A portable high-pressure stress cell based on the V7 Paris–Edinburgh apparatus

Geoffrey D. Bromiley⁠a*†, Simon A.T. Redfern⁠a, Yann Le Godec⁠b, Gérard Hamel⁠b and Stefan Klotz⁠b

Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK; IMPC, Université P&M Curie, 140 Rue Lourmel, F-75015, France

(Received 27 November 2008; final version received 14 January 2009)

We describe a new device, based on a V7 Paris–Edinburgh press, for torsional testing of material at pressures up to 7 GPa (extendable to 15 GPa). Samples are deformed using a simple shear geometry between opposed anvils by rotating the lower anvil, via a rotational actuator, with respect to an upper, stationary, anvil. Use of conical anvil profiles greatly increases sample dimensions more than other high-pressure torsional apparatus did. Samples of polycrystalline Zr (2 mm thick, 3.5 mm diameter) have been sheared at strains exceeding \(\gamma \sim 1.5 \) at constant strain rate and at pressures from 1.8 to 5 GPa, and textural development has been studied by electron microscopy. Use of amorphous-boron-epoxy gaskets means that nearly simple shear of samples can be routinely achieved. This apparatus allows study of the plastic and anelastic behaviour of materials under high pressure, and is particularly suited for performing in situ investigations using synchrotron or neutron radiation.

Keywords: high pressure; deformation; torsion; anelastic

1. Introduction

The Paris–Edinburgh apparatus is an opposed anvil device in which a sample, encased in a deformable gasket, is pressurised between opposed anvils made of tungsten carbide, sintered diamond, or cubic boron nitride, providing sample volumes up to 100 mm³. In opposed anvil devices such as this, it is theoretically possible to deform samples at simultaneous high pressure by rotating one of the anvils with respect to the opposite anvil, thereby imparting a torque on the sample and the sample assembly [1]. Such a geometry was originally described in the 1930s, although application of such devices has remained limited [2,3]. Recently, Yamazaki and Karato [4] described a similarly modified Drickamer-type opposed anvil apparatus for deforming samples at pressures up to at least 15 GPa. The key advantages that the devices such as these have are that: (i) the apparatus can be designed to be small and relatively portable, allowing it to be transported to

*Corresponding author. Email: geoffrey.bromiley@ed.ac.uk
†Present address: School of GeoSciences, University of Edinburgh, Grant Institute, The King’s Buildings, West Main Road, Edinburgh, EH9 3JW, UK.

ISSN 0895-7959 print/ISSN 1477-2299 online
© 2009 Taylor & Francis
DOI: 10.1080/08957950902747411
http://www.informaworld.com
synchrotron sources and not tied to any one location; (ii) very high stresses can be imparted on samples at controlled strain rates; and (iii) pressurisation and deformation of samples are, by nature of sample geometry, decoupled, although in practice this is challenging to implement. Here, we describe a new design for an opposed anvil deformation cell which develops some of the concepts introduced by Yamazaki and Karato [4]. It is based around the Paris–Edinburgh loading frame, which is a mature and widely adopted platform used for high pressure, and recently in simultaneous high-pressure/high-temperature studies, and has been optimised for use at central facilities (synchrotron and neutron sources), both in terms of overall size and weight of the press frame (enhancing portability) and anvil and sample assembly design (maximising sample volume).

