Investigation of the hydrodynamics of flash floods in ephemeral channels: Scaling analysis and simulation using a shock-capturing flow model incorporating the effects of transmission losses

Simon Marius Mudd *

Department Of Civil and Environmental Engineering, Vanderbilt University, VU Station B 351831, 2301 Vanderbilt PlaceNashville, TN 37235, USA

Received 21 April 2005; revised 29 August 2005; accepted 11 September 2005

Abstract

Flow and infiltration during flash floods in ephemeral channels were investigated through scaling analysis and numerical experiments. Scaling of the equations governing flow has shown that momentum loss due to transmission losses (flow that infiltrates through the channel bed) during flash floods can be of the same order as momentum loss due to channel friction and can significantly affect the flow velocity. Numerical simulations were carried out using a shock-capturing MUSCL (monotonic upstream-centered scheme for conservation laws), which incorporates transmission losses as a sink term in the momentum and continuity equations. The wetted area of the channel bed during floods is the primary control on the volume of water that can infiltrate into the bed. The increased velocity of floods in narrow channels that adds wetted area to the channel bed due to greater flood propagation distance is not sufficient to overcome the reduction in wetted area due to reduced channel width; wider channels transmit a greater percentage of the flood volume that enters the channel reach to the bed sediments. Floods of the same total volume but different hydrograph shapes transmit different proportions of their volume to the bed sediments; the nature and magnitude of the differences will depend on the flood propagation distance. Increasing the total volume of the flood and decreasing the channel width increases the sensitivity of the total infiltration to the hydrograph shape. For reaches of the same bed area but different spatial distributions of channel width, differences in the rate of channel widening affect the spatial distribution but not the total volume of water that infiltrates into the bed sediments.

Keywords: Ephemeral channels; Flash floods; Scaling analysis; Transmission losses; Numerical modeling

1. Introduction

Flash floods in ephemeral channels are an important component of the hydrologic cycle in arid regions. Precipitations events in arid regions are typically of high intensity yet are spatially localized (Osborn and Lane, 1969; Sharon and Kutiel, 1986;...
Many factors can affect the spatial distribution of transmission losses and groundwater recharge. Spatial changes in the underlying bedrock can lead to variation in the ability of transmission losses to recharge groundwater aquifers (Shentsis and Rosenthal, 2003). The depth to groundwater and the thickness of alluvial fill underlying the channel also vary spatially, and affect groundwater recharge and storage. The transmission loss rate has been shown to be reduced when water moving through the vadose zone makes contact with the groundwater table (Abdulrazzak and Morel-Seytoux, 1983). Because of this effect, groundwater pumping near ephemeral channels has been shown to enhance recharge from flow events (Shentsis, 2003). In addition, the porosity and permeability of channel bed sediments may vary spatially along ephemeral channels in the downstream, cross-stream, and vertical dimensions (e.g. Blasch et al., 2004). In many ephemeral channels, a layer of fines is found in the pores of the upper few centimeters of bed sediments; these fines reduce the hydraulic conductivity of the channel bed (e.g. El-Hames and Richards, 1998).

Predicting recharge and maximizing the amount of recharge through pumping requires knowledge of the spatial distribution of transmission losses along the channel, and because of spatial changes in potential recharge, correctly predicting the timing and travel distance of flood events is an essential component of making such predictions. The width of the channel also plays an important role in determining transmission losses, as wider channels have greater total infiltration rates, which increases the potential for channel transmission losses (Goodrich et al., 1997). Goodrich et al. (1997) have shown that transmission losses are also responsible for the strong nonlinearity in basin runoff response from semiarid basins.

Previous studies have investigated the interaction of surface flows and infiltration. Freyberg (1983) studied the effect of a time-varying hydrograph on the infiltration of floodwaters into channel bed sediments in a simulated one-dimensional sediment column. The total volume infiltrated was found to be the same for equal area hydrographs with different peak times but of the same duration. Parissopoulos and Wheater (1991) extended this analysis with a two-dimensional infiltration model, and found that although hydrographs of equal area and duration but different peak times had the same total infiltration volume, hydrographs of equal area but different duration had large differences in the total infiltrated volume of water.
The duration of flow at a particular location in the channel network depends on the velocity and size of the flood, which are affected by the hydrodynamics of the flow and the cumulative transmission losses upstream of that location.

