FAST TRACK PAPER

The scatter of time-delays in shear-wave splitting above small earthquakes

Stuart Crampin,1,* Sheila Peacock,2 Yuan Gao1† and Sebastien Chastin1

1Shear-Wave Analysis Group, School of GeoSciences, University of Edinburgh, Grant Institute, King’s Buildings, West Mains Road, Edinburgh EH9 3JW, UK. E-mails: scrampin@ed.ac.uk; ygao@staffmail.ed.ac.uk; schastin@glg.ed.ac.uk
2School of Earth Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, England UK. E-mail: peacocks@e4.ers.bham.ac.uk

Accepted 2003 May 13. Received 2003 April 7; in original form 2002 October 9

SUMMARY

Measurements of time-delays in seismic shear-wave splitting above small earthquakes typically display a scatter of often as much as ±80 per cent about the mean. Changes in the average time-delay appear to be related to changes of stress, but applications of this potentially powerful tool have been handicapped by the previously inexplicable scatter in time-delays above earthquakes. In contrast, measurements of shear-wave time-delays in controlled-source exploration seismics are typically well controlled and display little scatter. Previous estimates of possible causes of scatter cannot produce sufficient variation specifically above earthquakes. Here we show that 90°-flips in shear-wave polarizations due to fluctuating high pore-fluid pressures on seismically-active fault planes are the most likely cause of the scatter.

Key words: crack-critical systems, critically-high pore-fluid pressures, scatter in time-delays, shear-wave splitting, 90°-flips.

1 INTRODUCTION

Stress-aligned shear-wave splitting (seismic birefringence), caused by propagation through fluid-saturated microcracks, is widely observed in almost all in situ rocks in the crust (Crampin 1994, 1996; Winterstein 1996). Theoretically, anisotropic poro-elasticity (APE) models rock mass deformation with the fundamental assumption that the cracks in the crust are so closely spaced that they form a critical system (Zatsepin & Crampin 1997; Crampin & Zatsepin 1997). The APE mechanism is fluid movement by flow or diffusion along pressure gradients between neighbouring fluid-saturated grain-boundary cracks, and low aspect-ratio pores and pore throats, at different orientations to the stress-field. APE shows that the parameters that control low-level (pre-fracturing) deformation also control shear-wave splitting. Consequently, fluctuations in time-delays between the split shear-waves can directly monitor stress-induced changes to microcrack geometry. As a result, changes in the average time-delay above small earthquakes led to a correct estimate of the time and magnitude of an M = 5 earthquake in SW Iceland (Crampin et al. 1999). This estimate was in a comparatively narrow window, where local knowledge also recognized the fault that moved. Consequently, we claim the stress-forecast was successful. However, the problem with using earthquakes as the source of shear-waves is the enormous scatter in measured time-delays, which are often observed to be ±80 per cent about the mean.

In contrast, shear-wave splitting in controlled-source exploration seismology is well behaved and shows little scatter (Li et al. 1993; Yardley & Crampin 1993). APE has been accurately calibrated in two controlled-source experiments by Angerer et al. (2002), who calculated (‘predicted with hindsight’) the response of a fractured hydrocarbon reservoir to two different CO2-injections. The difference in scatter between shear-wave splitting above small earthquakes (up to ±80 per cent about the mean) and controlled-source observations (very little scatter) has been an unresolved problem that cast doubts on all interpretations of shear-wave splitting. We need to seek an explanation for the scatter that only applies to shear-wave splitting above small earthquakes.

The scatter at ±80 per cent from similar earthquakes with similar ray paths is just too large to be explained by conventional geophysical sources of scatter (Volti & Crampin 2003a). The solution presented here, based on new observations and modelling of shear-wave splitting, is that high pore-fluid pressures surrounding seismically-active fault planes cause 90°-flips where the faster and slower split shear-waves exchange polarizations. We show that variations in 90°-flips could be caused by comparatively minor temporal variations in stress and pressure changes as stress is released at every earthquake. This could easily lead to the observed ±80 per cent scatter in time-delays and thus help to resolve this long-standing problem.
2 SHEAR-WAVE SPLITTING AND THE SCATTER OF TIME-DELAYS

Shear-wave splitting due to the azimuthal anisotropy of stress-aligned fluid-saturated microcracks is observed for propagation through almost all sedimentary, igneous, and metamorphic rocks. APE modelling approximately matches a large range of phenomena pertaining to cracks, shear-waves, and stress (Crampin 1999). The match is almost exact in those few cases where crack parameters in situ can be independently measured (Crampin & Zatsepin 1997; Angerer et al. 2002). Usually however, rocks at depth are subject to such high pressures and temperatures that any approach to or recovery of in situ rock destroys the microcrack structure through the stress-, temperature-, and pressure-induced trauma of drilling. This means that seismic propagation techniques are one of the few ways to examine in situ cracks.

