
1  INTRODUCTION

Many interesting application problems concerning
terrains involve visibility computations, for
example, the placement of observation points
according to suitable constraints, line-of-sight
communication problems, the computation of paths
with certain visibility properties, etc. Applications
include the location of fire towers, radar sites,
radio, TV or telephone transmitters, path planning,
navigation and orientation, and so on. An
exhaustive survey of visibility-related problems is
provided by Nagy (1994). The solution of such
problems needs methods to answer visibility queries
efficiently, through the development of structures
for encoding the visibility situation of a terrain.
Visibility queries consist of determining whether a
given object located on a terrain is visible from a
viewpoint and possibly how much of the object is
visible. Visibility structures provide information
about the visibility of the terrain itself; the
knowledge of suitable visibility structures for a
terrain helps answer visibility queries.

After recalling some basic notions about digital
elevation models (DEMs) in section 2, section 3
defines various kinds of structures encoding
visibility information for a terrain. Relevant
visibility structures for a single viewpoint are the
viewshed, which represents the location and extent
of the portion of a terrain visible from a given
viewpoint, and the horizon, which describes the
distal boundary of the viewshed. To model the
visibility of a terrain with respect to a set of
viewpoints, structures based on combinations of
the viewsheds of single points are used; depending
on the specific problem, it can be useful, for
instance, to consider the union or the intersection
of viewsheds, or to count how many viewpoints
can see each point on a terrain. Visibility structures
admit both continuous and discrete encodings. In
general, continuous encodings of the viewshed
(called continuous visibility maps) are used for
triangulated irregular networks (TINs), while
discrete encodings (called discrete visibility maps)
are used on dense regular square grids (RSGs).
Visibility information related to multiple viewpoints
is commonly represented in a discrete way, because
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and regular square grids as well as for answering visibility queries on a terrain. Finally,
some application-specific problems involving visibility computation are illustrated.



of its size, leading to structures such as visibility
graphs, intervisibility maps and visibility counts;
continuous encodings reduce to overlays of
continuous visibility maps.

Section 4 provides a survey of algorithms for
computing visibility structures (visibility maps,
horizons, etc.) on terrain models and for solving
visibility queries. RSGs and TINs have very different
structures and are usually handled using very different
methods. Visibility computation on RSGs is based on
line-of-sight processing (Blelloch 1990; Shapira 1990).
This is an expensive process because of the size of the
grid; parallel algorithms have been defined, which take
advantage of the regular spatial structure of an RSG
(Mills et al 1992; Teng et al 1993). TINs have deserved
strong consideration from both the computational
geometry and GIS communities; practical algorithms
are reported (Boissonnat and Dobrindt 1992; De
Floriani et al 1989; Lee 1991a), as well as algorithms of
theoretical interest for their good asymptotic
complexity (Edelsbrunner et al 1989; Katz et al 1991;
Overmars and Sharir 1992; Preparata and Vitter 1992;
Reif and Sen 1988). Finally, visibility queries can be
efficiently answered based on either visibility maps or
on horizons; ad hoc methods have been proposed for
solving queries directly, that is, without computation of
intermediate data structures (Cole and Sharir 1989).

All visibility computations are sensitive to errors in
elevation near the viewpoint, since these are amplified
in proportion to the distance. For this reason, various
authors suggest that the topography near the
viewpoint must be known much more accurately than
on the rest of the surface (Cignoni et al 1995;
Felleman and Griffin 1990). Multi-resolution terrain
models play an important role here, since it is possible
to obtain from such models terrain representations
whose level of resolution in any area of the domain
can be specified by the user. Section 5 introduces
multi-resolution models of terrains and considers the
problem of computing and updating visibility
structures on a multi-resolution model, as well as the
direct solution of visibility queries on such models.

In section 6 we consider application problems
related to visibility, such as viewpoint placement,
line-of-sight communication and path problems, and
the role of visibility information in solving them.
Section 7 contains some concluding remarks.

2  PRELIMINARIES

A topographic surface (or terrain) can be regarded as
the image of a real bivariate function f defined over

a domain D in the Euclidean plane. A digital
elevation model (DEM) is a model of one such
surface built on the basis of a finite set of digital
data (see also Band, Chapter 37; Hutchinson and
Gallant, Chapter 9). Terrain data consist of
elevation measures at a set of points S�D; points in
S can either be scattered, or form a regular grid. A
DEM built on S represents a surface that
interpolates the measured elevations at all points of
S. Two classes of DEMs are usually considered in
the context of GIS for visibility computation:

● A TIN is defined by a triangulation of the
domain D having its vertices at the points of S.
Function f is defined piecewise as a linear
function over each triangle. Thus, the surface
described by a TIN consists of planar patches.