2. Description of experimental technique

2.1. High-pressure apparatus

Our high-pressure loading frame is based on a modified V7 (450 tonne) Paris–Edinburgh apparatus (see Le Godec et al. [5] for general description). The only significant modification to the loading frame is a 50% elongation of the four tie rods; this provides the additional space between the platens required to accommodate additional rotation components. A similar elongation of tie-rods for a V4 Paris–Edinburgh cell was previously described by Dobson et al. [6]. A schematic cross section of the apparatus is shown in Figure 1. The press frame is inverted relative to normal use, so that the breech (H) is located on the underside of the apparatus. This has advantages for loading and unloading sample assemblies. By unscrewing the breech, the entire rotation and thrust assembly (parts C to N) is lowered, increasing the gap between the anvils (O) and (N) by several centimetres. Samples can simply be loaded and unloaded without having to remove any additional components, resulting in sample exchange rates of a few minutes. Load is applied to the anvils via a hydraulic ram (A) located in the upper plate. Load acts on the upper anvil (O) via a system of anvil seats and spacers. Load on the lower anvil is also imparted through the press frame via the thrust bearings (I), conical spacer (J), central hardened steel piston (D) and lower anvil seat. The central piston (D) passes through a hole in the centre of the reduction gearing (M), thereby ensuring that no load is placed on the fragile gearing unit. Torque is applied to the sample by rotating the lower anvil while ensuring that the upper anvil remains stationary, using an externally mounted servo, timing belt and high-ratio reduction gearing, as described by Yamazaki and Karato [4]. The external DC servo (G) (Harmonic Drive®, PMA-8A-100-01-E1000ML) is linked to an encoder and contains a 100:1 reduction gear on the servo head. The servo is linked to a 161:1 ratio hollow-shaft reduction gearing unit (M) (Harmonic Drive® HFUS-32-160-2UH) (max output torque 314 Nm) via a steel reinforced 3:1 timing belt (E), resulting in a total gear ratio of 48300:1. The output from the reduction gearing is connected to the lower (rotating) anvil via the anvil housing. The anvils consist of a carbide insert, which transfers load onto the sample assembly, and an outer hardened steel support. The hardened steel supports for the lower anvil and anvil seats are hexagonal and sit in a hexagonal space inside the housing unit (Figure 2) to ensure that torque from the gearing is transferred to the anvil. During fabrication, carbide inserts are press-fit into the housing. Carbide inserts in opposed anvil devices typically have circular cross sections, and under load and during anvil rotation, would rotate freely in the housing unit. To prevent this, carbide inserts in our modified apparatus and have a circular outer geometry on the sample side and an oval geometry on the seat side (Figures 2 and 3). The upper (stationary) anvil is identical to the lower (rotating) anvil. In this case, the hexagonal shape of the anvil housing fits inside an insert in an additional plate (B in Figures 1 and 2) that in turn is fastened to two of the tie rods. This plate prevents rotation of the upper anvil, ensuring that torque is only accommodated through deformation of the sample assembly.
2.2. Anvil and sample assembly

The geometry of the inner face of the carbide anvils is identical to that described in Le Godec et al. [7], and which is now standard in high-P/high-T Paris–Edinburgh cell experiments. This anvil profile is described as ‘conical’ and differs from the standard toroidal anvil design used in many high-pressure applications in that the inner anvil faces are flat and perpendicular to the axis of sample compression. This anvil geometry has many intrinsic advantages, most notably good mechanical strength and reduction in uniaxial stress (which is of prime importance in minimising additional sources of sample deformation) and large comparative sample volume. Furthermore, sample pressure using conical anvil profiles has been well characterised in recent years in several series of on-line (synchrotron) and off-line tests.

Samples were loaded into a hole in the centre of the fired pyrophyllite or amorphous boron-epoxy (a-B epoxy) gaskets, which had a shape mirroring the profile of the opposing anvils.
Pyrophyllite gaskets were machined from commercial grade material that had been heat treated [7,8]. a-B-epoxy gaskets were produced using a novel hot-pressing technique. A 4:1 ratio (by weight) of amorphous boron and epoxy resin was mixed in an agate mortar. This mixture was then modelled into small cylinders and polymerised at 100°C for 45 min to harden. Cylinders were then compacted up to 15 kbars over a 5 min period in a standard piston-cylinder press. The resulting boron-epoxy cylinders are very hard and have very low porosity, and were machined.
using tungsten carbide tools into the final gasket shape. Machinable polycrystalline MgO spacers (fired in air at 1600°C for 5 h) were used to locate the sample in the centre of the assembly. For experiments described here, we used anvils with a 10 mm truncation and gaskets of 10 mm outer diameter and with an internal sample volume diameter of 3.5 mm (Figure 3). Sample thickness in this assembly is 2.0 mm. In order to prevent excessive gasket flow during pressurisation and deformation, teflon containment rings were fitted around the outside of the gaskets in all runs, as used in the high-P/high-T assemblies of Le Godec [7].