A number of studies have combined flow behavior and transmission losses. One branch of this research has studied the problem of an advancing flow front with infiltration in irrigation borders or furrows. Three classes of model for this problem are commonly presented: kinematic, zero-inertia, and full dynamic models. Both kinematic (e.g. Sherman and Singh, 1982) and zero-inertia models (e.g. Strelkoff and Katopodes, 1977) make the assumption that the acceleration terms in the momentum equation are negligible. Kinematic solutions also assume the water surface slope is equal to the bottom slope. These assumptions may be appropriate for border irrigation problems because flows in borders systems do not have rapid variations in flow depth and their Froude numbers are typically below 0.3 (Clemmens and Fangmeier, 1978). In the modeling of flash floods, however, these assumptions are inappropriate because in flash floods, the surface depth varies rapidly and Froude numbers are typically near unity (Dick et al., 1997). Full dynamic models combine the full Saint-Venant flow equations with an infiltration model (e.g. Tabuada et al., 1995), and are better suited for describing flow in natural channels than kinematic and zero-inertia models. Due to the fact that irrigation furrows and borders are engineered structures, however, the study of flow and infiltration in such structures has not explored factors important for the prediction of flow and transmission losses in natural channels, such as downstream changes in channel geometry and variations in hydrograph shape. Studies of irrigation furrows focus on length scales of tens to hundreds of meters, whereas floods in ephemeral channels can travel many kilometers.

Models that are better suited to the prediction of flow in natural channels include distributed hydrologic models with channel routing components such as KINEROS (Smith et al., 1995) and the model of El-Hames and Richards (1998). KINEROS has proven to be effective at predicting runoff at the basin scale, but it incorporates a kinematic channel flow model and is not designed to be used in high-resolution investigations of flash flood physics. El-Hames and Richards (1998) use the full Saint-Venant equations to model flow, which are solved with a Lax–Wendroff scheme. The Lax–Wendroff scheme has the disadvantage, shared by the flow routing schemes in full dynamic border irrigation models (e.g. Bautista and Wallender, 1992; Dholakia et al., 1998; Sakkas et al., 1994; Tabuada et al., 1995), that it does not capture flow discontinuities. The leading edge of flash floods in ephemeral channels typically has a steep walled nose, or ‘bore’ (Leopold and Miller, 1956); this bore is a flow discontinuity and is similar to the front of a dam-break flood. Correctly modeling the flood bore is important for flash floods because there is a strong correlation with the size of the flow peak (typically occurring just behind the arrival of the bore) and the velocity of the flood wave (Benzi et al., 1991; Pilgrim, 1976). Numerical schemes that are not shock capturing also tend to have significant mass balance errors when solving flow problems with discontinuities (Garcia-Navarro et al., 1999).

This contribution consists of two components. First, a scaling analysis was performed to assess the significance of transmission losses on a flood’s mass balance and the significance of the source terms (bed slope, channel friction, changes in channel geometry, and transmission loss) on the momentum equation. A numerical model was then developed that couples the one-dimensional Saint-Venant equations and the Richards’ equation. The model solves the Saint-Venant equations using a modified MUSCL (monotonic upstream-centered scheme for conservation laws) initially introduced by Vanleer (1979) and solves the Richard’s equation using the scheme of Celia et al. (1990). The numerical simulations preformed using the model have focused on a simplified channel in order to isolate the effects of varying channel width, varying cumulative flood volumes, and varying inflow hydrographs on the spatial distribution of transmission losses and downstream propagation of the flood wave. The work of Freyberg (1983); Parissopoulos and Wheater (1991) is extended to include feedbacks between surface flow and infiltration in the downstream direction. No attempt is made to predict runoff based on rainfall records, which is a task better suited for distributed models (e.g. Smith et al., 1995; El-Hames and Richards, 1998). Rather, the floods simulated in this
study extend the investigations of flows in irrigation furrows to a scale appropriate for flash floods in ephemeral channels, and the model is able to simulate the flood bore by using a shock-capturing numerical scheme.

2. Scaling analysis of the one-dimensional Saint-Venant equations with infiltration

The Saint-Venant equations are:

\[
\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = q_i , \quad (1a)
\]

and

\[
\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} (\frac{Q^2}{A} + gI) = F_c + gA(S_0 + S_t) + Vq_i , \quad (1b)
\]

where \(A \) is the cross sectional area of flow (L²), \(Q \) is the discharge (L³T⁻¹), \(q_i \) is the inflow or outflow per unit length of channel (L²T⁻¹), \(g \) is gravitational acceleration (LT⁻²), \(I \) is a hydrostatic pressure term (L⁵), \(F_c \) is a component of the hydrostatic force in the \(x \)-direction by the channel walls (L³T⁻¹), \(S_0 \) is the channel slope (dimensionless), \(S_t \) is the friction slope (dimensionless), and \(V = Q/A \) is the flow velocity (LT⁻¹). The hydrostatic pressure term is defined as:

\[
I = \int_0^h (h - \eta) b(\eta) d\eta , \quad (2)
\]

where \(h \) is the flow depth (L), \(\eta \) is an integration variable indicating distance from the channel bottom (L), and \(b \) is the channel width as a function of distance above the bed (L). In a rectangular channel \(b \) does not vary with \(\eta \) and the pressure term is:

\[
I = \frac{A^2}{2b} . \quad (3)
\]