Fig. 1 shows measurements of shear-wave splitting time-delays at a station in Iceland using small earthquakes as the shear-wave source (Volti & Crampin 2003b). The substantial scatter is remarkably similar to that seen elsewhere in Iceland and at two places on the San Andreas Fault in California (reviewed by Crampin 1999). Table 1 summarizes the observed scatter of time-delays. The only places where measurements of shear-wave time-delays above small earthquakes have not shown such a large scatter is when the recordings have been made above isolated swarms of earthquakes (Booth et al. 1990; Gao et al. 1998). Isolated swarms have small source volumes (typically 1 or 2 km in diameter), where earthquakes have repeatable source parameters (Crampin 1993). Consequently, it may not be surprising that measurements of time-delays above isolated swarms do not show the typical large scatter. However, both observations of shear-wave time-delays above isolated swarms have sparse data sets and the scatter could be under-estimated.

3 PREVIOUS EXPLANATIONS OF THE SCATTER IN TIME-DELAYS

Table 2 lists different sources of scatter based on a conventional non-critical geophysics. These mechanisms are more fully discussed in Volti & Crampin (2003a). Table 2 also lists comparatively generous estimates (in light of listed comments) of the amounts of scatter. Each mechanism could, and probably does, induce a small percentage of scatter, but the mechanisms are not correlated and in combination could not produce the consistent ±80 per cent scatter actually observed. If the mechanisms in Table 2 caused the whole scatter, repetitions of similar earthquakes in similar locations would be expected to induce similar scatter and this is not observed. For example, in Iceland, where there is comparatively frequent localized swarm activity with many events in a limited time from comparatively limited source volumes which, for sources of scatter in Table 2, might be expected to show similar time-delays. In fact, the time-delays from such swarms typically produce vertical ‘stripes’ of time-delays that span the whole range of scattered time-delays from previous observations. The foreshock and aftershock sequence of the $M = 5$ earthquake in 1998 November, in Fig. 1 shows one such

Table 1. Summary of presence or absence of scatter in time-delays in shear-wave splitting.

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Comments</th>
<th>Estimated scatter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geological and geophysical complications and heterogeneities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complicated geology beneath seismic stations</td>
<td>Theory(^1) and observations(^2,3,4) suggest that shear-wave splitting is sensitive to stress and insensitive to geological structure. If geological complications were the cause, different complications would be expected beneath each station, but the degree of scatter is remarkably similar above all earthquakes</td>
<td>±10 per cent</td>
</tr>
<tr>
<td>Complicated stress-aligned cracking beneath stations</td>
<td>As above</td>
<td>±10 per cent</td>
</tr>
<tr>
<td>Errors in earthquake locations and seismogram measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time-delays normalized will show irregularities if focal locations are in error</td>
<td>The errors in path length for earthquakes within the shear-wave window are usually too small to cause the substantial scatter(^2,3)</td>
<td>±20 per cent</td>
</tr>
<tr>
<td>Time-delays along different ray paths from different source locations may show scatter</td>
<td>Improved locations(^3,5) do not result in reduced time-delay variations(^3)</td>
<td>±10 per cent</td>
</tr>
<tr>
<td>Errors in picking time-delays</td>
<td>Time-delays are checked and all doubtful estimates are rejected, so that large errors are believed to be uncommon</td>
<td>±10 per cent</td>
</tr>
<tr>
<td>Different focal mechanisms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small variations in source radiation can produce significant different polarizations and hence different time-delay images</td>
<td>Observed polarization directions are comparatively uniform(^2,3), so large differences in time-delays are unlikely</td>
<td>±10 per cent</td>
</tr>
<tr>
<td>Complications in anisotropic propagation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-D variations inherent in time-delay geometry expect time-delays to vary from zero to maximum values in Band-1 directions(^2)</td>
<td>Such variations are different in Band-1 and Band-2(^2,3), yet amplitude of scatter in both Bands is observed to be similar(^2,3)</td>
<td>±5 per cent</td>
</tr>
<tr>
<td>Variations in Band-1 are close to line singularities(^6) and may be close to point singularities(^2,6) which could seriously disturb time-delays</td>
<td>Presence or absence of singularities are markedly different in Band-1 and Band-2(^2), yet scatter is observed to be similar(^3)</td>
<td>±5 per cent</td>
</tr>
</tbody>
</table>

