping (where it is not appropriate or possible to display fine scale phenomenon such as individual buildings). The building footprint is readily available in vector format from National Mapping Agencies and the examples presented here utilise the very detailed MasterMap (Topography layer) product of Ordnance Survey (the National Mapping Agency of Great Britain) and BDTopo data from the IGN France – the national mapping agency of France.

2. Methodology

Initial ideas in the creation of a settlement boundary centred on the use of clustering techniques (Section 2.1). This proved to be limiting but led to an approach in which objects typical of the city were used based on their density and size (Section 2.2). Section 2.3 illustrates how these ‘settlement boundaries’ were formed. From a partonomic perspective (Section 2.4), it was then possible to identify all the different objects (from different classes) that were ‘part of’ any given settlement. This information was used to enrich the source database; the enriched source was then used to create settlement objects (composite objects) from the aggregation of objects in the source database (Section 2.5). The overall methodology is summarised in Fig. 3.

2.1. Boundary detection

The degree to which we can precisely define the boundary of a geographic object varies enormously (Burrough & Frank, 1996; Campari, 1996). This observation is reflected in research on the modelling of fuzzy boundaries (Clementini & Felice, 1996; Cohn & Gotts, 1996). Nevertheless the boundary that separates the entity from its environment is one of the marks of its individuality (Casati, Smith, & Varzi, 1998). Some boundaries are general in their form, and it is appropriate to represent those boundaries at a small scale (such as the extent of a wetland, or a mountainous region).
Fig. 3. Overall Methodology.

whilst other boundaries can only meaningfully be conveyed at the large scale (such as conveying the detail in a property boundary). A systematic treatment of boundaries has been attempted by Smith (1995), who argued that boundaries can be divided into two basic types: bona fide boundaries and fiat boundaries (Smith & Varzi, 1997; Smith & Varzi, 2000). A boundary that is ‘bona fide’ is one that is a ‘thing in itself’ and exists even in the absence of all delineating or conceptualizing activity (river-banks or coastlines are examples of bona fide boundaries). In that sense they are boundaries which exist independently of all human cognitive acts and ‘are a matter of qualitative differentiations or discontinuities in the underlying reality’ (Smith 1995, p. 476). The other type of boundary is a ‘fiat’ boundary in which the boundary owes its existence to acts of human decision or decree, in some way related to human cognitive phenomena. Thus ‘fiat boundaries are boundaries which exist only in virtue of the different sorts of demarcations effected cognitively by human beings’ (Smith 1995, p. 477). They are delineations which correspond to no genuine heterogeneity on the side of the bounded entities themselves. Examples would include political borders, property-lines and administrative boundaries.

This paper focuses on derivation of the fiat boundaries of urban settlements and we use the concept of the ‘good or necessary parts’ (Cruse, 1986; Gerstl & Pribbenow, 1995; Tversky, 1990) of the target objects whose fiat boundary we want to create. For settlements we use ‘buildings’ as the ‘good part’. We hypothesize that these objects are typical members of urban settlements reflecting the economic and social activities of the settlement (Fig. 4a). From our empirical evaluation of existing cartographic settlement boundaries at 1:250,000 scale (OS Strategi Data) it became clear that settlement boundaries were created ‘around regions with a high concentration of buildings’ (as stated in the 1:250,000 data set specification (Ordnance Survey, 2005)). Our initial approach was to cluster the objects based on a distance threshold and create boundaries around each cluster (Fig. 4b) (Chaudhry & Mackaness, 2005). This approach showed that small sparse building groups at the city periphery (‘noise’ or ‘outliers’ – Fig. 4a) tended to make the boundaries overly large and resulted in the stringing together of different cities or towns. Additionally, it proved inadequate since it could not separate low density areas from high density areas. It was therefore necessary to devise a method that could group buildings in a way that took into account their local concentration.

