Do blue-ice moraines in the Heritage Range show the West Antarctic ice sheet survived the last interglacial?

Christopher J. Fogwill a, Andrew S. Hein b, Michael J. Bentley c, David E. Sugden b,⁎

a School of Geography, University of Exeter, Streatham Campus, Northcote House, Exeter, EX4 4QJ, UK
b School of GeoSciences, University of Edinburgh, EH8 9XP, UK
c Department of Geography, University of Durham, Durham, DH1 3LE, UK

Abstract

We present a hypothesis that best explains cosmogenic isotope data on blue-ice moraines in the Heritage Range, West Antarctica. The age of the moraines implies that they, and the related ice-sheet surface with which they are associated, have persisted on the flanks of nunataks throughout at least the last interglacial/glacial cycle. The implication is that although the West Antarctic Ice Sheet (WAIS) may have fluctuated in thickness during glacial cycles, the central dome has remained intact for at least 200 kyr and possibly even for 400 kyr. Such a finding, if substantiated, would contribute to our understanding of the sensitivity of the WAIS to climate change. Further it would be a powerful geomorphic constraint on models of the past behaviour of the ice sheet during glacial cycles and thus those predicting the future of the ice sheet in a warming world.

1. Introduction

The purpose of this paper is to develop a hypothesis that best explains geomorphological observations and cosmogenic nuclide data on moraines in the Patriot Hills, southern Heritage Range, West Antarctica (Fig. 1). The data was collected as part of a project seeking to establish the magnitude of ice-sheet thinning since the Last Glacial Maximum (LGM). Using morphology and the highest post-LGM exposure ages as a guide, the project has established post LGM thinning of 230–480 m in the Patriot Hills (Bentley et al., 2010). The project also encountered a puzzle that has faced the field of exposure-age dating more widely in Antarctica. The exposure-age dating revealed an upper limit of unweathered deglacial boulders exposed ~15 kyr ago, reflecting the thickness of the ice during the LGM. But, in common with several other studies of the former thickness of the ice sheet during the LGM, the samples were mixed with much older samples which have been exposed for up to several hundred thousand years (Ackert et al., 1999, 2007; Sugden et al., 2005; Fink et al., 2006; Mackintosh et al., 2007). It has been common to assume, and sometimes can be demonstrated using multiple isotopes, that the latter have a complex burial history and have been reworked by the glacier. However, the co-isotopic data in the Patriot Hills are consistent with an alternative hypothesis, namely that the spread of ages on blue ice moraines and nunatak slopes reflects the length of time that the moraine and the adjacent ice margin have been continuously present. In such a case, new clasts constantly accumulate on the glacier surface and are added to the moraine to build a deposit with a range of exposure ages. As the ice thickness fluctuates during glacial cycles part of this deposit with mixed ages is deposited on the mountain fronts. Clearly, if substantiated, such a hypothesis offers a new way of studying West Antarctic ice-sheet stability over glacial cycles.

The hypothesis must be viewed as unsubstantiated in that the moraines were sampled with a different aim in mind and the supportive data is no more than indicative. Moreover, we cannot eliminate the alternative hypothesis that the moraines represent composite features formed by multiple ice inundations separated by ice-sheet collapses, although the continuity of both landforms and sediments argues against such a possibility. A rigorous examination of the processes of moraine formation, their sediments, and a detailed programme of dating are required to test the hypothesis. At this stage the potential importance of our favoured hypothesis and the approach it opens up is the justification for this paper.

2. Background

Understanding the behaviour of the WAIS is important. It is a marine-based ice sheet with its centre situated on bedrock which is below sea level. As glaciological theory and study of northern hemisphere deglaciation showed in the 1970s, this introduces a potential instability that can lead to rapid collapse (Weertman, 1974, Mercer, 1978). The crucial unknown is how floating ice shelves, which have a buttressing effect on ice streams, respond to sea-level change and ocean melting. The risk is that the volume of ice, if lost, would be sufficient to raise eustatic sea

⁎ Corresponding author.
E-mail addresses: C.J.Fogwill@exeter.ac.uk (C.J. Fogwill), Andy.Hein@ed.ac.uk (A.S. Hein), M.J.Bentley@durham.ac.uk (M.J. Bentley), David.Sugden@ed.ac.uk (D.E. Sugden).
level by 5 m if all the ice disappeared or by 3.3 m if icecaps remained on
the main mountain blocks (Bamber et al., 2009).