● An RSG is defined by a domain partition into
rectangles, induced by a regular grid over D.
Functions used on such partitions depend on
the degree of continuity desired for the surface;
usually, f is either bilinear or constant over
each region.

TINs show good capabilities to adapt to
terrain features, since they can deal with irregularly-
distributed datasets and may include surface-specific
points and lines. Often, a Delaunay triangulation is
used as a domain subdivision for a TIN, because of
its good behaviour in numerical interpolation.
A triangulation is a Delaunay triangulation if and
only if the circumcircle of each triangle does not
contain any other vertex; the Delaunay triangulation
can also be characterised as the dual graph of the
Voronoi diagram of a point set (Boots, Chapter 36).
More recently, data-dependent triangulations have
been proposed, which take into account the z values
of points in V instead of simply their x,y coordinates;
the idea is either to maximise or to minimise some
quantity that expresses certain properties of the
resulting surface (e.g. the ‘roughness’ or the ‘thin-plate
energy’, or the maximum jump between adjacent
patches; see Dyn et al 1990, for a survey, and Mitas
and Mitasova, Chapter 34).

3 VISIBILITY STRUCTURES FOR TERRAINS
Measuring visibility requires computing visibility for
(portions of) the surface itself or for objects located on
the surface (representing, for example, facilities such as
towers, buildings, radio transmitters, etc.). The problem
of testing the visibility of an object is essentially a
query problem, and must be solved on-line. In contrast,
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visibility information for the surface itself can be
precomputed and stored in appropriate visibility
structures; such structures also help answer visibility
queries. This section introduces the main structures
used to represent the visibility of a terrain with respect
to a single or multiple viewpoints; for each structure,
first an abstract definition is given, then its encodings
on RGSs and on TINs are considered.

Two points V and W on a topographic surface are
said to be mutually visible if and only if the interior
of the straight-line segment joining them lies strictly
above the terrain; such a segment is allowed to touch
the surface at most at its endpoints V and W. Any
point V lying on or above a topographic surface can
be chosen as a viewpoint.

The basic visibility structure for a terrain is the
viewshed. Given a viewpoint V on a terrain, the
viewshed of V is the set of points of the surface
which are visible from V, that is, viewshed (V)={W∈
D | W is visible from V}.

Another relevant form of visibility information is
the horizon of a viewpoint V, which corresponds to
the ‘distal’ boundary of the viewshed. Such reduced
information can replace the viewshed in some
applications, with the advantage of lower storage
costs. The horizon determines, for every radial
direction around V , the farthest point on the terrain
which is visible from V: horizon (V) = {W ∈
D | W is visible from V and ∀Q ∈ D if W ∈ VQ then
Q is invisible from V}.

Visibility structures for several viewpoints can be
defined by combining the viewshed of such points
according to some operator; common combination
operators are:

● Overlay: the terrain is partitioned into regions, in
such a way that each region is visible from a given
set of viewpoints.

● Boolean operators (see Eastman, Chapter 35),
such as the intersection of the viewsheds (which
gives the portions of a surface visible from all
viewpoints), the union (which gives the portions
visible from at least one viewpoint), etc.

● Counting operators: for example, the surface may
be partitioned into regions, such that all the
points of a region are visible from the same
number of viewpoints.

The set of viewpoints considered is usually
restricted to be a subset of the vertices of a TIN, or a
subset of the cells of an RSG. In the remainder of the
chapter, a visibility structure related to multiple
viewpoints will be called a multi-visibility structure for
brevity; if necessary, the operator used to obtain it will
be specified. Note that the overlay of viewsheds
contains more information than any other multi-
visibility structure.

Any visibility structure can be encoded in either a
continuous or a discrete way. For the viewshed
(see Figure 1) a continuous encoding subdivides
each cell of the DEM; this form is called a
continuous visibility map, and it is mainly used for
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Fig 1.  (a) The continuous-visibility map and the horizon; (b) the discrete visibility map on a TIN.
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TINs. The continuous visibility map of a TIN with
n vertices has a worst-case space complexity in
O(n2). On RSGs, the viewshed is usually represented
in a discrete way, by marking each grid cell or each
vertex as visible or invisible. The resulting array of
Boolean values is called a discrete visibility map.
RSGs are usually dense, so that discrete visibility
maps are accurate enough for application needs; on
the other hand, for an RSG a continuous visibility
map would be difficult to compute (since RSGs do
not support linear interpolants) and huge in size.
The discrete visibility map has an O(n) worst-case
space complexity for a   n by   n regular grid.
A discrete visibility map for a TIN is sometimes
considered (e.g. Lee 1991); such a map is obtained
by marking each triangle or each vertex as visible or
invisible; the spatial complexity is O(n) for a TIN
with n vertices.