2.2. Calculation of citiness

As a solution to this problem (Fig. 4b) we formulated an equation that ascribes a value to each building in terms of its areal footprint, the total area of the buildings in its neighbourhood and the sum of the distances from that building to all the buildings within that neighbourhood. This gives us a value of ‘citiness’ denoted by c (Eq. (1)).

$$c_j = \frac{\sqrt{a_j} \sqrt{\sum_{i=1}^{n} d_{ij}}}{\sum_{i=1}^{n} d_{ij}}$$

(1)

In Eq. (1) we calculate c_j – the citiness value for building j. Where a_j is the area of the building j, a_i is the area of building i and d_{ij} is the distance of building i from building j. The denominator acts as a decay function such that the citiness value c_j will be high if the building j is located in a dense neighbourhood and will be low if it is at the periphery or in a low density area. It is not necessary (nor desirable) to calculate the value of c taking into account all the buildings in the database. The neighbourhood is not defined as a fixed radius from building j, but as a count of the n closest buildings. Where n is small, localised dense regions are identified. Conversely where n is large, a generalised view is created. Through empirical testing, and in anticipation of notional display at a scale of 1:250,000, it was found to be sufficient to consider the fifty closest neighbouring buildings. Fig. 5 shows the normalised output surface created based on the values of citiness calculated for each building shown in Fig. 4a. These values of citiness were then used to create a settlement boundary. This boundary around the settlement was then used to identify all the objects that lay within the settlement (Section 2.3).

2.3. Creation of the boundary of the settlement container

From the surface (Fig. 5) we wish to identify a discrete region that is deemed to ‘contain’ the settlement. This is
done by expanding and then aggregating the overlapping buildings. The areal extent of each building is expanded by the value e according to the value of c. The amount of expansion is calculated using Eq. (2).

$$e_a = k \cdot c_a \quad \text{provided} \quad e_a \leq k \quad (2)$$

Where e_a is the amount of expansion for building a, k is a constant determined empirically and is the upper limit of expansion and c_a is the citiness value of building a. This idea of expansion is illustrated in Fig. 6. In Fig. 6a objects are grey scaled according to their value of c. These values are used to expand the objects according to Eq. (2) resulting in Fig. 6b. Where buildings overlap, they are aggregated into one boundary polygon (Fig. 6c). After aggregation the next step is the selection or elimination of the resultant aggregated object. Here we use the area of the resultant object as a basis for selection. A rule was used derived from an Ordnance Survey map specification.
(1:250,000) namely that ‘for a settlement the area has to be equal to or greater than 0.01 km2 and the area of an open space (hole) within a settlement has to be equal to or greater than 0.5 km2 to be retained’ (Ordnance Survey, 2005). Thus small holes (Fig. 6c) or islands (where the area is below the area threshold are absorbed into their
containing object (Fig. 6d). The idea of elimination of holes and small boundary polygons is based on the principle of generalisation that it should lead to elimination rather than addition of detail.

The resultant boundary for the data in Fig. 4 is illustrated in Fig. 7. Note that the low density objects ringed in Fig. 4b are no longer part of the resultant boundary. The output boundaries generated by this approach were named by linking them with a dataset containing town names (available via the OS Strategi dataset). This dataset contains an annotation layer in which names are stored as point objects, together with an x, y coordinate. For each settlement boundary the naming algorithm found the nearest point objects that were within a specified distance (determined empirically and set to 50 m) of the boundary objects. The boundary id, name and point coordinate are then stored in a name table. In this way more than one name can be associated with a particular boundary (Fig. 7).

2.4. Creation of partonomic information

The resultant boundary (Fig. 7) acts as a ‘container’ and we can use this information to identify the partonomic relationships between different classes of objects, reflecting the idea that the city does not just contain buildings but that other geographic entities such as transportation networks, green spaces, and rivers are ‘part of’ and characterise any given city. Information relating to partonomic relationships is useful in respect of cartography, spatial analysis and model generalisation. For example a road that is part of a city serves a different function to a road that is part of the rural setting. The former may service the daily commute, whilst the latter may serve to connect settlements. Knowledge of these different properties informs the cartographic process (in terms of emphasis, design constraints and symbolisation) and can support more intuitive forms of spatial query (Chaudhry & Mackaness, 2006b). For example a model that estimates driving travel time may wish to identify the major roads that connect cities (those that are not part of the urban settlement) separate from those that lie within. Using the settlement boundary, we can determine the partonomic relationships of the source objects in terms of the higher order objects in the target database. This is information that is not explicit in the source database but needs to be identified prior to database transformation via model generalisation (Bobzien, Burghardt, Neun, & Weibel, 2006; Molenaar, 1998; van Smaalen, 2003). Such information enables the creation of

Fig. 7. Resultant settlement boundaries generated by the algorithm superimposed on the input buildings (selected from OS MasterMap). (Mapping is Ordnance Survey ©Crown Copyright. All rights reserved).
aggregation hierarchies (Molenaar, 1998; Peng, 1997) which in turn supports more intuitive data interaction (Frank & Timpf, 1994).

