
1  PRELIMINARIES

A tessellation of d-dimensional, Euclidean space,
ℜd, can be defined from two different yet equivalent
perspectives. It may be considered either as a
subdivision of ℜd into d-dimensional, non-
overlapping regions or as a set of d-dimensional
regions which cover ℜd without gaps or overlaps.
These two perspectives are reflected in the use of
various synonyms for tessellation, partitions, and
tilings, respectively, being the most common
(Grunbaum and Shephard 1986: 16). Although these
two perspectives can be resolved into one by
adopting a more formal definition of a tessellation,
such as that given below, it is useful to maintain the
distinction within the context of GIS. If a
tessellation is considered as a data model, the two
perspectives can be viewed as different data
structures for representing the model (Peuquet
1984). The former perspective, emphasising the
boundaries of the regions, is consistent with a vector
structure that might be used to represent the spatial
units in a choropleth map. The latter perspective,
focusing on the interiors of the regions, is equivalent
to a raster structure such as that formed by the
pixels of a remotely-sensed image.

Tessellations have long been the subject of human
interest. Indeed, the term is derived from the Latin

word ‘tessella’, a small, square stone used to create
mosaics. Despite their antiquity, new forms, such as
Penrose tilings, popularly encountered in some screen
savers, have only been discovered in the past 25 years
(Ammann et al 1992; Grunbaum and Shephard 1986:
10 and 11). Today, tessellations are studied in a wide
range of disciplines from astronomy (Zaninetti 1993)
to zoology (Perry 1995). An inevitable, but
unfortunate, consequence of this widespread use is
that many characteristics of tessellations and their
component parts are known by a variety of names.
Consequently, it is necessary to begin by defining a
number of terms. As far as possible usage is
consistent with current GIS practice.

To begin with a formal definition of a tessellation:
Let S be a closed subset of ℜd, ℑ = {s1,...,sn} where
si is a closed subset of S, and si' the interior of si. If
the elements of ℑ satisfy

si' ∩ sj' = ø for i ≠ j (1) 

n

U si = S, (2)
i=1

then the set ℑ is called a tessellation of S. Property (1)
means that the interiors of the elements of ℑ are
disjoint and (2) means that collectively the elements of
ℑ fill the space S. Note that this definition is consistent
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This chapter describes selected properties of a variety of planar tessellations and examines
how these properties influence the use of the tessellations in GIS. Initially, properties common
to all planar tessellations are presented. Regular tessellations are considered in the context of
image representation and in spatial statistical analysis. Relationships frequently encountered
in irregular tessellations are described. A large family of tessellations which arise as the result
of data transformations is introduced. Collectively, these are known as generalised Voronoi
diagrams. Their use in a variety of contexts, including solving locational problems, defining
spatial relationships, and spatial interpolation is illustrated by focusing on two specific types
of diagram, the ordinary Voronoi diagram and higher order Voronoi diagrams.



with practical applications such as those
encountered in GIS, where the space under
consideration is a bounded region in Euclidean
space rather than the unbounded space itself (the
usual situation in theoretical treatments). When d=2
the tessellation is called a planar tessellation.
Attention in this chapter is limited to planar
tessellations since these are those most commonly
encountered in GIS.

Planar tessellations are composed of three
elements of d (d≤2) dimensions (see Figure 1): cells
(2-d), edges (1-d), and vertices (0-d). In GIS these
elements are usually referred to as polygons, lines
(or arcs), and points respectively. In turn, each of the
d (d>0)-dimensional elements are composed of
elements of (d-1) dimensions. Cells have sides (1-d)
and corners (0-d), lines have end points (0-d). A
tessellation, such as that in Figure 1, in which the
corners and sides of individual cells coincide with
the vertices and edges of the tessellation,
respectively, is called an edge-to-edge tessellation.
Individual rectangular cells arranged in a brick wall
fashion would not constitute an edge-to-edge
tessellation. Only edge-to-edge tessellations are
considered here. A d-dimensional tessellation in
which every s-dimensional element lies in the
boundaries of (d–s+1) cells (0≤s≤d–1) is called a
normal tessellation. Thus, in a normal planar
tessellation, each vertex is shared by three cells and
each edge is common to two cells.