Several attempts to model the effects of such changes have
reinforced the view that the ice sheet is sensitive to ocean change.
Warner and Budd (1998) showed that basal melting was the
dominant factor for the future health of the ice sheet and that a rise
in water temperature of only 3 °C could set in chain a process that
could remove the ice sheet within 2000 yr. Ritz et al. (2001) and
Huybrechts (2002), parameterising the grounding line and ice shelves
in different ways, ran ice-sheet models over the last 400,000 yr and
suggested that during the last interglacial at ~125 kyr the WAIS was
either much smaller than present or had collapsed. Pollard and
DeConto (2009) introduced a new approach to grounding-line
dynamics and ice-shelf buttressing (Schoof, 2007) and ran an ice
sheet model for 5 Myr, forced mainly by ocean warming linked to a
stacked deep-sea-core benthic δ¹⁸O record. The WAIS disappeared at
MIS 31 (1.07 Myr) and in a Pleistocene interval at ~200 kyr.

The sensitivity of the WAIS to warming has been bolstered by far-field
evidence in the form of high eustatic sea levels, especially during the last
interglacial (MIS 5e, (120 kyr)). Since Hollin (1965) suggested that high
interglacial sea levels may partly reflect the collapse of the WAIS, there
has been support for such an idea from the dating of fossil corals
(McCulloch and Esat, 2000) and from high-resolution δ¹⁸O records from
marine sedimentary cores (Siddall et al., 2003). High sea levels are known
from both the last interglacial (Hearty, et al., 2007; Rohling et al., 2008)
and earlier interglacials such as MIS 9 (330 kyr) (Hearty, 1998) and MIS
11 (400 kyr) (Raynaud et al., 2003). In such cases there is often evidence
of global temperatures warmer than present and the loss of the WAIS,
along with Greenland, is seen as a possible source of the additional water
required (Kopp et al., 2009).

Evidence within Antarctica has also been interpreted in terms of a
sensitive WAIS that can disappear in interglacials. Such a case has been
made on the basis of Quaternary and Tertiary microfossils found
beneath ice streams flowing into the Ross Ice Sheet (Scherer, 1991), and
more recently on the basis of diatom oozes of Pliocene age discovered
beneath the Ross Ice Shelf by the ANDRILL coring programme (Naish
et al., 2009). The oozes demonstrate open water and warmer conditions
in the western Ross Sea when planetary temperatures were up to 3 °C
warmer than today. The interpretation is that at such times the WAIS,
the main source of ice into the Ross Ice Shelf, had largely disappeared.

There is empirical evidence of WAIS sensitivity during the last
glacial cycle from the peripheries of the ice sheet. The ice sheet has
diminished in size from the Last Glacial Maximum (LGM) in all
sectors. The biggest changes occur in the Pacific sector of the Ross and
Amundsen Seas. The grounding line of the Ross Ice Shelf has retreated
by ~800 km since the LGM (Conway et al., 1999). Holocene thinning
of 800 m linked to grounding-line retreat has been established by
exposure-age dating in Marie Byrd Land (Stone et al., 2003). A
submarine landform record of a 130-km retreat of a grounded ice
sheet has been identified in the Amundsen Sea embayment (Anderson
et al., 2002; Graham et al., 2009) and retreat of the grounding line and
rapid thinning of outlets, such as Pine Island Glacier, continues to this
day, extending some 150 km inland (Shepherd et al., 2001; Pritchard
et al., 2009). In the Weddell Sea sector, there is surface exposure-age
evidence for thinning of 230–480 m (Bentley et al., 2010), a modest
figure that agrees with the conclusion that the low-lying Berkner
Island at the ice front of the Filchner–Ronne Ice Shelf was not
overridden by the ice sheet at the Last Glacial Maximum (Mulvaney
et al., 2007). Overall the evidence from the WAIS peripheries is
consistent with the view that the ice sheet is changing from glacial to
an interglacial state and that the response is not yet complete.