A continuous representation of the horizon of a
viewpoint V consists of a sequence of portions of
terrain edges, radially sorted around V. As the
continuous visibility map, this form is used for TINs.
The size of the horizon on a TIN with n vertices is
O(n α (n)) (Cole and Sharir 1989), where α is the
slowly growing inverse of Ackermann’s Function.
On an RSG, the horizon can be represented in a
discrete way as a collection of grid cells; however,
since there is no gain in space complexity with
respect to a discrete visibility map, discrete horizon
representations are not used in practice.

Visibility structures related to multiple viewpoints
can be encoded in a variety of different ways.
Discrete encodings are mainly used, due to the huge
dimensions of a continuous encoding when many
viewpoints are considered. Examples of such
encodings are the visibility graph and visibility
counts. The visibility graph (Puppo and Marzano
1996) represents the overlay of the discrete visibility
maps of several viewpoints. It consists of a graph in
which each node corresponds to a vertex or to a cell
of a DEM and every pair of mutually visible nodes
is joined by an arc. The spatial complexity of a
visibility graph is O(n2) for a DEM with n vertices;
visibility graphs are used both for RSGs and TINs,
and are fundamental in solving several application
problems (see section 6).

Visibility counts are discrete encodings of multi-
visibility structures obtained through counting
operators. A visibility count is obtained by labelling
each vertex or each cell of a DEM with the number
of viewpoints from which it is visible. This

information is mainly considered on gridded models.
A special case is the intervisibility map between two
regions (Mills et al 1992); given a source region and
a destination region (e.g. two rectangular blocks of
cells of an RSG), each point of the destination
region is labelled with the number of points of the
source region from which it is visible. The size of an
intervisibility map is determined by the number of
cells of the destination region. Discrete
representations of multi-visibility structures based
on Boolean operators (e.g. union, intersection)
reduce to arrays of Booleans.

4  ALGORITHMS FOR VISIBILITY
COMPUTATION

In this section, an overview is given of algorithms
for visibility computation on terrains. Two
subsections are devoted to the computation of
visibility structures, in continuous and discrete
encodings, respectively; the last subsection deals
with visibility queries on a DEM.

4.1  Computation of continuous visibility structures

As mentioned in section 3, continuous encodings of
visibility structures are used only for TINs. Thus, the
algorithms considered in this subsection are
algorithms for TINs; they exploit the fact that a TIN
describes a polyhedral surface. In general,
polyhedral surfaces have deserved interest both from
the GIS community and from computational
geometers working on GIS. Some algorithms have a
theoretical interest for their good asymptotic
complexity, but are difficult to implement; other
algorithms have been successfully implemented and
show a good practical performance, whereas they
exhibit a poor worst-case complexity, or they even
lack a precise theoretical analysis.

The problem of computing the continuous
visibility map of a TIN is connected with the more
general hidden surface removal (HSR) problem for a
3-dimensional scene. Given a viewpoint and an
image plane, HSR algorithms build the visible image
of a scene, that is, a subdivision of the image plane
formed by collecting the projections (images) of the
portions visible from the viewpoint of each face of
the scene (see Figure 2). Thus some algorithms are
reported here for HSR, which can be used to
compute the continuous visibility map of a TIN.
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A common approach to visibility computation on a
TIN consists of processing the faces in front-to-back
order from the viewpoint. Given a viewpoint V, a
cell c1 of a DEM is said to be in front of another cell
c2 if a ray emanating from V intersects c1 before
intersecting c2. A front-to-back order of a DEM is
any total order of its cells consistent with the ‘in
front’ relation; if c1 < c2 then c1 may be in front of
c2, but not vice versa. A DEM is sortable if a front-
to-back order exists. Because of their irregular
structure, sortability is not guaranteed for all TINs.
Delaunay-based TINs have been shown to be always
sortable (De Floriani et al 1991); a non-sortable TIN
can always be made sortable by splitting some of its
triangles (Cole and Sharir 1989).

The front-to-back approach exploits the fact
that a triangle t can be hidden only by triangles in
front of it. At each step, a current horizon is
maintained and used to determine the visibility of
new triangles (see Figure 3). This method was
developed and implemented by De Floriani et al

(1989) and experiments show a nearly-linear time
complexity, even though the asymptotic time
complexity is O(n2 α(n)) in the worst case. The
algorithm was parallelised by De Floriani et al
(1994b) by using a data partitioning strategy.
The domain is subdivided into radial sectors, which
have the viewpoint as their common vertex, and
each sector is assigned to a processor. The
algorithm has been implemented on a hypercube
machine nCUBE-2, a coarse-grained multiple
instruction, multiple data (MIMD) architecture.