A monohedral tessellation is one in which all the
cells are of the same size and shape (e.g. the
tessellation in Figure 2). More formally, each cell is
congruent (directly or reflectively) to one fixed set S.
If ri denotes the number of edges meeting at the ith
corner of a cell in a monohedral tessellation, an
isohedral tessellation is one in which the ordered
sequence of values of ri is the same for every cell. In
short, the cells are completely interchangeable so
that, as Bell and Holroyd (1991) note, ‘a bug which
was put down in one of the [cells] and started to
explore the [tessellation] would find exactly the same
arrangement of [cells] no matter which [cell] it was
originally deposited in’. More formally, all the cells
are equivalent under the symmetry group of the
tessellation. Thus, the tessellation in Figure 3 is
isohedral while that in Figure 2 is not.

A regular polygon is one with equal side length and
equal internal angles. Grunbaum and Shephard
(1977a) demonstrate that, even if we restrict our
attention to tessellations consisting of only one type of
regular polygon, the number of such tessellations is
infinite. However, by imposing the condition that all
the vertices of the tessellation are of the same type, the
number reduces dramatically to just 11. These are the
so-called Archimedean tessellations (see Figure 4), also
known as uniform tessellations.
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Fig 1.  Illustration of terms for tessellations and cells
(in parentheses).

vertex
(corner)

cell

edge
(side)

Fig 2.  A monohedral tessellation containing three types of
cells A, B, and C, each of the same size and shape but
arranged differently.

C
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The three uniform tessellations which are also
isohedral (i.e. those consisting of regular triangles,
squares, or hexagons) are called regular tessellations.

If there is a one-to-one correspondence between
the vertices, edges, and cells of one tessellation and
the cells, edges, and vertices of another tessellation,
the two tessellations are called each other’s dual
tessellation (see Figure 5). A dual tessellation can be
generated from a tessellation T in the following way.
Select a point qi in each cell ci of T. For each pair of
cells ci, cj which share an edge of T, construct a line
segment joining qi, qj. Because there is no unique
way of selecting qi, it is possible to generate more
than one metric dual.

A d-dimensional tessellation consisting
exclusively of cells with (d+1) sides is called a
simplex (or simplicial graph). The dual tessellation in
Figure 5 is a simplex since all its cells are triangles.
Another example is the triangulated irregular
network (TIN) often encountered in GIS to
represent continuous surfaces (Hutchinson and
Gallant, Chapter 9).

2  GENERAL PROPERTIES

Here we present properties which hold for all
tessellations satisfying a specific condition known as
the closure postulate. This postulate requires that at
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Fig 3.  An isohedral tessellation in which all cells are of the
same size and shape and are arranged identically.

Fig 4.  The 11 distinct Archimedean (uniform) tessellations.

[36] [44] [63]

[4.82] [4.6.12] [3.122]

[34.6] [33.42] [32.4.3.4]

[3.4.6.4] [3.6.3.6]

Fig 5.  A tessellation (heavier lines) and a dual tessellation
(lighter lines).



least two edges meet at every vertex and at least two
cells meet at every edge. The elements in such
tessellations are related to each other through
Equation 3 derived by Schlaefli in 1852 as a
generalisation of a relationship first formulated by
Euler one hundred years earlier (Loeb 1976):

j

∑ (–1)i Ni = 1 + (–1)j (3)
i= 0

where Ni is the number of elements of
dimensionality i. For planar tessellations Equation 3
reduces to:

N0 –N1 + N2 = 2 (4)

where N0, N1, N2 are the number of vertices, edges,
and cells respectively. To satisfy the closure
postulate, if our tessellation is bounded, we must
include in our count of N2 an outside cell whose
number of sides is equal to the number of edges on
the boundary of the tessellation.

If we define r=number of edges meeting at a
vertex and n=number of corners or sides of a cell, a
further equation can be derived from Equation 4,
which reveals that we need only three parameters to
specify all of the characteristics of the tessellation.
This equation is

1/r – 1/2 + 1/n = 1/N1 (5)

where r– and n– are the mean values of r and n,
respectively. Equation 3 yields expressions for

N0 = 2N1/r (6)

and

N2 = 2N1/n (7)

The verification of Equations 3–7 is left as an
exercise for the reader.