2.3. Pressure calibration

The pyrophyllite and a-B epoxy gaskets used in the roPEC have previously been well calibrated in a series of in situ X-ray diffraction experiments, using internal NaCl and MgO pressure calibrants, as shown in Figure 4. Additional experiments were performed using the roPEC apparatus to verify these known pressure calibrations using the I–II phase transition in bismuth, as determined by the marked drop in electrical resistivity that accompanies this transition [9]. The oil pressure at which this transition occurred corresponded, within error, to existing sample pressure calibrations shown in Figure 4 for both pyrophyllite and a-B epoxy gaskets. At slightly higher pressure, bismuth is expected to undergo a further transition (BII–III), accompanied by a much smaller change in resistivity, although this was not observed in the pressure calibration experiments performed using the roPEC apparatus.

Figure 4. Pressure calibration for pyrophyllite and amorphous-boron epoxy gaskets. Calibration curves were determined from several series of in situ X-ray diffraction studies using internal NaCl and MgO pressure standards (using the same gasket/anvil geometry employed for roPEC studies described here). The upper scale indicates force generated by the ram, considering the cross section of the ram is 176.9 cm². Bismuth transition calibration experiments were performed on the roPEC apparatus for a-B epoxy and pyrophyllite gaskets (with Teflon rings). Calibration curve for pyrophyllite gaskets without Teflon rings are shown for comparison.
3. Deformation experiments

We performed a series of experiments in which we deformed polycrystalline Zr at varying pressures to test the apparatus. Zr has a hexagonal-centred-cubic (hcp) structure at room temperature and ambient pressure. At 2.2 GPa and room temperature, Zr undergoes a phase transition to a hexagonal structure called the ω phase [10]. The ω phase is not close-packed (space group number 191, $P6/mmm$), and once formed is metastable at ambient pressure [11]. The starting material was a high purity, annealed, polycrystalline Zr rod and was purchased pre-annealed. SEM investigation revealed that it had a well-equilibrated, fine-grained texture consisting of 5–10 μm equiaxial grains, and no further preparation prior to deformation studies was deemed necessary. The material was lathed to 3.5 mm diameter from which 2 mm discs were cut using a wire saw with silicon carbide flux. Surfaces of these discs were lightly polished using Si-C paper and diamond suspensions (down to 5 μm). These discs were then cut in half lengthwise using a wire saw and Si-C paste and cleaned in high-purity acetone in an ultrasonic bath for 30 min. A thin sheet of gold foil was inserted between the two halves prior to loading in the sample assembly. This foil was used as an internal strain marker of the type described by Yamasaki and Karato (see Figure 6 in [4]). In all deformation experiments, samples were loaded into an assembly as shown in Figure 3, using either pyrophyllite or a-B epoxy gaskets.

Deformation experiments were performed at pressures ranging from 1.8 to 5.0 GPa. Upon loading, samples were pressurised at a rate of 10 bars (oil pressure)/min to the desired value. Pressure was maintained at this value for a further 10–30 min to allow sample and gasket equilibration. The servo was then rotated at a fixed rate of 50 rpm (on the servo head), corresponding to a sample rotation rate of 1.035×10^{-3} rpm or $\sim 22.3^\circ$/h, again while continuously maintaining sample pressure. Servo output velocity, position and current were continually monitored and velocity controlled via a PC connected to the servo encoder. This information was used to monitor the rate of sample deformation. Actual rotation rate of the lower anvil with respect to the upper anvil could easily be verified by visual observation. Output current from the servo gives a first approximation of the torque applied to the sample assembly by the reduction gearing, although it is expected that some loss of torque will occur during transfer to the sample from the external servo and that most torque is used to deform the gasket material. At all pressures, only minor variation in servo output velocity (less than 1%) was observed once the gasket/sample had reached steady-state equilibrium during deformation. During pressurisation and deformation, movement of the ram was monitored and recorded using a needle gauge.

In all runs, considerable changes in sample microstructure as a result of sample deformation were observed (Figures 5). After deformation, grains in all samples were elongated in the direction of sample shear and showed evidence of considerable plastic deformation. However, no differences were noted in the micro-fabrics developed in the hcp and ω phases of Zr. As noted by Yamasaki