\(^1\)Zatsepin & Crampin (1997); \(^2\)Crampin (1994, 1996, 1999); \(^3\)Volli & Crampin (2003b); \(^4\)Winterstein (1996); \(^5\)Shanga et al. (1995); \(^6\)Crampin & Yedlin (1981).

stripe of time-delays spanning the previous scatter. This suggests that small changes in earthquake location and/or ray path can reproduce almost the whole range of scattered values. This is difficult to explain by conventional wave propagation through heterogeneous elastic-solid geometries.

4 OBSERVATIONS OF 90°-FLIPS IN SHEAR-WAVE POLARIZATIONS

Although the phenomenon of 90°-flips had not been recognized at that time, the first observations of 90°-flips above small earthquakes are probably the shear-wave polarizations observed at Station KNW, of the Anza Seismic Network (Peacock et al. 1988; Crampin et al. 1990, 1991). KNW was within 3 km of the Hot Springs Fault branch of the San Jacinto Fault, part of the San Andreas Fault system. Liu et al. (1997) positively identified 90°-flips at Station MM, of the Parkfield Seismic Network, sited immediately above the San Andreas Fault.

The presence of 90°-flips in controlled-source seismics was first positively identified in a vertical seismic profile in the Caucasus Oil Field where shear-wave splitting time-delays, after an initial increase, decreased as they penetrated into an overpressurized
reservoir (Crampin et al. 1996; Slater 1997). The decrease indicated a 90°-flip in the polarization of the faster split shear-wave. Angerer et al. (2002), in the best calibration of APE to date, calculated (predicted with ‘hindsight’) the response of a fractured reservoir to two injections at different CO₂-pressures. One of the pressures was close to the maximum horizontal stress and caused 90°-flips in shear-wave splitting.

The new data are observations of shear-wave splitting in Iceland (Crampin et al. 2000). The polarizations at most stations are aligned approximately NE to SW in what appears to be the direction of maximum horizontal stress. The only exceptions are the polarizations at three new stations sited within 3 km of the surface break of the Húsavik-Flatey Fault, a major transform fault of the Tjörnes Fracture Zone of the Mid-Atlantic Ridge. The stations were installed as part of the EC funded SMSITES Project (Crampin et al. 2000) specifically to seek 90°-flips. The shear-wave polarizations at these new stations are fault parallel and approximately orthogonal to the polarizations observed elsewhere in Iceland. The change in polarizations is interpreted as 90°-flips in shear-wave polarizations caused by high pore-fluid pressures surrounding the seismically-active fault plane.

Crampin et al. (2000) theoretically model these 90°-flips with APE. They show that the shear-wave polarizations will display approximately orthogonal orientations (90°-flips) when the pore-fluid pressures permeating the fluid-saturated microcracks are within one or two MPa of the maximum horizontal stress: a level when fracturing (and hydraulic fracturing) necessarily occur. The physical mechanism for 90°-flips is that microcrack distribution geometry is rearranged by opening and closing fluid-saturated microcracks by varying pore pressures. Specifically, lowering effective stress allows cracks not parallel to the direction of maximum compression to open, and increasing pore pressure widens cracks parallel to maximum compression. The previous stress-parallel polarizations for near-vertical propagation of faster split shear-waves are changed (by 90°-flips) and become perpendicular to the previous directions (Crampin et al. 2000).

5 VARYING CRITICAL Pressures

Fig. 2 shows the effect of increasing pore-fluid pressure in fluid-saturated cracks under ten different stress regimes (the mechanism is discussed by Crampin et al. 2000). When an earthquake occurs in critically-pressurized rocks, at EQ for example, stress is released, and the figure indicates several simple possibilities. There may be a decrease in pressure under the same triaxial stress field, to point A for example. More generally, there may be a release of stress and a release of pore-fluid pressure, leading to different points B, C, or D, for example, in different stress and pressure regimes. The new conditions at A to D may evolve to further seismicity in associated stress and pressure environments. In particular, note that subcritical pore-fluid pressures at one state of triaxial stress may still be close to criticality at lower, pre-earthquake, stress states.