3. Blue ice moraines

Bearing in mind the importance of assessing the sensitivity of the
WAIS and its role in sea-level change, and the uncertainty associated
with different approaches, it seems worthwhile exploring alternative
Blue-ice areas cover ~120,000 km² of Antarctica where they indicate zones of ablation by wind and sublimation (Bintanja, 1999; Winther et al., 2001; Sinisalo and Moore, 2010). Blue ice is found in areas where winds are focussed by steeper surface slopes or where topography concentrates air flow in depressions or in the vicinity of nunataks. Since ice flow compensates for the surface ablation, deeper, older ice rises to the surface where it is exposed in the typically rippled blue ice surface. Some of the exposed ice may range from zero to hundreds of thousands of years old. These latter characteristics help explain why blue ice areas are such suitable locations for collecting meteorites that fall on upstream zones of the ice sheet, at least in East Antarctica (Yoshida et al., 1971; Whillans and Cassidy, 1983). In certain nunatak areas moraines are associated with blue ice at or near the glacier margin, as for example, in the Ellsworth massif, Lambert basin, Dronning Maud Land and the Transantarctic Mountains. If such moraines are found to be long lived and can be dated, then they and relict deposits on nunatak slopes hold the potential to track changes in the former thickness of the ice sheet over time at many different inland locations. Such information, distributed around Antarctica, would be of great value to modellers seeking to refine and constrain ice-sheet models.

3.1. Blue-ice moraines in the Heritage Range

The Heritage Range is in a key location to record the behaviour of the central dome of the WAIS. Outlet glaciers flowing around the nunataks drain the central dome of the WAIS, and yet the innermost grounding line of the Filchner–Ronne Ice Shelf is only 50 km distant. The mountains lie across the main flow of the ice sheet and as a result altitudes are higher on the inland flank (~1200 m) than on the coastal side (~800 m). In this paper we record blue-ice moraines on Soholt Peaks and the Liberty Hills but focus our field observations on the Independence, Marble and Patriot Hills. In the latter three locations ice spills over the escarpments from the interior into Horseshoe Valley, a trough with a glacier 1500 m deep and flowing in a trough 700 m below sea level (Casassa et al., 2004).

The Ellsworth Mountains constitute an isolated mountain block that is composed of some 13,000 m of sedimentary rocks that form an almost complete succession from the late Cambrian to the Permian (Webers et al. 1992). The succession includes numerous lithological boundaries and this variety through the sequence allows us to identify local or far-travelled glacial erratics and to infer regional sediment transport pathways. In the Heritage Range the bedrock is primarily composed of marble and limestone conglomerates of the Union Glacier Formation, which are over lain by greywackes and conglomerates, shales and argillites of the Hyde Glacier and Drake Icefall Formations. This succession is overlain by quartzites of the Minaret Formation in the Heritage Range and the Crashite Group which outcrop in the Sentinel Range to the north.

The mean annual temperature is estimated to be −28°C on the basis of a 10 m borehole at Patriot Hills (Dahe et al., 1994). The accumulation rate has been estimated to be 0.2–0.3 m a⁻¹ of water equivalent (Genthon and Braun, 1995). Katabatic winds from the ice-sheet interior cross the axis of the escarpment and ablate ice from the ice margin at the foot of the escarpment. Ablation is concentrated at the ice margin which is lower than the axis of the trunk glacier. On the basis of local measurements in 1996–1997 (Casassa et al. 2004) and altitudinal relationships elsewhere in Antarctica (Näslund, 1992; Bintanja, 1999), the rate of ice ablation is likely to be 15–20 cm water equivalent per year.

Blue-ice moraines occur at the foot of several mountain escarpments. At the foot of Soholt Peaks are two prominent moraines up to 20 m high and 150–200 m broad. There is also a narrower blue-ice moraine extending 3 km downstream of the confluence of Schanz Glacier and ice from Drake Icefall (Fig. 2). Blue-ice moraines extend relatively and continuously along the foot of the escarpment of the Liberty Hills for several km, often cutting across local glaciers situated on the slope. At Independence Hills there is a sequence of over 10 closely spaced parallel moraines at the foot of a 500 m escarpment. The moraines are up to 10 m high, each a few tens of meters across, and extend for some 4 km (Fig. 3). The moraines are hooked in plan form and each has an onset immediately downstream of spurs in the escarpment. Several of the moraines are virtually monolithologic with most clasts similar to that of the spur at their onset. Because of the

Please cite this article as: Fogwill, C.J., et al., Do blue-ice moraines in the Heritage Range show the West Antarctic ice sheet survived the last interglacial?, Palaeogeogr. Palaeoclimatol. Palaeoecol. (2011), doi:10.1016/j.palaeo.2011.01.027
along-strike variation in the geology of the hills, there are marked differences in lithologic composition of adjacent moraines. At the foot of the Patriot Hills is a blue ice moraine up to 20 m high, 220 m across extending over 4 km along the escarpment front before swinging northwards to the coast. The moraine contains lithologies that are exotic to the massif. Relict moraines occur on the escarpment front up to 250 m above the glacier. It is in this latter area that we focussed our cosmogenic nuclide study.