Figure 5. Secondary electron (SEM) images of annealed, polished and etched polycrystalline Zr samples. (A) annealed sample compressed to 1.8 GPa but not deformed. (B) and (C) sample compressed to 1.8 GPa and sheared to strain exceeding $\gamma = 0.9$. White scale bar corresponds to 20 μm. Dark pits and discontinuous dark lines in images (A) and (C) were formed during surface etching with acid. Other faint straight lines are scratches formed during polishing. In all images, direction of compression of the sample is vertical and direction of shear horizontal with respect to the page.
and Karato [4], a possible problem with opposed anvil, rotational deformation devices is that considerable sample deformation may occur during initial sample pressurisation. Yamasaki and Karato [4] attempted to minimise sample compression during pressurisation by surrounding the samples with a softer, deformable material to prevent excessive sample flow, as well as reducing sample thickness to 0.4 mm. In the present study, we find that the use of conical anvil profiles (as opposed to the flat-faced anvil head profiles used in Drickamer apparatus) greatly reduces initial sample compression (i.e., plastic deformation) during pressurisation. Figure 6 shows a plot of sample thickness during experimental runs under various compositions (comparable to Figure 7 of Yamasaki and Karato [4]). In all experiments, some initial sample compression occurred during pressurisation. However, sample compression is noticeably reduced when the a-B epoxy gaskets are used, presumably due to reduced gasket flow compared with pyrophyllite (consistent with differences in pressure calibration, as shown in Figure 4). Additional sample compression occurs during deformation, although once again, differences between gasket performance indicate that this is largely related to the degree of additional gasket flow during shear. Use of a-B epoxy gaskets results in an acceptable level of sample compression during pressurisation (∼5–10% change in sample thickness at pressures up to 5 GPa), implying that samples are deformed under almost pure simple shear, with an insignificant component due to initial uniaxial compression. Gasket flow during initial pressurisation and during prolonged deformation is also evident from data on ram movement (Figure 7). Once run pressure is attained, prior to deformation, gasket flow quickly tails off, and the sample assembly rapidly attains an equilibrium response because of compression. Once the lower anvil is rotated and the assembly sheared, there is a progressive (much smaller) flow response of the assembly, evident in the continual ram movement needed to maintain run pressure.
Figure 7. Plot of oil pressure (black squares) and ram movement (grey circles) as a function of experiment duration for experiment performed at 2.5 GPa using an a-B epoxy gasket. Most ram movement occurs during initial pressurisation (first 25 min), with minimal additional ram movement once experiment is fully pressurised (25–60 min). Deformation of the sample commenced at 61 min into the experiment, resulting in further ram movement indicative of renewed (minor) gasket flow during sample shear.

Change in the geometry of the Au foil strain marker was measured after experimental charges were recovered. Figure 8 shows a typical recovered sample. For small degrees of rotation (<90°), the sample could be removed from the assembly in two pieces, with the Au foil adhering to one piece (as shown). For higher degrees of rotation (and at higher run pressures), samples were recovered as one piece. In all runs, angle of rotation was, within error, the same as that calculated from the servo head position, implying that torque from the apparatus was effectively transferred to the sample, with minimal slipping of sample assemblies or components of the assemblies, with respect to the anvils.

Output current from the servo motor can be used as an approximate indication of torque applied to the sample assembly. Figure 9 shows a plot of current vs angle of rotation for several experiments. Current/torque increases rapidly up to ~5° rotation, after which it levels off. In all runs performed under load, there was an additional, slight increase in current/torque during prolonged sample deformation. There is a clear relationship between sample pressure (load) and torque, with much greater torque needed to deform sample assemblies held under greater loads. Both these observations were also made by Yamasaki and Karato [4] in relation to their rotational Drickamer apparatus. Significant differences between pyrophyllite and a-B epoxy gasket materials are also noted. Although a-B epoxy gasket flow during deformation is greatly reduced in comparison with pyrophyllite gaskets, torque required to deform a-B epoxy gaskets is significantly lower at the same given pressure (even when account for greater load required to attain similar sample pressures using less efficient pyrophyllite gaskets). Differences between applied torque required for different gasket materials highlight that most torque applied by the gearing system is probably used to deform parts of the sample assembly other than the sample itself.
Figure 8. Photograph showing deformed Zr sample mounted on conducting putty (1.8 GPa, pyrophyllite gasket) with internal Au strain marker affixed (left) to one half of the sample. Sample disc is ~1.7 mm thick. At low pressures (below 2–2.5 GPa) and low degrees of total strain, deformed Zr samples could be gently prised apart to show the geometry of the internal strain marker. At high pressures, total strain geometry of the strain marker was determined by observing intersection of Au foil with the sample surface and by sectioning the sample using a wire saw [4].