The stress-release by real earthquakes will be complicated, but Fig. 2 indicates that the triaxial stress-field, and pore-fluid pressure, surrounding the fault plane, necessarily change following each earthquake. The volume of critical pore-fluid pressure will change in size and shape, both during and following earthquakes. Consequently, ray paths from successive earthquakes even from similar locations will be from different stress and pressure regimes and will sample different segments of critically-pressurized rocks. Fig. 3 shows the effects of different proportions of pressurized rock on the time-delays of shear-wave splitting.

Possible 90°-flips have been observed at the surface above earthquakes located only on major faults, the San Andreas and the Húsavik-Flatey Faults. These faults cut a large part of the crust and extend to close to the surface. Crampin et al. (2000) show that on the Húsavik-Flatey Fault the 90°-flips persist for ray paths to the surface as far as 3 km from the surface break. Similar observations at Station GRI, some 10 km from earthquakes on the Grimsey Lineament in the same Tjörnes Fracture Zone, do not show 90°-flips. This places some limits on the penetration of high pressures away from major fault planes.

It is now well established that high pore-fluid pressures are necessary in seismically-active fault planes in order to reduce friction enough for slippage to occur and asperities overcome (Sibson 1981, 1990; Rice 1992, Hickman et al. 1995). We have shown the effects of high pressures on major faults (Crampin et al. 2000), we now examine the implications of high pore-fluid pressures on all smaller faults.

Fig. 3 shows a simplified model of the effects of different volumes (different path segments) of high pore-fluid pressure around a vertical fault, inducing 90°-flips along a vertical ray path from an earthquake at 10 km depth. The anisotropy of each 1 km of depth in Fig. 3(a) for vertically propagating waves is assumed to cause the same time-delay between split shear-wave arrivals of Δt (varying the degree of velocity anisotropy with depth would accentuate scatter). We assume time-delays are positive in low pressurized rocks, so that the faster split shear wave is polarized parallel to the cracks, and negative in critically-pressurized rocks when there are 90°-flips. When the whole ray path is at low (subcritical) fluid pressure, there is no critically pressurized rock, a = 0, and the length of the ray path through normal pressures is b = 10 km. The total time-delay at the surface will be 10 × Δt leading to a normalized time-delay of Δt at the surface with a conventional stress-aligned polarization.

© 2004 RAS, GJI, 156, 39–44
For other distributions, the conventional stress-aligned normalized time-delay at the surface is \(|(b - a) \times \Delta t|/10\), equivalent to:

\[
|10 - 2a| \times \Delta t|/10;
\]

(1)

where \(a = 10 - b\). Both conventional stress-aligned shear-wave splitting and 90°-flips give normalized time-delays from 0 (no time-delay) to \(\Delta t\), depending on whether the high-pressure segment is less than or more than half the ray path.

In Fig. 3(b), \(\Delta t\) is taken as 20 ms, equivalent to the maximum normalized time-delay per kilometre commonly observed in Iceland (Volti & Crampin 2003b). The scatter indicated in Fig. 3(b) is for the same earthquake focal depth with varying lengths of critically pressurized path. It is approximately equivalent to the scatter observed in Iceland both in conventional stress-aligned shear-wave splitting and in 90°-flips. The scatter is caused by variations in the volume of rock containing high-pressure fluid around the hypothesized fault plane. For shear-waves from earthquakes on small fault planes where the high fluid-pressures extend for less than half the ray path, the split shear waves at the surface show scattered time-delays but have the conventional stress-aligned, crack-parallel, shear-wave polarizations generally observed (Crampin 1994).

For shear-wave signals from earthquakes on large fault planes, where the high fluid-pressures extend for more than half the ray path, although not necessarily to the free-surface, the time-delays show a similar scatter but are normalized from negative time-delays and the polarizations show 90°-flips. This reproduces the 90°-flips observed above the major San Andreas and Húsavík-Flatey Faults, where it is reasonable to assume that the high pressures associated with the large fault planes are present for over half the ray path.