3.2. The Patriot Hills blue-ice moraines

3.2.1. Morphology and sediments

The Patriot Hills escarpment, formed by shale, marl limestone and argillites, has summits of around 1200 m with slopes of ~28° overlooking Horseshoe Glacier at its foot at 770 m. The front is scalloped with embayments, some holding local glaciers that extend down to the main glacier. The moraine contains lithologies that are exotic to the massif. Relict moraines occur on the escarpment front up to 250 m above the glacier. It is in this latter area that we focussed our cosmogenic nuclide study.

Fig. 3. Above. Oblique air photo showing the hooked moraines of the Independence Hills. The Marble Hills are to the left and the Patriot Hills in the background. The Blue ice moraine in the Patriot Hills is on the far side of the mountain block. Photo courtesy of the USGS. Below. Geomorphological map showing the moraines and the location of four 10Be cosmogenic nuclide exposure dates from the Independence Hills.

along-strike variation in the geology of the hills, there are marked differences in lithologic composition of adjacent moraines. At the foot of the Patriot Hills is a blue ice moraine up to 20 m high, 220 m across extending over 4 km along the escarpment front before swinging northwards to the coast. The moraine contains lithologies that are exotic to the massif. Relict moraines occur on the escarpment front up to 250 m above the glacier. It is in this latter area that we focussed our cosmogenic nuclide study.

3.2. The Patriot Hills blue-ice moraines

3.2.1. Morphology and sediments

The Patriot Hills escarpment, formed by shale, marl limestone and argillites, has summits of around 1200 m with slopes of ~28° overlooking Horseshoe Glacier at its foot at 770 m. The front is scalloped with embayments, some holding local glaciers that extend down to the main glacier. The blue-ice moraine is continuous for over 4 km and is widest in embayments where there are no local glaciers (Fig. 4). Fig. 5 shows a transect (surveyed with a handheld level) through the largest expanse. The main deposit consists of a ridge of sub-parallel ridges of boulders and gravel, often one clast thick, overlying ice. Approximately 80% of the material consists of local lithologies but 20% consists of varied lithologies exotic to the massif, mainly sandstone and quartzite. The moraine stands 20 m above the adjacent exposed glacier surface but is at a similar altitude to the trunk glacier surface 1 km distant. The glacier surface slopes towards the margin at the escarpment foot at ~6°. At the edge of the exposed glacier surface are debris bands, typically 0.3–1.5 m wide dipping towards the trunk glacier at angles of 70–80°. Some contain clasts aligned parallel to the band and protruding above the surface (Fig. 6). In plan view the debris bands are parallel to the ice edge but in detail they are discontinuous and frequently zigzag with sharp reversals of orientation. Fig. 5 also shows a transect across the blue-ice moraine and onto a local debris-covered glacier. Here is the same pattern of debris bands dipping towards the main trunk glacier and exotic boulders, some of which are clearly striated, at the edge of the blue ice zone. This contrasts with the local glacier which has white bubbly ice with foliations dipping in the opposite direction towards the escarpment and the whole covered in local angular marl clasts.

There are relict moraines with distinct ridge morphology distributed across the slopes of the escarpment up to 230–250 m above the present glacier. They are parallel to the ice edge and often part of a more continuous till cover with a light brown gravel matrix. The uppermost tills contain a mix of a few weathered and abundant unweathered clasts of sandstone, quartzite, volcanics and limestone, up to ~20% of which are exotic. The variety of lithologies increases at
lower altitudes and some clasts at all levels are striated. Limestone boulders mostly <0.5 m, but up to 4 m in diameter, can be traced to local rock outcrops to the immediate southwest. At its upper limit the zone of morphologically distinct moraines onlaps onto a 30 m altitudinal zone (240–280 m above the glacier) of weathered till patches with deeply weathered, iron-stained sandstone, quartzite, limestone and volcanics. Former basalt boulders are shattered and some volcanic clasts 30 cm in diameter have been weathered to the soil surface level. There are no unweathered clasts. Above this and at more than 280 m above the glacier are exposed bedrock surfaces with only occasional isolated erratics of weathered and iron-stained sandstones, limestone and volcanics.