If the source objects are completely ‘contained by’ the resultant boundary, they are deemed to be part of the higher order object. If ‘disjoint’ they may be considered part of some other higher order object. If it is an ‘overlap’ relationship then the percentage of area intersection can be used to govern the degree of membership enabling an object to be part of more than one higher order entity. Fig. 8 contains an inset showing different objects (ID = 23, 76, 25, 37, 38, 43) lying across the container boundary. The table shows the degree of area overlap.

2.5. Utility of partonomies

The partonomic structures determined from this approach (Section 2.4) make explicit information that is implicit in a map context. Once these relationships have been enriched in the source database (Fig. 3), they can be utilised for the purpose of aggregation of source objects into composite objects. For example the settlement object demarcated in Fig. 9b has been created from the aggregation of all the objects that were part of the settlement container boundary (Fig. 8) and fulfil additional criteria such as adjacency, minimum degree of membership and object rank (Chaudhry & Mackaness, 2006a).

Fig. 8. Determining the membership of the partonomy.

Fig. 9. Aggregation of source database objects into composite objects based on partonomic relations (Fig. 8) via model generalisation (Chaudhry & Mackaness, 2006b). (Mapping is Ordnance Survey ©Crown Copyright. All rights reserved).
3. Implementation and evaluation

The platform selected for the implementation of this methodology was Java, SQLJ and Oracle 10 g. Oracle 10 g supports the geometrical and topological functions defined by the open geospatial consortium (OGC). Results of the approach on areas around Livingston in Scotland (Fig. 4) have already been presented in Fig. 7. Figs. 10a and 11a show settlement boundaries for two other areas within Great Britain. Using the same parameter settings the approach was also tested on an IGN France building dataset (Fig. 12a).

3.1. Evaluation of settlement boundaries

Visual comparison was undertaken between various geographic regions. Figs. 10a and 11a being two such examples using Great Britain data, with OS Strategi settlement layer for comparison (Figs. 10b and 11b). Fig. 12a is part of an IGN France dataset, and the 1:250,000 scale dataset for comparison (Fig. 12b). We acknowledge that visual comparison with paper maps is subjective (Mackaness & Ruas, 2007; Weibel & Dutton, 1999) but that this does give some indication of the success of the algorithm. The overall structure of boundaries is observed to be quite similar; there are various differences: (1) the settlement boundaries are not smooth nor simplified whereas the cartographic comparators are. The settlement boundary is a database object and is a result of model generalisation, not of cartographic generalisation; (2) the cartographic outputs from both OS and IGN France are poorly aligned and poorly reflect the distribution of buildings. This is probably due to the application of cartographic generalisation techniques (such as displacement) and secondly the representations are out of date, being less frequently updated than at the large scale.

The results were also evaluated by a cartographer and the generalisation team at OS. The cartographer highlighted the limitation of comparison with OS Strategi data “… comparison with Strategi data is not a good measure, since Strategi is created from 1:250,000 data that is used to produce the printed paper map. The original data was captured from an existing paper copy and takes on board all changes to shape and position that have been applied by cartographers over the last 80 to 90 years. Features might have a reasonable relationship to each other but geographical position can be 500 m (or more) out …”. According to the cartographer the results created from our approach “… are far more accurate from a positional point of view …” and “From a ‘Settlement’ dataset viewpoint, where we use the data to attribute point data (e.g. Address) it has more going”. They went on to conclude that the results “… could be useful as a revision guide for 1:250,000, but this would need testing in a production environment”.

Comments from the generalisation team highlighted the potential use of the results as input to automatic cartographic generalisation: “… the results are good, but will be much more valuable in an automatic process than as input for a cartographer … the real value of your algorithm is in providing automatically a boundary for built-up...
areas, that can either be geometrically refined (simplified) for delivering a cartographic representation at a given scale, or used as is for analysis purposes (including driving generalisation processes specially designed to work in
Fig. 11b. OS Strategi settlement boundary with input buildings selected from OS MasterMap. (Mapping is Ordnance Survey ©Crown Copyright. All rights reserved).