More sophisticated algorithms, still based on a
front-to-back traversal, achieve an output-sensitive
time complexity by storing the current horizon into
some special data structures (Preparata and Vitter
1992; Reif and Sen 1988). The time is O((n+d)
log2n), where n is the TIN size and d is the size of the
computed visible image. Interest in these algorithms
is mainly theoretical. Reif and Sen (1988) also
propose a parallel algorithm, based on a variation of
the front-to-back approach.

Still in the realm of theoretically interesting
algorithms, the worst-case optimal algorithm by
Edelsbrunner et al (1989) can be mentioned. It
computes the visible image of a TIN in O(n2)
time, based on a divide-and-conquer strategy.
Theoretically efficient output-sensitive HSR
algorithms, which can be applied to a TIN, have
been proposed by Katz et al (1991) and by
Overmars and Sharir (1992). Both algorithms
exploit a front-to-back traversal of the scene; a
parallel version of the latter algorithm has been
proposed by Teng et al (1997).

An on-line algorithm has been proposed by
Boissonnat and Dobrindt (1992). This algorithm
computes the visible image of a generic set of
triangles in the space (and thus the visibility map of
a TIN), and is based on an incremental update of
the visible image by inserting triangles one at a time.
The kernel of the algorithm is a special data
structure which provides bounds for the expected
time and space complexity when averaging on all
possible permutations of the input data. This
algorithm was successfully implemented. The
algorithm has also been extended to a fully dynamic
method, which allows both insertions and deletions
of triangles in expected O(n log n) time (Bruzzone et
al 1995; Dobrindt and Yvinec 1993). Dynamic
algorithms are of special interest because they are
useful to update visibility information for a terrain
when the underlying elevation model changes
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Fig 2.  The continuous-visibility map and the visible image of a
TIN. The viewpoint lies at infinity in the negative y direction, and
the x, z plane is used as the viewplane.
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(a problem occurring, for instance, with multi-
resolution terrain representations, see section 5).

The horizon of a TIN is obtained as a side-
product of algorithms for computing visibility maps
(for example, front-to-back algorithms build the
horizon as an auxiliary structure). The horizon can
also be directly computed as the upper envelope of
the set of segments obtained by projecting the terrain
edges on an image plane. Existing upper-envelope
algorithms are of two types: divide-and-conquer
methods run in O(n α(n) log n) (Atallah 1983) or
O(n log n) (Hershelberg 1989) time (the latter is
worst-case optimal since the inherent complexity of
the problem is O(n log n)); an incremental approach
leads to a sub-optimal O(n2 α(n)) time in a
straightforward implementation, while a randomised
version (De Floriani and Magillo 1995) has an
expected running time of O(n α(n) log n).

Though not very relevant for practical use,
continuous encodings of multi-visibility structures
for TINs can be obtained starting from the overlay of
continuous visibility maps. Efficient algorithms exist
which compute the overlay of two maps, the most
common of which are based on a sweep-line
technique (Bentley and Ottmann 1979; Chazelle and

Edelsbrunner 1992; Clarkson and Shor 1989; Guibas
and Seidel 1987; Mairson and Stolfi 1988). The time
complexity is sensitive to the size of the final result
(which may be quadratic in the size of the two input
maps, depending on the number of intersections).

4.2  Computing discrete-visibility structures

Algorithms for discrete-visibility maps are based on
the computation of the intersection between lines-
of-sight from the viewpoint and edges of the DEM
cells. A straightforward approach requires O(n2)
time on a TIN and  O(n n ) time on an RSG with n
vertices. For RSGs, the elevation of each edge is
assumed to vary linearly between the two endpoints,
and the elevation of the terrain inside each grid cell
is usually not considered.

Lee (1991) computes the discrete-visibility map
of a TIN by using a front-to-back method, similar
to the one used by De Floriani et al (1989) for
continuous-visibility maps; here, the discretisation is
achieved by considering a triangle as visible if all its
three edges are completely visible.