The component of the hydrostatic force can be estimated by (Garcia-Navarro, 1999):

\[
F_c = \frac{g}{\Delta x} (I(h, x + \Delta x) - I(h, x)) . \quad (4)
\]

For a rectangular channel, this can be stated as:

\[
F_c = \frac{gh^2}{2} \frac{\partial b}{\partial x} . \quad (5)
\]

The friction slope term can be calculated using a number of flow resistance equations, such as the Manning equation, Chezy equation, or Darcy–Weisbach equation. The Darcy–Weisbach equation was used for this study because it is dimensionally correct and has a sounder theoretical basis (Channels, 1963). The friction slope calculated with the Darcy–Weisbach equation is:

\[
S_f = \frac{ffV^2}{8gR} , \quad (6)
\]

where \(ff \) is the Darcy–Weisbach friction coefficient (dimensionless) and \(R \) is the hydraulic radius (L). For a rectangular channel, the hydraulic radius is:

\[
R = \frac{A}{2b + b^2} . \quad (7)
\]

If there are no tributaries, the inflow and outflow term will consist only of the transmission losses:

\[
q_i = -f_c b , \quad (8)
\]

where \(f_c \) is the volumetric infiltration rate per unit area into the bed (L³T⁻¹L⁻²). The infiltration rate is defined as positive for infiltration and negative for exfiltration. The one-dimensional equations for flow in a rectangular channel become:

\[
\frac{\partial}{\partial t} (hbV) + \frac{\partial}{\partial x} (hVb) = -f_c b \quad (9a)
\]

and

\[
\frac{\partial}{\partial t} (hbV^2) + \frac{\partial}{\partial x} \left(hbV^2 + \frac{gh^2 b}{2} \right) = \frac{gh^2}{2} \frac{\partial b}{\partial x} + ghb \left(S_0 + \frac{ffV^2}{8gR} \right) - Vbf_c . \quad (9b)
\]

Eqs. (9a,b) may be nondimensionalized as follows:

\[
x_s = \frac{x}{\bar{x}} , \quad t_s = \frac{\sqrt{gh}}{\bar{X}} t , \quad h_s = h \bar{h} , \quad (10)
\]

\[
b_s = b \bar{b} , \quad V_s = \frac{V}{\sqrt{gh}} , \quad f_s = \frac{f_c}{\theta_1 K_s} . \quad (11)
\]
where K_s is the saturated hydraulic conductivity of the bed sediments (LT$^{-1}$), the subscript* indicates a dimensionless quantity, and overbars indicate an averaged quantity. The parameters X and θ_t are dynamic scaling parameters. The parameter X represents the distance from the flood bore, and θ_t is a dimensionless parameter that is greater than or equal to one and scales the saturated hydraulic conductivity. Dynamic scaling for the infiltration is chosen because initial infiltration rates into dry soil columns can be several orders of magnitude greater than infiltration rates into saturated columns. It should be noted that this analysis considers only flash floods contained within the channel walls; floodplain inundation is not considered. The velocity is scaled at the speed of a gravity wave at the average depth of flow in the flood event, and the time is scaled by the time it takes a gravity wave to traverse a distance X. These parameters are adopted because typical flash floods travel at speeds near the critical Froude number (Dick et al., 1997). Flows during border irrigation advance typically travel at a Froude numbers of <0.3 (Clemmens and Fangmeier, 1978), thus for border irrigation advance the dimensionless velocity is O(10$^{-1}$–103).

The dimensionless continuity equation is:

$$\frac{\partial}{\partial t^*}(h^* b^*_s) + \frac{\partial}{\partial x^*}(V^* h^* b^*_s) = -\frac{X\theta_t K_s}{\rho \sqrt{gh}} f_s b_s. \quad (11)$$

Transmission losses will become a first order contribution to the mass balance when the dimensionless group to the right of the equality of Eq. (11) approaches unity. The dynamic length scale, X, can be adjusted to determine the length of channel which must be swept by the flood before infiltration becomes significant. Consider a typical flash flood in which the average flow depth is O(10$^{-1}$–103). Sandy sediments will have K_s values of $\sim 1 \times 10^{-4}$ m/s. Near the flood bore, where X is O(10$^{-1}$ m), water will infiltrate rapidly due to the suction within the pores of the bed sediments, and θ_t is O(102). The contribution of infiltration will be significant to second order (the dimensionless group to the right of the equality in Eq. (11) will approach 0.1) in the total mass balance near the bore for floods with small (O 10$^{-2}$x10$^{-1}$ m) flow depths or floods taking place in channels with sandy beds. At intermediate length scales (X is O(10–1000 m)), θ_t will approach unity and the infiltration term becomes second order or smaller. At longer length scales, such as the length of a mesoscale drainage basin O(10 km), transmission losses become a first order influence on the mass balance. A silt-clogging layer in the bed sediments can reduce the saturated hydraulic conductivity by an order of magnitude (El-Hames and Richards, 1998); for floods over bed sediments containing a clogging layer of fines, the flood propagation distance must be greater for infiltration to be significant than in the case of channels whose beds are not clogged with fines.