3.2.2. Cosmogenic isotope analysis

Initial cosmogenic \(^{10}\)Be (from Bentley et al., 2010) and \(^{26}\)Al analyses of 28 samples provides quantitative constraints on the age of both the current and past moraines in front of the Patriot Hills (Fig. 7 and Table 1). In addition, we took four samples from blue-ice moraines in the Independence Hills and further samples from till deposits in the neighbouring Marble Hills. We preferentially sampled quartz-rich erratics, including quartzites, sandstones, granitic lithologies and some metasediments from ice-free bedrock and till-covered surfaces. Samples varied from small cobbles (~15 cm long axis) through to large boulders (~1 m height). For larger erratics, we sampled the upper surface to ensure maximum possible cosmogenic isotope production and minimal snow cover throughout the exposure period. \(^{10}\)Be was selectively extracted from the quartz component of the whole rock sample, following Ivy-Ochs (1996), and using the standard procedures at the University of Edinburgh Cosmogenic Isotope Laboratory. Apparent exposure ages (Table 1) were generated using a \(^{10}\)Be production rate scaled to sea level high latitude (SLHL) in Antarctica using the CRONUS-Earth online calculator of Balco et al. (2008). See Supplementary material for further detail.

The \(^{10}\)Be results show that two clasts emerging from and on the glacier surface in the Patriot Hills have experienced virtually no exposure to the atmosphere. Three clasts on the current ice-cored moraine have exposure ages of 31–44 kyr. On a current blue-ice moraine in the nearby Independence Hills the three sample ages range from 1–28 kyr. In the Patriot Hills four weathered and iron-stained clasts from the uppermost weathered moraine deposits at ~230–250 m above the ice surface yield a cluster of exposure ages around 400 kyr (400–445 kyr). The deposits containing freshly weathered clasts yield 13 ages of 3.0–77.0 kyr. In the neighbouring Marble Hills the equivalent upper limit of freshly weathered clasts yields two youngest ages of 15 kyr along with older, reworked clasts (Bentley et al., 2010). On the basis of the regional pattern, Bentley et al. (2010) identify the upper limit of freshly weathered clasts as the elevation of the WAIS during the LGM.
The results of subsequent analysis of 26Al in samples from the elevated blue-ice deposits on the escarpment front of the Patriot Hills are shown in Fig. 7. In 7 out of 8 cases, and ranging from 14-50 kyr, the Aluminium results are the same (within error) as the Beryllium ages. In the one remaining co-isotopic case (CF-13-08) the difference is marginal. We also carried out 26Al analysis on a high-level clast in the Marble Hills with a 10Be age of 205.6±19.6 kyr and it yielded a similar 26Al age within error, namely 197.9±19.4 kyr. The co-isotopic data support a scenario of continuous surface exposure although the resolution is such that periods of burial cannot be ruled-out.

4. Discussion

The geomorphological observations in the Patriot Hills give some clues as to the processes involved in blue-ice moraine formation, while the cosmogenic results provide perspective on their long-term evolution. In a nutshell, the hypothesis is that these blue-ice moraines are equilibrium forms caused by localised ablation bringing local and far-field basal material to the surface. Moreover, they can persist for hundreds of thousands of years, migrating up and down the escarpment front in response to thickness changes during glacial cycles.

4.1. Process

A key requirement is a process whereby material from the base of the glacier can accumulate on the glacier surface and not be removed by lateral flow. At first sight of blue-ice moraines, especially from the air, the impression is of lateral and medial moraines deriving rock material from rocky outcrops and flowing down glacier. With such a viewpoint it would be unlikely that any moraine could persist for long before being evacuated from the continent. The crucial requirement for equilibrium is for compressive ice flow towards the margin of the glacier capable of bringing basal material to the surface and retaining
Please cite this article as: Fogwill, C.J., et al., Do blue-ice moraines in the Heritage Range show the West Antarctic ice sheet survived the last interglacial?, Palaeogeogr. Palaeoclimatol. Palaeoecol. (2011), doi:10.1016/j.palaeo.2011.01.027

