
Like many other technologies, digital computers
have evolved to provide ever more sophisticated
environments for their users. Early programmers
worked with very simple languages that in principle
could do anything, but in practice were limited by
the complexity of the necessary programming.
Today’s programming languages, and application
programmer interfaces, allow far more to be
achieved with much less effort. While it may have
taken a million lines of code to write an early GIS in
the 1960s or 1970s, the same could probably have
been achieved with at least two orders of magnitude
less, had it been possible to take advantage of the
sophisticated programming environments available
today. Languages like Tcl/Tk, for example, allow
easy-to-use graphic interfaces to be constructed
quickly that would have taken vastly more
programmer effort 20 years ago.

Such progress relies on a simple principle: that if
enough commonality can be identified between the
needs of a sufficiently large number of users, then it
makes sense to embed those common needs in the
computing environment. Like the human mind, the
digital computer is capable of supporting ever more
complex concepts provided they can be constructed
from simpler ones (and ultimately a ‘hard-wired’
base) in well-defined ways. Besides obvious gains in
efficiency and productivity, such approaches provide
consistency and rigour, offer simplicity by hiding the
complex workings of operations from the
programmer or user, and allow for uniform
approaches to such issues as integrity.

By the mid 1960s, the computer industry had
begun to see how this principle might be applied to
the datasets processed by digital computers.
Computer applications had been growing rapidly in
various areas of industry and commerce, and were
requiring and producing increasingly complex
masses of data. Rather than treat each application as
unique, and program its operations from scratch,
there appeared to be sufficient commonality in the
ways these applications interacted with data to

justify the development of generic structures and
approaches. Thus the database industry was born, in
the form of special software applications to manage
the interactions between programs and data. By
assigning standard data management operations to
generic systems, these so-called database
management systems (DBMS) relieved the
programmer of much inherently repetitive
programming. They also encouraged a more
disciplined approach to data management, which
was perceived to have its own benefits in terms of
increased efficiency and control.

While the database industry is by definition
generic, and the characteristics of geographical data
and GIS widely acknowledged to be special in many
respects, nevertheless by the late 1970s significant
efforts were under way to take advantage of
database technology in GIS applications. Instead of
a monolithic, stand-alone software application, GIS
was increasingly perceived as layered, with
specialised software working in conjunction with, or
conceptually on top of, a standard DBMS. ESRI’s
ARC/INFO was one of the first of these, released in
1981 and incorporating an existing DBMS into a
specialised GIS environment. Today, more and more
of the functionality of GIS is assigned to
increasingly sophisticated but still generic database
products, many of which now include the capability
to store and process explicitly spatial data.

These moves towards reliance on underlying
DBMS reflect several important priorities and
concerns in the GIS industry. First, if GIS and
underlying DBMS are at least partially independent,
then one DBMS can be easily replaced with another.
This is attractive to many GIS customers, who may be
able to share the DBMS among many computing
applications within the organisation, and value the
freedom to update the DBMS independently of the
GIS. Second, the DBMS may be perceived as more
reliable than less generic approaches to data
management, because of the relative size of the DBMS
industry – an industry more sophisticated in its

371

SECTION 2(b): SPATIAL DATABASES

Introduction
THE EDITORS

735450_pt02b.qxd 2/4/05 12:55 PM Page 371

approach to data management, with better ways of
ensuring data integrity; offering greater interoperability
between software environments; and with greater
adherence to general standards.

Michael Worboys begins this section with a
discussion of database models (Chapter 26). The
first generations of database systems, appearing in
the 1960s, were regarded as too general for effective
use in GIS, and it was not until the emergence of the
relational model, with its greater sophistication, that
GIS began to adopt database solutions in earnest.
The term ‘georelational’ is often used to describe the
particular implementation of the relational model
for geographical data, in which geographical
relationships between entities become the basis for
many of the common keys or linkages between
relational tables. Nevertheless, this idea took some
time to emerge, and early uses of relational
databases in GIS were driven largely by the more
general advantages of database systems listed earlier.

Worboys takes the reader beyond the relational
model into more recent research and thinking in
database systems for GIS, notably the concepts
broadly known as ‘object-orientation’. Just as the
relational model gave GIS users a natural way to
represent geographical relationships, object-oriented
models provide a natural way to manipulate the
various entities found on the geographical landscape,
and to describe their behaviours. As Worboys notes,
object-oriented databases are in their infancy, and
although several successful object-oriented GIS have
appeared in recent years, there is still much work to
be done in identifying the exact limits of the
application of object-oriented thinking in GIS.

The designer of a generic solution to management
of data must make decisions based on expectations
about usage that will inevitably reflect the needs of the
largest segment of users. As a specialised application
and a relatively small part of the DBMS market, GIS
has its own particular needs that are often difficult to
promote in the wider arena of DBMS design. GIS
databases tend to be large (a single remotely-sensed
image or topographic map can easily require 100
million bytes of storage); and searching for
geographical objects based on their locations is
inherently multidimensional. DBMS solutions for GIS
have often encountered disastrously poor
performance, even though it is often possible to ‘tune’
a modern DBMS for the particular characteristics of
a given application. Early users of relational DBMS
for GIS found it necessary to develop complex
implementation guidelines to ensure minimally

acceptable performance. Unfortunately, it is almost
always true that the benefits of generic solutions must
be balanced against the inability to optimise a generic
design for the specific needs of a complex application.

Spatial indexing offers one of the most powerful
tools to affect and improve performance in a GIS
application, just as indexing in publishing or library
cataloguing affects the usefulness of those fields. In
the second chapter of this section, Peter van
Oosterom reviews the state of the indexing art in
spatial databases. Many indexing schemes have been
devised, and it seems unlikely that any one is optimal
over any significant domain of GIS applications.
Many different schemes have been implemented, but
although spatial indexing is often invisible to the
user, it seems likely that in those applications where
performance is critical, some degree of involvement
of the user in the implementation of indexing will
always be necessary.

Early DBMS followed one or other of the
standard models for databases, but used proprietary
languages for interaction with the user. Even though
the underlying structure was essentially the same, a
user wanting to move from one DBMS product to
another often had to learn an entirely new language.
The introduction of standard query languages,
notably SQL, across entire sections of the DBMS
industry led to much greater interoperability between
systems, and greatly reduced the complications of
training users. Recent efforts to extend SQL to the
needs of GIS are reviewed by Worboys, while Max
Egenhofer and Werner Kuhn in Chapter 28 give an
overview of user interaction in general, comparing
the query language approach to other, newer, and
more powerful methods of user interface design. As
an inherently visual technology, GIS stands to benefit
enormously from graphic user interfaces, which offer
the potential to make GIS much easier to use, and
much easier to learn. Egenhofer and Kuhn review the
various metaphors that are guiding contemporary
user interface design for GIS, and that make use of an
increasing number of distinct media.

In the final chapter in this section, Yvan Bédard
adds a distinctly practical flavour to the topics
discussed in the previous three. While databases
provide the broad framework for describing the
geographical world, the specific details of
implementation can be critical, in determining
performance, and essential to the success of any
given application. Generic tools have been developed
for database design, and much effort has gone into
adapting these to the special needs of GIS.

The Editors

372

735450_pt02b.qxd 2/4/05 12:55 PM Page 372