Discrete-visibility maps are mainly used for
RSGs. The method of Shapira (1990) traces a
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Fig 3.  A generic step of a front-to-back visibility algorithm: (a) the set of already-processed triangles (shaded) and the current horizon
(thick); (b) determination of the visibility of a triangle by projecting the current horizon on the triangle itself (the portions of the
triangle lying above the projected horizon are visible).
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line-of-sight from the viewpoint V to any other point
P, and starts walking along on the line-of-sight from
V to P. The walk terminates when either an
intersection between the line-of-sight and a terrain
edge is found before reaching P, or when P is
reached. This method performs redundant
computations, since rays to different points of the
grid may overlap partially. Other methods (e.g.
Blelloch 1990) consider only rays joining the
viewpoint V to a boundary point of the destination
region, and determine the visibility of each cell along
a line-of-sight by using the current tangent from the
viewpoint to the terrain (see Figure 4). The
complexity can be further reduced by sampling a
subset of line-of-sight directions around a viewpoint,
thus leading to approximate discrete-visibility maps.

Visibility computation on RSGs is an expensive
process because of the size of the grid, especially
when multi-visibility structures (e.g. a visibility
graph) are computed. On the other hand, because of
their regular topology RSGs are especially suitable
to be handled by parallel methods developed for the
architecture of massively-parallel computers (see
Openshaw and Alvanides, Chapter 18). Parallel
algorithms exploit the fact that the regular spatial
structure of an RSG can be directly embedded into
a parallel single instruction, multiple data (SIMD)
architecture, such as the mesh or the hypercube.
Mills et al (1992) and Teng et al (1993) have
proposed parallel algorithms for computing
intervisibility maps on an RSG.

The method of Mills et al (1992) uses a parallel
version of the algorithm of Shapira. Every line-of-

sight from every viewpoint of the source region is
processed in parallel. Elevation data are
communicated from one sight-line to an adjacent
one, in order to reduce global communication
between processors. The algorithm has been
implemented on a Connection Machine CM-2.

The method of Teng et al (1993) performs a
sweep traversal of the source region, and exploits
the coherence at adjacent viewpoints in order to
reduce global communications. They consider only
lines-of-sight from a point of the source region to a
boundary point of the target region, as does
Blelloch (1990). If w is the maximum length (in cells)
of a line-of-sight, and l is the side of source and
destination regions, the time complexity of the
algorithm is estimated as O(l log w), when using
O(l2w) processors. Experimental results obtained on
a Connection Machine CM-2 match this estimate.

4.3  Answering visibility queries

Visibility queries concern the computation of
visibility for objects located on the terrain rather
than for the surface itself. Given a viewpoint V, a
visibility query is defined by providing a query
object. The problem consists of determining the
visibility of the object from V. A visibility query for
a point Q simply requires a test of whether Q is
visible from V. As for the visibility of the terrain
itself (see section 3), the visibility of a non-point
object can be encoded either in a continuous way or
in a discrete way. In the continuous approach, the
query is answered by computing a partition of the
query object into visible and invisible subsets. A
discrete answer consists of marking the object with a
Boolean value, according to some convention; the
answer can be true either when the object is entirely
visible, or when it is at least partially visible, or when
it is visible for more than a certain percentage of its
extent, etc.

Finding the visibility of a query object from a
given viewpoint V can be solved by examining the
lines-of-sight joining V to a point on the object. The
simplest case occurs when the query object is a point
P. In this case, a ‘brute force’ approach that searches
for the intersection of segment PV with the edges of
the DEM takes O(n) time on a TIN and O(  n) time
on an RSG. If several queries must be solved for the
same viewpoint, some kind of preprocessing can
reduce the query time.
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Fig 4.  Walking along a line-of-sight in Blelloch’s approach: a
vertical section of the DEM in the direction of the line-of-sight is
shown; t1 is the current tangent for cells 2 to 10; t2 for cells 13
to 21.
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If a visibility map of the terrain is available, then
testing the visibility of a query point lying on the
surface reduces to a point location in such a map.
If the query point has a non-null height, then the
approach is different depending whether we are
considering continuous visibility on TINs or discrete
visibility. The latter case reduces to point location in
an enriched version of the discrete-visibility map,
storing, for each cell, the minimum height which
should be added to the cell in order to make it
visible (zero if and only if the cell is visible). Such an
enriched map can be computed with the same
techniques. Point location within the simple or
enriched discrete-visibility map can be done in
constant time by computing the indices of the row
and column containing the query point. As far as
continuous visibility on TINs is concerned, testing
whether a given point is visible reduces to locating
the projection of such a point in the visible image of
the TIN. Both the visible image and the continuous-
visibility map are plane subdivisions; thus, existing
techniques for point location within a plane
subdivision can be used (see Kirkpatrick 1983;
Lee and Preparata 1977; Preparata and Shamos
1985; Sarnak and Tarjan 1986), typically resulting in
logarithmic query times.