Table 1
Cosmogenic nuclide data.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Latitude (dd)</th>
<th>Longitude (dd)</th>
<th>Sample altitude (m)</th>
<th>Sample thickness (cm)</th>
<th>Topographic shielding</th>
<th>10Be concentration (106atoms/g)</th>
<th>10Be concentration error (106atoms/g)</th>
<th>26Al concentration (106atoms/g)</th>
<th>26Al concentration error (106atoms/g)</th>
<th>10Be exposure age (kyr)</th>
<th>10Be age uncertainty (kyr)</th>
<th>26Al exposure age (kyr)</th>
<th>26Al age uncertainty (kyr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAT-04-CJF</td>
<td>−80.3309</td>
<td>−81.3848</td>
<td>933</td>
<td>5</td>
<td>0.97</td>
<td>4.25E+05</td>
<td>1.14E+04</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>29.8</td>
<td>2.7</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PAT-08-CJF</td>
<td>−80.3300</td>
<td>−81.3819</td>
<td>1004</td>
<td>5</td>
<td>0.97</td>
<td>5.54E+06</td>
<td>8.78E+04</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>399.7</td>
<td>39.1</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PAT-10-CJF</td>
<td>−80.3295</td>
<td>−81.3791</td>
<td>1002</td>
<td>5</td>
<td>0.97</td>
<td>6.09E+06</td>
<td>1.08E+05</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>444.9</td>
<td>44.2</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PAT-13-CJF</td>
<td>−80.3279</td>
<td>−81.3389</td>
<td>978</td>
<td>5</td>
<td>0.97</td>
<td>5.25E+06</td>
<td>9.61E+04</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>386.0</td>
<td>37.8</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PAT-14-CJF</td>
<td>−80.3280</td>
<td>−81.3374</td>
<td>968</td>
<td>5</td>
<td>0.97</td>
<td>7.65E+06</td>
<td>1.12E+05</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>77.0</td>
<td>7.0</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PAT-15-CJF</td>
<td>−80.3275</td>
<td>−81.3435</td>
<td>965</td>
<td>5</td>
<td>0.97</td>
<td>1.08E+06</td>
<td>1.46E+04</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>74.4</td>
<td>6.7</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PAT-16-CJF</td>
<td>−80.3285</td>
<td>−81.3538</td>
<td>960</td>
<td>5</td>
<td>0.97</td>
<td>7.40E+06</td>
<td>2.05E+04</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>50.9</td>
<td>4.7</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PAT-18-CJF</td>
<td>−80.3283</td>
<td>−81.3541</td>
<td>774</td>
<td>5</td>
<td>0.97</td>
<td>4.10E+06</td>
<td>9.60E+04</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>33.1</td>
<td>3.0</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PAT-20-CJF</td>
<td>−80.3283</td>
<td>−81.3541</td>
<td>772</td>
<td>5</td>
<td>0.97</td>
<td>9.83E+06</td>
<td>1.66E+04</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>80.3</td>
<td>7.2</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PAT-21-CJF</td>
<td>−80.3282</td>
<td>−81.5026</td>
<td>769</td>
<td>5</td>
<td>0.97</td>
<td>4.10E+06</td>
<td>6.99E+03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>33.2</td>
<td>3.0</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PAT-24-CJF</td>
<td>−80.3251</td>
<td>−81.5332</td>
<td>777</td>
<td>5</td>
<td>0.97</td>
<td>3.89E+05</td>
<td>8.01E+03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>31.3</td>
<td>2.8</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PAT-25-CJF</td>
<td>−80.3245</td>
<td>−81.5539</td>
<td>775</td>
<td>5</td>
<td>0.97</td>
<td>4.57E+05</td>
<td>7.20E+03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>36.8</td>
<td>3.3</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PAT-26-CJF</td>
<td>−80.3235</td>
<td>−81.5416</td>
<td>775</td>
<td>5</td>
<td>0.99</td>
<td>5.61E+05</td>
<td>1.20E+04</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>44.4</td>
<td>4.0</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PAT-28-CJF</td>
<td>−80.3283</td>
<td>−81.5416</td>
<td>775</td>
<td>5</td>
<td>0.99</td>
<td>3.05E+05</td>
<td>2.34E+04</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>15.3</td>
<td>1.3</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