The dimensionless momentum equation is:

$$\frac{\partial}{\partial t^*} (h^* b^*_s V^* x) + \frac{\partial}{\partial x^*} (h^* b^*_s V^* V^*) + \frac{1}{2} \frac{\partial}{\partial x^*} \left(h^*_s b^*_s \right)^2 = \frac{h^*_s}{2} \frac{\partial b^*_s}{\partial x^*} + X S_{b} h^* b^*_s \right) + X f \left(\frac{h^*_s}{4b^*_s} + \frac{b^*_s}{8h^*} \right) V^* \left(\frac{X\theta_t K_s}{\sqrt{gh}} V^* b^*_s f_s \right). \quad (12)$$

The hydrostatic force term due to channel width changes is always first order. Other source terms can vary significantly depending on the dynamic length scale, the friction factor, and the value of θ_t. The slope term (second term on the left) will only be of first order significance at the basin scale. The friction slope term can be significant at the basin scale, but can also be significant at the nose of the flood bore. Experimental results have shown that friction increases as a function of the ratio between D_{max} and R (Abdulrazzak and Morel-Seytoux, 1983, p.102, and references therein). In the analytical solution of a dam-break, flow over a frictionless dry bed the flood wave will spread to a thin sheet on the advancing side of the flood (Henderson, 1966). In the case of a natural channel with channel friction, the thinning of flow near the advancing end of a flood will cause a greater amount of resistance as R decreases, and a steep front will develop. The Manning equation predicts greater resistance in flows that are shallow, but will under-predict the friction force near the bore due to the fact that it does not account for the change in the friction factor as R becomes small. The Darcy–Weisbach friction equation includes the relationship between the hydraulic radius, R, and the channel roughness, which
can be quantified by $D_{84}(L)$:

$$\frac{1}{\sqrt{R}} = 0.82 \log \left(\frac{4.35}{D_{84}} \right).$$

(13)

The friction term thus can be of first order significance at the nose of the bore where the friction factor is large ($O \ 10^{0.1}$).

Similarly, the momentum loss due to transmission losses can be significant at the basin scale and near the bore. At basin scale, θ_t is ~ 1, but X is large. The collective momentum loss due to transmission losses over a basin will significantly slow the passage of the flood compared to a flood that does not experience transmission losses. This result shows that in order to properly predict flood travel times in ephemeral channels at the basin scale the momentum loss due to transmission losses must be incorporated into the flood routing scheme. Near the bore, X is small but θ_t is large, so the momentum loss due to transmission losses is also significant near the bore. This momentum loss, in addition to the increased friction near the bore, is the cause of the characteristic steep front of a flash flood bore. This steep front is an important feature of flash floods in ephemeral channels because it has been theorized that elevated turbulence and friction in the bore is responsible for the high suspended and bedload sediment concentrations measured during flash flood events (Dunkerley and Brown, 1999; Laroune and Reid, 1993).

3. Coupled shock-capturing open channel flow and infiltration model

A model that couples the infiltration of water into the channel bed sediment and the flow of the flood in the channel has been developed. This model consists of an infiltration component and a channel flow component; these components are coupled through the source terms in the continuity and momentum equations for channelized flow.

3.1. Infiltration component

Each channel node in the model is underlain by a one-dimensional sediment column. For each column, the model calculates infiltration (f_c in Eqs. (9a,b)) by solving the mixed form of the Richard’s equation

$$\frac{\partial \theta}{\partial t} - \nabla \cdot K(h_p) \nabla h_p - \frac{\partial K}{\partial z} = 0,$$

(14)

where $K(h_p)$ is the unsaturated hydraulic conductivity (LT^{-1}) (a function of the pressure head), θ is the moisture content (LT^{-3}), and h_p is the pressure head (L). The hydraulic conductivity and moisture content are both functions of the pressure head, and are determined by the van Genuchten constitutive equations (van Genuchten, 1980). Eq. (14) is solved using a finite difference spatial approximation of the modified Picard iterative technique introduced by Celia et al. (1990). Sediment columns are of sufficient depth to prevent the wetting front from interacting with the lower boundary of the columns. For simplicity, lateral flow in the vadose zone is not considered.