Figure 9. Plot of servo output current (which gives a measure of torque applied by the reduction gearing onto the sample assembly) during prolonged sample deformation under various conditions. All experiments were conducted using a rotation rate of 50 rpm at the servo head, corresponding to a sample rotation rate of 1.035×10^{-3} rpm or ~22.3°/h. The ‘no load’ experiment was performed by rotating the apparatus without loading a sample assembly or applying any axial load.

4. Future development of the roPEC apparatus

Anvil and gasket geometry used in the roPEC is the same as that used in the high-pressure/temperature Paris–Edinburgh cell described by Le Godec et al. [7]. In this assembly, high sample
temperatures are achieved by passing an electrical current through an internal resistance furnace, typically made from graphite. This assembly could, with minor modification, be used in the roPEC to permit deformation studies at simultaneous high-pressures and temperatures.

The maximum sample pressure achievable in a Paris–Edinburgh type apparatus is limited by the mechanical strength of the anvils. For the roPEC, experiments have been successfully performed up to 5 GPa, although the same anvil/gasket geometry has been used in a V4 press to achieve sample pressures (determined by internal pressure calibrants) of up to 8 GPa. Higher sample pressures could be achieved by using smaller anvil/gasket sizes. The current anvil face used in the roPEC is 3.5 mm diameter, with a gasket width of 10 mm (3.5/10 assembly) as shown in Figure 4. Experience from high-temperature Paris–Edinburgh cell experiments suggests that use of 7/2 and 5/1.5 anvil/gasket assemblies should permit attainment of sample pressures up to 10 and 15 GPa, respectively [12]. This is somewhat lower than the maximum pressure that can be achieved using a Drickamer-type opposed anvil device, although this is more than offset by the significant increase in sample volume that is achievable using shaped anvil faces and the reduction in sample stress during initial compression.

The Paris–Edinburgh apparatus has been designed chiefly for performing in situ investigations using neutron and synchrotron radiation at high pressure, and more recently, simultaneous high-pressure/temperature. Small size and weight of the loading frame also means that Paris–Edinburgh cell apparatus is portable. This has the inherent advantage that apparatus does not have to be constructed on dedicated beamlines. The total weight of our modified roPEC is less than 150 kg, meaning that the device, while heavier than a normal V7 press, is still not tied to any one location, and fits well within the equipment weight and size limits of general synchrotron beamlines. The roPEC apparatus has also been constructed so that access to the sample is maximised and only constrained by the four tie rods (i.e. implying that diffraction data could be obtained from a sample over a wide scattering angle). Use of this apparatus at a synchrotron facility will mean that sample stress and strain rate can be determined from X-ray measurements and X-ray tomographic imaging. To verify the suitability of the sample assembly materials for employment of in situ tomographic imaging, we have conducted initial measurements of recovered samples using a commercial lab-based X-ray tomographic machine. As can be seen in Figure 10, transparency of the sample assembly is excellent, and the geometry of the strain marker can clearly be determined, even though the gasket material used for testing was fired pyrophyllite. Use of a-Boron gaskets would further enhance the transparency of the gasket considerably. The roPEC apparatus has been designed and tested for use with tungsten carbide anvils. However, for in situ experiments using X-ray radiation, other anvil materials might be preferred. For example, X-ray transparent sintered diamond or cubic BN anvils would increase the volume of the cell assembly that could be

Figure 10. X-ray tomographic image of recovered roPEC sample. Sample (pressed graphite pellet with internal Au foil strain marker) was loaded into a fired pyrophyllite gasket assembly as shown in Figure 4, and deformed at 1 GPa.
‘seen’ in tomographic images, and for measuring strain, would make it easier to observe a greater proportion of sample Debye rings.

Acknowledgements

The authors thank Colin Morrison and Paul Taylor (Dept. Earth Sciences, University of Cambridge), and John Adams (Harmonic Drive UK Ltd.) for help in the design and construction of the roPEC. They also thank Shun-ichiro Karato for helpful discussions regarding the rotational Drickamer apparatus and an informative visit to Yale during the design stage for the roPEC. The manuscript was improved following comments of two anonymous reviewers. This project was supported by NERC grant LBZF/039 (to SAT Redfern and MT Dove).

References