The reported nuclide concentrations measured at SUERC are normalised to NIST SRM-4325 Be standard material with a nominal 10Be/9Be ratio of 3.06 \times 10$^{-11}$ and a half-life of 1.51 Ma, and the Purdue Z92-0222 Al standard material with a nominal 26Al/27Al ratio of 4.11 \times 10$^{-11}$ that agrees with Al standard material of Nishiizumi (2004). The 10Be concentrations were published previously by Bentley et al. (2010). Uncertainties are 1 sigma. Nuclide concentrations include propagated AMS sample/lab-blank uncertainty, 25 carrier mass uncertainty (Be) and 5% stable 27Al measurement (ICP-OES) uncertainty. Exposure ages were calculated using the CRONUS-Earth web based calculator (Wrapper script 2.2; Main Calculator 2.1; constants 2.2.1 and muons 1.1) (Balco et al., 2008); the concentrations were therefore re-normalised internally to be consistent with the 10Be half-life (1.36 Ma) of Nishiizumi et al. (2007). Full external age uncertainties are reported.
it there. The field evidence supports just such a scenario. The ice surface gradient slopes towards the ice margin with a slope of around 6° and an amplitude of some 30 m in the kilometre closest to the margin. This is sufficient to provide compressive flow at right angles to the glacier margin. The dip and zigzag pattern of the debris bands is typical of ice deformation and folding known to characterise the compressive marginal zone. The striations, the varied size of debris, varying from dust to boulders, and especially the orientation of the latter parallel to the dirt band are typical of basally derived debris bands (Sugden et al., 1987). Finally, the ^{10}Be analyses on two clasts picked randomly from the ice surface show no exposure to cosmic rays, something that would be expected had the clasts only recently arrived at the surface having been eroded at the glacier base.

A second process is necessary to concentrate the debris into moraines. This will result from katabatic winds sweeping down the face of the escarpment and causing ablation. Ablation removes ice at the expense of rock debris, while ice flow compensates for ablation and concentrates the clasts towards the ice margin. When the debris cover is sufficiently thick, it cuts off ablation, and hence the creation of a protected moraine-covered ice ridge standing above the bare glacier surface. Such a process of concentration of rock debris by ablation, preserving the underlying ice for millions of years, has been described in Beacon Valley in the Transantarctic Mountains of southern Victoria Land (Kowalewski et al., 2006). In the case of the Patriot Hills the moraine crest is no higher than the elevation of the main trunk glacier. It is difficult to judge the relative importance of ice flow at right angles to the margin or lateral to it. The link of some rock types to particular outcrops argues for some lateral movement or a source of local ice joining the main glacier as in the Independence Hills. However, the high volumes of material in embayments argues for debris retention and ice flow towards the margin with little or no lateral component. Here is a clear need for detailed field measurements of ice flow in the vicinity of the blue-ice moraines.

Little can be said about the rate of blue-ice moraine formation. Nonetheless even crude comparisons of the sparse amount of debris arriving at the ice surface and the large volumes that have accumulated in the large embayment (Figs. 4 and 5), suggest that the process of concentration has been continuing for many tens of thousands of years. Such a conclusion is backed up by the exposure age of three boulders on the ice-cored moraine in the Patriots of 31–44 kyr and a further age from the ice-cored moraines in the Independence Hills of 28 kyr.

4.2. Long term evolution

On the basis of the above and the wider pattern of surface exposure ages, Bentley et al. (2010) have interpreted the upper limit of freshly weathered clasts as the elevation of the ice sheet surface during the LGM. They assumed that the older ages below the limit represented complex exposure histories and that old clasts had been reworked.

The co-isotopic work using ^{26}Al on some of the samples suggests something more interesting. In many cases the similarity of the Beryllium and Aluminium ages suggests a simple exposure history. In other words some clasts may have been exposed to cosmic rays for tens or even hundreds of thousands of years and without burial or reworking by the ice. The agreement is particularly marked below the presumed LGM limit in the Patriot Hills containing unweathered clasts. Intriguingly it also includes a high-level clast in the Marble Hills with Beryllium and Aluminium ages of 205 kyr and 198 kyr respectively. This latter clast may have been exposed continuously to cosmic rays since the penultimate glaciation. At present there are insufficient co-isotopic data from the uppermost clasts with exposure ages of 400-kyr to make meaningful interpretations. Experience in the Shackleton Range shows that, when the effects of erosion are borne in mind, such Beryllium and Aluminium ages may in reality be much older (Fogwill et al., 2004).