3.2. Channel flow component

The model solves the Saint-Venant equations using a modified MUSCL scheme. The scheme presented here calculates flux terms analogously to the third order scheme presented by Delis and Skeels (1998) but differs in its treatment of the source terms in Eqs. (1a,b). Instead of the Manning equation, the model used in this study uses the Darcy–Weisbach equation for the friction slope for reasons described in Section 2. The model solves the term F_c in Eq. (1b) using the method of Garcia-Navarro et al. (1999). The MUSCL scheme presented by Delis and Skeels (1998) can accurately capture the solution of a dam-break flow over a dry bed in the case of a frictionless channel, but including friction can lead to instabilities as extremely high frictions are introduced at the downstream edge of the flood. The current model corrects these instabilities by using a two-step procedure. The model calculates predicted values of the flow area and discharge at the future timestep using a solution of the Saint-Venant equations that excludes source terms due to friction and transmission losses. These predicted values of A and Q at the ith node are then averaged with the values at the old timestep:

$$A_i^a = \frac{A_i^p + A_i^l}{2},$$

(15a)
\[Q_i^t = \frac{Q_i^j + Q_i^j}{2} \]

where the superscripts \(a \), \(p \), and \(t \) indicate average, predictor, and previous timestep, respectively. The head boundary at the surface of the bed sediment is determined by the flow depth calculated from the averaged channel area \(A^a_i \). The friction slope is also calculated using the averaged channel area \(A^a_i \) and discharge \(Q^a_i \), and then using the averaged source terms the values of \(A_i \) and \(Q_i \) at the future timestep are calculated using the full Saint-Venant equations including the frictional terms. An inflow discharge hydrograph is used as the upstream boundary condition. The velocity and flow depth at this boundary is then calculated using the method described in Garcia-Navarro and Saviron (1992). The downstream boundary is set as having a discharge of zero at all times; the simulations are run with a channel length and flood duration such that the flood bore never reaches the downstream boundary.

4. Numerical experiments

Here the results from a series of numerical experiments are presented. For illustrative purposes, the temporal response of the infiltration rate into a column of sediment due to ponding of water on the surface is described. Results of a series of experiments using the coupled flow and infiltration model are then presented. In natural channels, there are numerous factors, which influence both the propagation rate of the flood and the rate and spatial distribution of transmission losses. Factors affecting the rate of propagation of the flood can include channel sinuosity, downstream changes in the channel cross section (e.g. Garcia-Navarro et al., 1999), and lateral inflows of water from hillslopes and tributary drainage basins (e.g. Shentsis et al., 1999). Transmission losses can also be affected by the complex stratigraphy of channel bed sediments (e.g. Blasch et al., 2004). The combination of these factors makes it difficult to isolate controls on transmission losses and downstream flood propagation using data from natural watersheds. In addition, it is common for flow-recording instruments in ephemeral channels to be positioned in such a way that lateral inflow occurs between instrumented sites (e.g. Shentsis et al., 1999). Such a positioning of instruments, while useful in assessing the basin scale water balance, nonetheless makes it difficult to assess the physics of floods as they travel between instrumented cross sections. In order to isolate the effects of varying the channel width, the total flood volume, inflow hydrograph, and the bed geometry on transmission losses we simulate a simplified channel in which only one parameter is varied for a set of simulations. In this way, the numerical model serves as a virtual laboratory (e.g. Bras et al., 2003) for exploring the interaction of floods and transmission losses. The simulations focus on flash floods that are contained within the channel banks; large floods that inundate the floodplain are not considered.

4.1. Infiltration into a single sediment column

To begin to understand how infiltration affects and is affected by a propagating flash flood hydrograph, one can first examine infiltration in sediment overlain by ponded water. As water depth at the sediment surface increases, infiltration also increases (Fig. 2(a)). The sensitivity of the total infiltration decreases with increasing surface water depth. For large surface water depth, changes in the depth of the water at the surface do not significantly affect the total infiltration compared with the total infiltration for small surface water depths.

Fig. 2(b) shows infiltration curves for two different depths of surface water (sediment properties are shown in Table 1). The infiltration rate is initially high and then decays to a value that is a function of the saturated hydraulic conductivity and the water depth at the sediment’s surface. The curves in Fig. 2(b) have a constant depth of surface water as the upper boundary condition, but in the case of a flash flood, the flow depth will vary rapidly. The infiltration curves for sediment with a rapidly varying surface depth will be perturbed versions of the exponential decay curves shown in Fig. 2(b) (for example, see Fig. 13 in Freyberg, 1983). Infiltration rates into initially dry sediment at the onset of ponding can be one to two orders of magnitude greater than the steady state infiltration rate. The infiltration rate in a sandy soil \((K_{sat}=9.22 \times 10^{-5} \text{ m/s}) \) with a surface water depth of \(0.50 \text{ m} \) at \(t = 1 \text{ s} \) is \(4.8 \times 10^{-3} \text{ m/s} \). This high infiltration rate rapidly decays (within tens
of seconds) to a rate that is of the same order of magnitude as the steady state infiltration rate.