Cole and Sharir (1989) proposed a data structure
which allows a logarithmic query time by using an
amount of memory less than the O(n2) space
required by a continuous-visibility map or a visible
image. They reduce a visibility query on a TIN to a
ray-shooting query, that is, to the problem of
determining the first face of the terrain hit by a ray
emanating from the viewpoint and passing through
the query point. For answering such queries, Cole
and Sharir build a balanced binary tree, which stores
a set of partial horizons. The space complexity of
the whole tree is only O (n α (n) log n).

5 VISIBILITY ON MULTI-RESOLUTION
TERRAIN MODELS

Often, huge sampled datasets are available for a
topographic surface. This allows accurate DEMs at
the cost of storage space and access times. Since not
all tasks require the same level of detail, the use of
high-resolution models may affect applications for
which many of the details are not relevant. Multi-
resolution terrain models have been developed to
provide a compact representation of a surface at

different resolutions. A multi-resolution model
avoids redundancy of information and supports an
easy extraction of terrain representations at any level
of detail. This section first introduces multi-
resolution terrain models and then briefly reviews
the available methods for visibility computation on
such models.

5.1  Multi-resolution terrain models

Multi-resolution terrain models are built from a
given (huge) set of data by using iterative procedures
of two kinds: simplification methods start from the
complete dataset and progressively eliminate points,
while refinement techniques progressively include
points into an initial minimal set. At appropriate
steps of the process, fragments of the current DEM
are selected to be stored in the model.

A generic multi-resolution model of a terrain is
based on a collection of fragments of DEMs, each
characterised by a certain degree of accuracy, which
can be combined in different ways to provide a
description of the whole surface. A multi-resolution
model encodes such components together with
information needed to combine them into a single
DEM satisfying any given level of accuracy. Such
additional information typically includes:

● relationships of spatial interference between
fragments (two overlapping fragments will
provide two representations of the same area at
different accuracies);

● information about adjacency and boundary
matching between fragments (used to determine
whether the union of two fragments forms a
proper DEM).

Such information is represented in different ways
depending on the structure of the multi-resolution
model, which in turn depends on the strategy used
for its construction.

A large subclass of multi-resolution models
proposed in the literature is characterised by a
nested subdivision of the domain; such models are
usually termed hierarchical. A hierarchical model
can be effectively described by a tree where nodes are
the fragments (local DEMs), and arcs correspond to
containment of a DEM into a cell of another DEM
(see Figure 5). Quadtrees (Chen and Tobler 1986;
Samet and Sivan 1992) and quaternary triangulations
(Gomez and Guzman 1979) are regular hierarchical
models based on the recursive partition of a square
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or an equilateral triangle, respectively, into four
equal parts. In restricted quadtrees (Herzen and Barr
1987) the problem of preserving the continuity of
the surface is solved by imposing the condition that
adjacent squares cannot differ by more than one
level in the refinement process, and by triangulating
the final cells. Regular hierarchical models can be
built both by refinement and by simplification.
Other hierarchical terrain models are based on
TINs; hierarchical TINs rely on a top-down
refinement process, driven by various criteria
(e.g. random or accuracy-driven strategies for the
insertion of points, Delaunay or heuristic
triangulation, etc.). The continuity of the surface is
guaranteed through a consistent refinement of edges.
Adaptive hierarchical triangulations (Scarlatos and
Pavlidis 1990) and hierarchical Delaunay
triangulations (HDTs) (De Floriani and Puppo
1995) are the two major examples of such models.

In more general multi-resolution models the
spatial interference between two fragments does not
necessarily reduce to a containment of one fragment
by the other. All existing proposals of non-
hierarchical multi-resolution models are based on
TINs (see Figure 6). The first proposal is the
Delaunay pyramid (De Floriani 1989), which encodes
fragments from a sequence of Delaunay TINs
describing a terrain at a sequence of increasing
resolutions. This model does not rely on a special
construction technique, and can be built by
simplification as well as by refinement. Interference
links are stored between pairs of consecutive
triangles which have a proper intersection. The
model proposed by Berg and Dobrindt (1995) is

built through iterative simplification of a Delaunay
TIN; at each step, a set of independent vertices (i.e.
vertices that are not endpoints of the same edge) of
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Fig 5.  Hierarchical terrain models: (a) quadtree; (b) quaternary triangulation; (c) hierarchical TIN.
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Fig 6.  A pyramidal terrain model.



small degree is removed, and the ‘holes’ left by those
vertices are re-triangulated. Interference links are
maintained between the triangles incident in a
removed vertex and those created to fill the hole.