7 CONCLUSIONS

We have shown that varying volumes of rock containing critically pressurized fluids surrounding seismically-active fault planes can easily account for the large scatter in time-delays observed above small earthquakes. They account for the scatter both for conventional stress-aligned shear-wave splitting observed at the surface, and for splitting with 90°-flips in shear-wave polarizations observed near major faults that traverse most of the crust. The difference being where the critically pressurized path is less than, or more than, half the total ray path. As high pore-fluid pressures are expected on all seismically-active fault planes, and other mechanisms for scatter are likely to cause only small scatter, we conclude that the large observed scatter is principally caused by rapid temporal variations in high pore-fluid pressures and triaxial stress-fields following earthquakes on seismically-active fault planes.

Many rose diagrams of shear-wave polarizations above small earthquakes show a small proportion of polarizations orthogonal to the direction of maximum horizontal stress. In the past, these have usually been interpreted as the earthquake source radiating shear-waves with wholly second arrival polarizations so that the faster arrival is not excited and only the slower shear-wave propagates. Fig. 3 suggests that such orthogonal polarizations may also be caused by high fluid-pressures occasionally extending to more than half the ray path to the surface.

An interesting implication of Fig. 3 is that the highest value of the scattered time-delay is the actual value of the shear-wave splitting time-delay in ms for the \textit{in situ} rock. It had previously been thought that the least-squares fits, of the lines in Fig. 1 for example, were approximating the actual shear-wave time-delays in \textit{in situ} rock in ms. Fig. 3 suggests that the maximum value of normalized time-delay in the scatter, not the mean, may be close to the value of splitting in \textit{in situ} rock.

We conclude that the scatter in time-delays above almost all small earthquakes is primarily caused by the fluctuations in the time and location of high pore-fluid pressures surrounding seismically-active fault planes causing varying proportions of 90°-flips in shear-wave polarizations along shear-wave ray paths.

This has several implications.

(1) The scatter above all earthquakes implies that all seismically-active faults however small are surrounded by high pore-fluid pressures, confirming the hypotheses of Sibson (1981, 1990), Rice (1992), Hickman \textit{et al.} (1995), and others.
(2) It implies in particular that large earthquakes, involving slip on large fault planes, cannot take place unless there are high pore-fluid pressures surrounding the fault. This means that small earthquakes on such a fault plane will show 90°-flips, if the fault is preparing for a large earthquake. Earthquakes on the Húsavik-Flatey Fault show such 90°-flips. This implies that the fault is critically pressurized over most of its surface and hence there is the possibility of a large earthquake.

(3) It implies that monitoring the approach of fracture-criticality and earthquake occurrence by shear-wave splitting using small earthquakes as the shear-wave source will typically display a large scatter. This means that monitoring the approach of criticality with controlled source seismics, sufficiently far from active seismicity to avoid high pore-fluid pressures, can monitor the build-up of stress without the scatter introduced by 90°-flips. This suggests that the Stress-Monitoring Site geometry, where cross-hole seismics between deep boreholes monitors shear-wave splitting along the particular ray paths sensitive to increasing stress (Crampin 2001) avoiding high pore-fluid pressures is likely to be a more reliable measure of stress-induced changes than shear-waves from small earthquakes.

(4) The presence of high pore-fluid pressures around seismically-active faults is likely to be put to the test soon in the several attempts to drill into seismically-active faults. The evidence in this paper suggests that drilling engineers should be cautious when approaching such faults. However, high pressures do not necessarily mean large volumes of water, so that a mitigating factor for drilling may be that the high pressures might be momentary and not involve the ejection of large quantities of water. It will be interesting to find out.

ACKNOWLEDGMENTS

This work was partially supported by the European Commission MSMITES and PREPARED Projects, Contract Numbers EVR1-CT1999-40002 and EVG1-CT2002-00073, respectively. YG was supported partly by China MOST under Contracts 2001BA601B02 and NSFC Project 40274011, and partly by the UK Royal Society Fellowship Programme. We thank Sergei Zatsepin, Peter Leary, and partners of the MSMITES Project for numerous fruitful discussions, and we are grateful to David Taylor for the use of ANISEIS software.

REFERENCES

Crampin, S., 1996. Anisotropists Digest 149 and 150, 1, anisotropists@sep.stanford.edu.

© 2004 RAS, GJI, 156, 39–44