4.2. The effects of channel width and peak inflow discharge

In the first set of simulations using the fully coupled model, both the channel width and the inflow discharge are varied. The channel width for each simulated channel does not vary in space. The inflow hydrographs are triangular; they rapidly reach a peak \(Q_p \) after 120 s and then decay to zero at time \(t_{\text{end}} \) (Fig. 3(a)). This is a simplification of a peaked hydrograph typical of many floods (e.g. Fig. 3(b)). For each peak discharge and channel width, floods are modeled both with and without a 5 cm layer of fines near the channel bed surface (the hydraulic conductivity of this clogging layer is listed in Table 1).

First, consider two floods with the same inflow hydrograph but different channel widths. The narrower channels have greater flow depths and a smaller wetted perimeter, resulting in less flow resistance than a flood in a wider channel. This will lead to faster flow velocities. At the same time, the greater flow depths will cause greater rates of infiltration, which will slow the flow (Eq. (1b)). For the channels modeled here, the decreased flow resistance leading to greater flow velocities outweighs the loss of momentum due to greater infiltration caused by greater flow depths.

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (1/cm)</td>
<td>0.0335</td>
</tr>
<tr>
<td>(N) (dimensionless)</td>
<td>2.0</td>
</tr>
<tr>
<td>(\theta_i) (Dimensionless)</td>
<td>0.102</td>
</tr>
<tr>
<td>(\theta_t) (Dimensionless)</td>
<td>0.368</td>
</tr>
<tr>
<td>(K_a) (cm/s)</td>
<td>0.00922</td>
</tr>
<tr>
<td>(K_c) (cm/s) of clogging layer</td>
<td>0.001</td>
</tr>
<tr>
<td>(S_0) (Dimensionless)</td>
<td>0.5</td>
</tr>
<tr>
<td>Initial pressure head (h_{p0}) (m)</td>
<td>5.0</td>
</tr>
<tr>
<td>(D_{84}) (m)</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

Fig. 2. (a) Total depth of water infiltrated after one hour as a function of surface water column depth. (b) Infiltration rate as a function of time for different surface water column depths. Sediment properties given in Table 1.

![Graph](image1)

![Graph](image2)

Fig. 3. (a) Inflow flood hydrographs used in simulations. Solid line represents triangular hydrograph, dashed line represents plateau type hydrograph. (b) Two hydrographs from a small basin at the Walnut Gulch Experimental Watershed, AZ (data from flume 3, area = 2220 acres). The dotted line represents a flood that occurred on 9/16/1999, and the solid line represents a flood that occurred on 7/7/1999.
Fig. 4 shows the progression of the flood wave for channels of differing widths, with the narrower channels having flood waves that propagate at greater speeds. The clogging layer of fines reduces the amount of water infiltrated due to the lower hydraulic conductivity near the channel bed surface. This reduces the momentum losses associated with transmission losses (Compare Fig. 4(a) and (b), and also Fig. 4(c) and (d)). Any reduction in the hydraulic conductivity of the bed sediments will lead to greater flood wave celerities.

As water infiltrates into the bed, the flood discharge is reduced. Fig. 5 shows hydrographs at several points along simulated channels. The volumetric flux rate of water into the bed sediments within the reach will depend on both the local infiltration rate at a cross section, as well as the width of the channel and the distance the flood has traveled (the farther the flood travels, the more wetted surface area is available for water to enter the channel substrate). The infiltration rate will depend on the hydraulic conductivity of the bed sediments. While Guzman et al. (1989) considered the increase in infiltration due to an increase in the wetted surface at a one-dimensional cross section, and found increasing wetted area increased the infiltration volume, their work did not consider the effects of the change in wetted perimeter on the downstream propagation distance of a flash flood. A volume ratio, \(\phi_v \), is defined as the ratio of the total volume of water infiltrated to the total volume of water that has passed through the upstream boundary. For example, if \(\phi_v = 1 \), all of the water that has...