The multi-triangulation proposed by Puppo
(1996) is a general model which includes all
previously mentioned models as special cases. The
basic idea is a partial order of fragments, which
drives their combination. The model can be

described as a directed acyclic graph, where the
nodes are the fragments, with the properties that two
fragments connected by an arc have a spatial
interference, and every cut of the graph corresponds
to a TIN describing the whole terrain; larger cuts
correspond to more detailed representations of the
surface (see Figure 7). Cignoni et al (1995) use a
different and less complex data structure for
encoding a multi-triangulation.
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Fig 7.  (a) A graph representing a multi-triangulation (the fragment stored in each node is shown, the dashed rectangle is the
domain); and (b) a cut and the corresponding TIN defined over the domain (the TIN is obtained by collecting the ‘exposed’ triangles of
the cut, shown shaded).
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5.2  Visibility algorithms on multi-resolution
terrain models

Since multi-resolution terrain models do not provide
an explicit terrain representation, a DEM,
describing the surface at a given user-defined level of
resolution, must be extracted to be used for visibility
computations. The level of resolution may be
constant (i.e. a single threshold value is defined for
the error over the domain), or variable (i.e. the
maximum error over each cell is defined according to
a threshold function). In visibility applications, an
accuracy that decreases according to the distance
from the viewpoint is especially interesting; because
errors in elevations near the viewpoint are amplified
in proportion to the distance, it is convenient to
represent the topography more accurately near the
viewpoint than on the rest of the surface (Felleman
and Griffin 1990).

A variable-accuracy DEM will be made up of
cells from different levels of a multi-resolution
model. The main difficulty here is ensuring the
continuity of the surface described by the extracted
model. Cignoni et al (1995) propose an extraction
algorithm for the case of accuracy decreasing with
the distance from a viewpoint, which guarantees
continuity. The method starts from the triangle
having the maximum resolution and enlarges the
model by including adjacent triangles; the approach
applies to their own model and to any hierarchical
TIN. Puppo (1996) proposes a general approach for
extracting a DEM at variable resolution, based on
interference information only. The method performs
a traversal of the graph encoding interference among
fragments, and identifies a minimal cut of the graph
which satisfies the desired accuracy. This method,
with some additional care to avoid cracks in the
extracted surfaces, applies also to any hierarchical
model (see De Floriani and Magillo 1996).

Once a DEM at the desired resolution has been
obtained, any algorithm for visibility computation
can be applied to it. On-line algorithms (e.g.
Boissonnat and Dobrindt 1992; De Floriani and
Magillo 1995) seem to be the most suitable because
they can be run in parallel with the construction of
the extracted DEM. Magillo and De Floriani
(1994) have presented algorithms which compute
the visibility map on a hierarchical TIN by
navigating the tree-like structure of the model, and
thus do not need the explicit construction of a TIN
at the given accuracy.

A further problem connected to visibility on
multi-resolution terrain models is the update of
already-computed visibility structures when changing
the resolution in some portion of the domain. This is
required in applications such as flight simulation,
where the focus of attention is rapidly moving, and
thus the maximum resolution is required for different
areas at different times. The visibility-update problem
can be solved by recomputation or by applying
dynamic algorithms. Such algorithms update a
visibility structure after the deletion of old DEM
cells and the insertion of new ones. Dynamic
algorithms have been proposed for horizon
computation (De Floriani and Magillo 1995) and for
continuous-visibility maps on a TIN (Bruzzone et al
1995; Dobrindt and Yvinec 1993). The core of all
these algorithms is a special data structure which
helps in locating the parts of the structure affected by
an update, providing a good expected performance
for a random sequence of updates.

Finally, the brute force approach to visibility queries
(see section 4.3) can be combined with a traversal of
the tree encoding a hierarchical terrain model to
answer visibility queries efficiently at a certain level of
resolution. The aim is locating those cells, at the given
accuracy, which may hide a query object; the visibility
of the object is then tested only against those cells.
The problem reduces to an interference query on the
extracted DEM, for which the tree-like structure acts
as a spatial index (see Figure 8). The major advantages
are obtained with regular hierarchical models.
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Fig 8.  Processing a segment interference query on a
hierarchical terrain model. First, the triangles of the root
intersected by the segment are found; then the search is
repeated on the nodes defining such triangles.



6 VISIBILITY-RELATED PROBLEMS
AND ALGORITHMS

Interesting application problems on a terrain, which
can be solved based on visibility information, can be
classified into the following major categories:

● problems which require the placement of
observation points on a topographic surface,
according to suitable requirements;

● line-of-sight communication problems;
● problems regarding the computation of paths on

a terrain, with certain visibility properties.