Fig. 12a. Resultant boundaries generated by the algorithm with input buildings selected from IGN BDTopo®, (Pamiers in France).
built-up contexts). It was also suggested that the boundary could be used for the automatic determination of quality indicators to "qualify the discrepancy between the data and the result (for example, any point within a built-up area is within x meters of a building)."

3.2. Analysis based on partonomic information

Whilst we have highlighted the value of partonomies in map generalisation it is important to stress that their utility extends beyond the visual. Partonomic information can also be used for spatial queries based on the higher order objects within the database. In Fig. 13 we can distinguish between roads solely internal to the city, and those that are 'shared' by two separate settlements. It is these candidates that would form the basis for alternate routes between the two settlements. It is important to stress that such a query would not be possible prior to partonomic enrichment, since there was no object that represented the settlement.

It is also worth noting that these partonomic relations are not exclusive. There is no reason why an object cannot be part of multiple partonomies (Fig. 14). Indeed it is likely that any given object would be part of more than one partonomy. For example a railway station is both part of the railway network and is also part of a city – reflecting the function (and relative importance) of the railway station as the means by which the populous connect into the network.
Assuming we have defined the partonomies of city, forest and hill (Fig. 14), we can answer the query ‘where can I find a wooded suburb with good views across the city?’ More generally and from a cartographic perspective, we would argue that thematic mapping is all about conveying a subset of all the partonomic relationships that exist among geographic entities.

Whilst the methodology presented here has produced crisp boundaries, it is acknowledged that more generally it may be difficult to create discrete boundaries among continuous phenomena (Molenaar, 1996), that a boundary may be vague because of the fuzzy nature of the concept (Campari, 1996; Usery, 1996) and that both these factors may lead to a degree of uncertainty in the determination of partonomic relationships. Often geographic phenomena have a certain level of indeterminacy reflecting the need to define and understand continuous phenomena within a certain context of observation (Molenaar, 1993). A lot of research has been done on dealing with fuzziness in spatial objects, crisp and non crisp boundaries (Campari, 1996; Duckham & Sharp, 2005; Duckham, Mason, Stell, & Worboys, 2001; Fisher, 2000; Goodchild, Monette, Fohl, & Gottsegen, 1998; Miyamoto, 1990; Molenaar, 1993; Molenaar, 1996; Reinke & Hunter, 2002; Winter & Thomas, 2002). Here we have presented an approach for creating flat boundaries of settlements based on the density of the buildings. We have not modelled the fuzziness in the boundary and subsequently in their partonomic relationships but we believe that the ‘citness’ values calculated for each buildings (and represented in the continuous surface of Fig. 5) can be used as a basis for further work to model fuzziness in terms of upper and lower approximations (Pawlak, 1982; Worboys, 1998) and that this offers a more effective way of thematically conveying ‘city’ than just a simple polygon.

4. Conclusion

Generalisation is a process of transforming information from one form into another in order to reveal different qualities and characteristics of the phenomena being modelled. This paper has demonstrated a method by which settlement boundaries can be automatically created from their typical parts (buildings). This information enriches the database with partonomic information and provides a framework for both map generalisation and multi criteria spatial analysis. We have argued that the automatic creation of these partonomic relationships is a critical prerequisite to the automatic populating of databases in MRDBs. This paper has presented an algorithm for creating partonomic relationships between settlements and their constituent parts. One can envisage many other scale dependent partonomic structures that might define phenomena along a scale continuum; from airports, schools, train depots, to forested regions, mountainous regions or water catchments. Some can be defined mathematically/cartometrically; others can be defined in terms of their function; most are composite. All must be defined in terms of our prototypical sense of what these things ‘mean’ (their ‘good parts’ (Tversky & Hemenway, 1984)). The challenge is in selecting appropriate criteria that efficiently defines their form according to our expectations and geographical understandings.

Acknowledgements

The authors are grateful for funding from Ordnance Survey and The University of Edinburgh. Special thanks to IGN France for providing data sets for evaluation; Ordnance Survey staff for their comments on settlement boundaries and to anonymous reviewers for their constructive comments.

References

An Optimisation Approach to Cartographic Generalisation