Fig. 4. Passage of flood waves for floods with \(Q_p = 4.0 \, \text{m}^3 \, \text{s}^{-1} \). (a) \(t = 45 \, \text{min} \), no clogging layer. (b) \(t = 45 \, \text{min} \), with clogging layer. (c) \(t = 80 \, \text{min} \), no clogging layer, (d) \(t = 80 \, \text{min} \), with clogging layer.
entered the channel has infiltrated into the bed sediments. Volume ratios as a function of time are plotted in Fig. 6. For floods with the same inflow hydrographs, wider channels will result in greater volume ratios at all times during the flood. A clogging layer of fines will reduce the volume ratio for a flood of the same peak inflow discharge and channel width.

Wide channels have greater volumetric flux rates of water into the bed sediment than narrow channels. Although greater flow depths in narrow channels lead to increased infiltration rates per unit width (e.g. Fig. 2(b)), the increase in infiltration with the depth of water in narrow channels channel is less than the increase in volumetric flux due to the greater area of the channel bed through which infiltrating water can flow in wider channels. Floods in narrow channels also have greater velocities than floods in wide channels, so the length along the channel that is wetted and is therefore experiencing infiltration grows at a greater rate, but the increase in the velocity is not great enough to offset the added wetted area that is due to a wider channel.

In channels of the same width, floods with greater inflow discharge will have lower volume ratios through time than for floods with smaller inflow discharge. As demonstrated in Section 4.1, the infiltration rate becomes insensitive to changes in the flow depth at large flow depths, so the speed and volume ratios in floods with greater discharges, and thus greater flow depths, are less sensitive to infiltration of water into the channel bed sediments.

4.3. The effects of hydrograph shape

Both Freyberg (1983); Parissopoulos and Wheater (1991) found that the total amount of water infiltrated into a channel cross section would be nearly identical for hydrographs of different shape but with the same total volume (e.g. the area under the hydrograph). While the shape of the hydrograph may not play a significant role at a given cross section of channel, it can have an impact upon the distribution and magnitude of infiltration along the channel because the velocity of the flood is sensitive to the discharge,
and as has been demonstrated above, the speed of the flood wave is more important in determining the volume of water that infiltrates into the bed sediments than the depth of flow. Floods of the same total volume of water but with inflow hydrographs of different shapes were simulated. Each set of floods with identical total inflow water volumes was simulated using a triangular and a plateau-like hydrograph (Fig. 3(a)). A plateau-like hydrograph is shown in Fig. 3(b) (flood on 9/16/1999), or see hydrographs from Dick et al. (1997) or Malmon et al. (2004). The plateau-like hydrograph is a simplification used to illustrate the hydrodynamics of floods in which flow volume is distributed more evenly through the hydrograph than in a singly peaked hydrograph. Floods in which the total flow volume is more evenly distributed about the peak discharge could be caused by differing arrival times of flash floods from tributary channels upstream of a given cross section of channel (e.g. Dick et al., 1997).

For the floods with plateau-like inflow hydrographs, the discharge at the peak is a fraction of the peak of the triangular hydrograph \(\theta_p = Q_{p \text{pl}} / Q_p \) where \(Q_{p \text{pl}} \) is the discharge of the plateau). For smaller \(\theta_p \), the time of the plateau, \(t_{p \text{pl}} \), will be greater. The progression of three flood waves with the same channel width and total flood volume is shown in Fig. 7. The flood with the triangular inflow hydrograph has the greatest flow velocity during the initial stages of the flood. Floods with plateau-like hydrographs are initially slower due to smaller peak discharge compared to the floods with a triangular hydrograph. Floods with a plateau-like hydrograph may gain speed downstream, however, because a greater volume of flow is delivered to the channel during the period of the plateau relative to the

Fig. 6. Volume ratios as a function of time. The solid lines represent floods in channels 4 m wide; dashed lines represent flood in channels that are 6 m wide, and dotted lines represent floods in channels that are 10 m wide. (a) \(Q_p = 2.0 \text{ m}^3 \text{ s}^{-1} \), no clogging layer, (b) \(Q_p = 2.0 \text{ m}^3 \text{ s}^{-1} \), with clogging layer, (c) \(Q_p = 4.0 \text{ m}^3 \text{ s}^{-1} \), no clogging layer, (d) \(Q_p = 4.0 \text{ m}^3 \text{ s}^{-1} \), with clogging layer, (e) \(Q_p = 8.0 \text{ m}^3 \text{ s}^{-1} \), no clogging layer, (f) \(Q_p = 8.0 \text{ m}^3 \text{ s}^{-1} \), with clogging layer.
triangular hydrograph. The water delivered during the plateau propagates through the channel after the bed has already been wetted and the infiltration rate has decayed (Fig. 2(b)).