Viewpoint placement problems require the
placement of several observation points on a terrain,
in such a way that a large part of the surface is
visible from at least one point. Applications include
the location of fire towers, artillery observers, radar
sites, etc. In general, the aim is either to minimise the
number of viewpoints to cover a target area, or, in a
dual formulation, to select a fixed number of points
in such a way that the visible area is maximised.

For the placement of a single observation point,
algorithms running in polynomial time are known.
If the height is fixed, a point that can see the whole
surface (if one exists) can be determined in
O(n log n) time, while the point with the lowest
elevation, from which the entire terrain is visible, can
be determined in O(n log2 n) time on a TIN with
n vertices (Sharir 1988).

The problem of determining an optimal set of
viewpoints is usually addressed in a discrete version,
by allowing viewpoints to be located only on the
vertices of a DEM. Even in this case, the complexity
of the problem is exponential in n (Puppo and
Marzano 1996), and thus heuristic solutions are used.
Several heuristic algorithms are discussed by Lee
(1991); Lee considers both the case when the heights
of the viewpoints are fixed, and the case when heights
are variable and must be minimised. The methods
presented are based on a greedy approach; they
iteratively add viewpoints to an initially empty set, or
eliminate viewpoints from an initial set containing all
vertices. Bose et al (1996) address the problem of
placing vertex-guards and edge-guards on a terrain as
a graph matching problem, and propose simple
polynomial-time algorithms to place a worst-case
optimal number of guards.

Line-of-sight communication problems consist of
finding a visibility network, and connecting two or
more sites, such that every two consecutive nodes of

the network are mutually visible. Straightforward
applications are in the location of microwave
transmitters for telephone, FM radio, television, and
digital data networks (see Fry, Chapter 58). A
typical problem is finding the minimum number
of relay towers necessary for line-of-sight
communication between a set of sites. The given
sites and the relay towers are usually restricted to
the vertices of a DEM.

Puppo and Marzano (1996) show that the only
visibility information necessary for solving problems
of this kind is the visibility graph, and reduce them
to classical graph problems. Connecting two sites
reduces to a shortest path search on the visibility
graph. The construction of a line-of-sight network
between several sites reduces to finding a minimum
connected sub-graph of the visibility graph,
containing the given sites, also known as a Steiner
problem in graph theory, which is known to be
NP-complete. Thus, heuristics developed in the
graph literature can be applied. De Floriani et al
(1994a) propose a dynamic approach which reduces
memory requirements by computing on-line only
those portions of the visibility graph that are needed
for the computations.

Paths can be defined on a terrain, with
application-dependent visibility characteristics. A
smuggler’s path is the shortest path, connecting two
given points, such that no point on the path is visible
from a predefined set of viewpoints. Conversely, a
path where every point can be seen from all
viewpoints is known as a scenic path. Path problems
are usually addressed on a DEM by restricting the
viewpoints to be vertices, and the path to passing
along edges. A solution (if one exists) can be
determined by first computing the vertices which are
visible or invisible from all the viewpoints, and then
applying a standard shortest path algorithm to the
edges connecting them. The problem of finding a
path ‘as hidden as possible’ is considered by Puppo
and Marzano (1996); a shortest path is computed
after having weighted every edge with the number of
viewpoints that can (or cannot) see it.

A problem of high practical interest is that of
updating visibility for a viewpoint moving along a
trajectory. Such a problem has received little
attention, perhaps because of its intrinsic difficulty.
Existing results are restricted to straight-line
trajectories, and, in particular, vertical trajectories
(Bern et al 1994; Cole and Sharir 1989); they have
mainly a theoretical interest. They are related to the
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computation of the points along the trajectory at
which topological changes occur in the visible image,
or to the processing of ray-shooting queries
(i.e. finding the terrain face ‘seen’ by a given visual
ray) from arbitrary viewpoints lying on the path.

7  CONCLUSIONS

Many visibility-related problems on terrains still
lack practically satisfactory solutions; this group
includes such  problems as the update of visibility
after modifications in the underlying elevation model
(e.g. in the context of multi-resolution terrain
modelling; see section 5) or for a moving viewpoint,
the computation of optimal paths according to given
visibility criteria, and several other optimisation
problems (see section 6). This lack of efficient
solutions is partially attributable to the fact that
such problems have received little attention from the
research community, both because most of them are
intrinsically hard (several optimisation problems
have been shown to be NP-complete), and because
some of them have come to the attention of the GIS
community only recently (for instance, problems on
multi-resolution terrain models). In many cases
(including path and communication problems), a
good definition of the problem is still missing, thus
making the work of finding algorithmic methods
even more difficult. More research effort should be
spent in investigating the problems mentioned above,
since they have a high impact on applications and a
fundamental importance in the development of
information systems of the future.
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