A notable feature of the moraine deposits is their continuity, not only in their ridge morphology but also in the similarity of the sediments and the lithological mix of the quartzite, sandstone and limestone exotic erratics. The main differences are in terms of weathering and the apparent loss by weathering of less resistant rock types in the uppermost weathered zone. The varying proportions of weathered clasts in the upper moraines, and the mix and span of ages suggest that the ice reached similar altitudes on several occasions.

4.3. Refining the hypothesis

The simplest hypothesis to explain the continuity and exposure-age results is that the blue-ice moraines migrate up and down the escarpment front during glacial cycles (Fig. 8). During glacial cycles when global sea level falls and ocean temperature cools, the grounding line migrates seawards and the ice thickens by 230–280 m. During interglacials, sea level rises and ocean temperature warms, the grounding line retreats landwards, and the ice thins in response. As the ice margin migrates up and down the escarpment the glacier deposits clasts with a span of ages. Many will have been exposed to cosmic rays continuously, while some disturbed during the process may have more complex histories. In the case of the Patriot and Marble Hills, the evidence within the zone of mixed young and old clasts points to stability for at least 200 kyr. However, the exposure ages of 400 kyr in the Patriot Hills could imply an even longer history of stability.

An alternative possibility that cannot be ruled out at this stage is that individual clasts remained exposed on nunataks continuously through a period of ice sheet collapse during an interglacial and that such clasts were picked-up during ice-sheet re-growth and redeposited with an undetectably short period of re-burial. However, the lithological and morphological continuity of the deposits and the number of clasts that we have detected with apparently continuous exposure histories argues against such a collapse-regrowth scenario. This problem of ice-sheet stability requires quantitative analysis of the sediment characteristics and the use of additional isotopes to reach a firmer conclusion (for example, ^{21}Ne to refine the ages and history of the older exposure ages of ~400 kyr and ^{36}Cl to establish the ages of local limestone clasts at different levels).

Our hypothesis helps explain several puzzles. First, it explains the sheer size of the moraines which simple calculations suggest must represent many thousands of years of accumulation of the sparse density of clasts arriving at the ice surface. Second, it explains the spread of exposure ages with simple exposure histories. It could also help explain some of the older exposure ages so frequently obtained below the LGM limit elsewhere in Antarctica. Indeed, one can speculate that moraines often represent former blue-ice ablation areas and these sites open up windows into the deeper history of the Antarctic ice sheet. Perhaps too the converse is true; the most recent history may be best retrieved from erratics sparsely distributed on bedrock surfaces distant from moraine accumulations as for example in the Ford Ranges (Stone et al., 2003).

Finally, the hypothesis has a wider significance. Bearing in mind the location of the southern Heritage Range on the border of the central dome of the WAIS, these conclusions about blue-ice moraine stability may carry the important implication that the central ice-sheet dome did not disappear during the last interglacial. It remains to reconcile this conclusion with other lines of evidence outlined earlier in the paper pointing to the disappearance of the WAIS during the last interglacial. Perhaps it is the extent and relatively high elevation of the underlying upland topography that helps make the central core of the WAIS sufficiently stable to have survived the last interglacial.
5. Conclusion

These initial results suggest that blue-ice moraines in the Heritage Range have the potential to provide direct evidence of whether or not the WAIS survived the last interglacial. Furthermore, analysis of the upper weathered deposits could open up an even deeper terrestrial window of at least 400 kyr into the history of the WAIS, perhaps indicating stability over several earlier cycles, or perhaps a hiatus. Whatever the fate of our hypothesis, we have highlighted the potential of blue-ice moraines to elucidate ice-sheet history. Since they occur widely in Antarctica, they justify closer attention.

Finally, the hypothesis, if substantiated, provides a means of identifying the exact limits of nunataks that remained free of ice during glacial cycles. The existence of such permanently ice-free areas for hundreds of thousands and even tens of millions of years in Antarctica has been postulated by biologists, who find that there is evidence of long-term survival of species, often in discrete locations (Convey et al., 2009). It would be a major step forwards to be able to identify the location and age of exposed nunataks on geomorphological grounds and then to compare the results with those emerging from the biology.

Acknowledgements

The research was funded by the UK Natural Environment Research Council. We acknowledge the contribution of SUERC, where the AMS analyses were carried out and the work of Elaine McDougall (Edinburgh) who prepared many samples. Antarctic Logistics and Expeditions provided the logistic support expertise.

Appendix A. Supplementary data

Supplementary data to this article can be found online at doi:10.1016/j.palaeo.2011.01.027.

References