The volume ratios (ϕ_V) of floods with different types of hydrographs are shown in Fig. 8. In the early stages of the flood, the volume ratios for the triangular hydrographs are lower than for the plateau-like hydrographs with the same total volume in channels of the same widths. Although the floods with triangular hydrographs propagate farther down the channel, their discharge early in the flood is greater and the increased wetted area through which water can infiltrate due to their increased propagation distance does not compensate for the increased discharge relative to the floods with plateau-like inflow hydrographs. As time passes, however, more water flows into the channel when the bed is already wet and the infiltration rate has decayed for floods with the plateau-like inflow hydrographs; this leads to lower volume ratios at later times in the floods. Floods of greater total volume and in narrower channels are more sensitive to changes in the hydrograph shape (Fig. 8). After ~80 min of flow, a flood in a 6 m wide channel with a peak inflow discharge of 4 m3/s can have a volume ratio that is ~25% greater than the

If all of the water during a flash flood infiltrates into the bed sediments, its spatial distribution will be determined by the channel width, the velocity of the flood, and the shape of the hydrograph. It may happen, however, that the flood encounters a perennial stream at a confluence with a larger drainage basin. In such a case, the total volume of water infiltrated is of more concern to the hydrologist studying recharge than the timing of the infiltration. Fig. 9 plots the volume of water infiltrated into the bed once the floods have traveled a given distance. The flood velocity again plays a critical role in determining the total water that infiltrates into the bed sediments. Because the infiltration rate curve (Fig. 2(a)) is relatively insensitive to changes in the flow depth, the time a column of sediment is wetted by the flood is the principal factor that determines the total volume of water that infiltrates. In channels of the same width, floods that travel down the channel at greater speeds will lose the greatest volume of water to the bed after traveling a given distance.
4.4. The effects of spatially varying channel width

The geomorphic characteristics of the channel can affect the spatial distribution and rate of infiltration in ephemeral channels. Consider channels that are either uniform (as in the previous model runs), or are widening downstream. Simulations have been performed for channels with constant bed areas in the downstream direction and with channels that have different widths as a function of distance from the upstream boundary of the channel reach. This mimics the channel-widening characteristic of natural channels (e.g. Leopold and Miller, 1956) (although, for simplicity, the widening of the channel as a function of distance is simplified as linear).

Results from one set of runs are shown in Fig. 10. The spatial distribution of the water that has infiltrated into the bed varies strongly with the spatial variation in channel width. Increasing the difference between the width at the upstream boundary of the reach and at \(x = L \) leads to decreased volumes of water in the channel near the upstream reach boundary and, in some cases increasing volumes of water that have infiltrated into the bed sediments downstream. While the spatial distribution of the volume of water that has infiltrated into the bed shows strong spatial variations depending on the downstream trend in channel width, the volume ratio is relatively insensitive to the spatial distribution of channel width (Fig. 11).

5. Conclusions

The effects of the interaction between a flood in an ephemeral channel and infiltration into its bed have been investigated. Scaling analysis has been used to demonstrate analytically the findings of field investigators (e.g. Lane, 1983) that infiltration is important in the mass balance of floods in ephemeral channels at the basin scale (on the order of 10 km). The scaling analysis has also shown that infiltration is important in the mass balance near the bore, and plays an important role in the momentum balance of floods in ephemeral channels at the basin scale. Because transmission...
losses play an important role in the momentum balance during flash floods, flood routing schemes that are used to predict flood velocities and propagation distances should account for this momentum loss. The momentum losses during flash floods in ephemeral channels significantly slow flows, which can give more time for infiltration to occur, but will result in a lesser area of the channel bed to be wetted.

Numerical simulations have shown that floods of the same inflow hydrograph but in wider channels have a greater proportion of their water volume infiltrate into the bed sediments.

Floods of the same total volume but of different hydrograph shape will have different proportions of their total volume infiltrate into the channel bed sediments. Floods with sharp peaks in their hydrographs will have greater peak flow velocities and propagate further along the channel then floods with smoother peaks, leading to a greater wetted area and more time for the flood waters to infiltrate into the bed sediments. While hydrograph shape plays an important role in the proportion of the flood that infiltrated into the bed, this proportion is relatively insensitive to changes in channel shape if the total bed area of two channels is the same. The spatial distribution of channel width is critical, however, in determining the spatial distribution of water that infiltrates into the channel bed.

6. Uncited reference

Acknowledgements

Field work in Los Alamos, New Mexico that motivated this study was made possible by Tom Dunne, Daniel Malmon, the Collaborative UC-Los Alamos Research (CULAR) program, and the George Tunnel Memorial Fellowship from the UC Santa Barbara Department of Geological Sciences. Steve Reneau and Bob Grey provided assistance and advice at Los Alamos. H. S. Wheater provided a helpful review to an earlier version of this manuscript. Datasets for Fig. 2(b) were provided by the USDA-ARS Southwest Watershed Research Center. Funding for these datasets was provided by the United States Department of Agriculture, Agricultural Research Service.

References