3  REGULAR TESSELLATIONS

This and the next section continue the exploration of
properties of tessellations by looking in more detail
at specific types of tessellations. However, the
emphasis is shifted away from the properties
themselves towards an examination of how they
might influence the use of the tessellations within
specific contexts in GIS. The first example involves
the use of tessellations as spatial data models, in
particular in image representation.

To be useful in such a role tessellations should
ideally possess at least two properties (Ahuja 1983;
Samet 1989):

1 be capable of generating an infinitely repetitive
pattern, so that they can be used for images of
any size;

2 be infinitely (recursively) decomposable into
increasingly finer patterns which, collectively,
form a hierarchy, to allow for the representation
of spatial features of arbitrarily fine resolution.

If attention is restricted to tessellations consisting of
only one type of cell, a reasonable starting point is to
consider isohedral tessellations, particularly since
Grunbaum and Shephard (1977b) demonstrate that
there are only 81 such planar tessellations. This
number further reduces to 11 if only those
tessellations are considered which are topologically
distinct (i.e. all edges in the 81 tessellations are
straight lines). These 11 (see Figure 6) are known as

B Boots

506

Fig 6.  Laves tessellations.

[36] [44] [63]

[4.82] [4.6.12] [3.122]

[34.6] [33.42] [32.4.3.4]

[3.4.6.4] [3.6.3.6]



Laves tessellations after the famous crystallographer
Fritz Laves. Laves tessellations may also be derived as
duals of the uniform (Archimedean) tessellations in
Figure 4. Note that three of the Laves tessellations are
regular tessellations. To describe Laves tessellations we
use a notation based on the number of edges at the
vertices of a constituent cell as they are visited in cyclic
order (see Figure 6). Thus, the three regular
tessellations consisting of triangles, squares, and
hexagons are labelled [63], [44] and [36] respectively.

Before pursuing the second property, some
additional definitions are required. An atomic polygon
is an individual cell in a tessellation at the lowest level
k (k=0) in a hierarchy of tessellations. A molecular
polygon is an aggregate of atomic polygons used in
forming the higher levels (k>0) of a hierarchy. The
molecular polygon need not be the same shape as the
atomic polygon. When the cells at level k of a
hierarchy have the same shape as those at level (k+1),

the tessellation is said to be unlimited. Alternatively,
we can think of unlimited tessellations as lacking a
definable atomic polygon since any cell can always be
subdivided into cells of the same shape.

The second property suggests that we require
unlimited tessellations. Of the 11 Laves nets, only
four are unlimited (Bell et al 1983). Two of these are
regular tessellations, [63] and [44], each of which are
capable of generating an infinite number of different
molecular tessellations where each first level
molecular polygon consists of s=n2 (n>1) atomic
polygons (see Figure 7). The other two unlimited
tessellations are [4.82] and [4.6.12], each of which
gives rise to two types of hierarchy: [4.82] has an
ordinary (s=n2, n>1) and a rotation (135 degrees
between levels) hierarchy (s=2n2, n>1); while [4.6.12]
has an ordinary and a reflection hierarchy (s=3n2,
n>1) (see Figure 7).
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Fig 7.  Unlimited tessellations (a) [63]; (b) [44]; (c) [4.82], ordinary hierarchy (left-hand side), rotation hierarchy (right-hand side);
(d) [4.6.12], ordinary hierarchy (left-hand side), reflection hierarchy (right-hand side).

(a)

(b)

(c)

(d)



Bell et al (1983, 1989) suggest additional tessellation
properties which are valuable in image processing and
automated cartography applications. Of these, the two
most important are uniform adjacency, whereby the
distances between the centroid of a given cell and those
of neighbouring cells (whether edge or vertex
neighbours) are the same, and uniform orientation
which means that all cells have the same orientation.
However, none of the four unlimited tessellations
possess the first property; [44] has two adjacency
distances, [63] three, [4.82] eight, and [4.6.12] 16.
Further, only [44] displays uniform orientation. This
situation leads to a reconsideration of the remaining
regular tessellation [36] which possesses both properties
even though it is not unlimited.

Although [36] cannot be decomposed beyond the
atomic tessellation without changing the shape of the

cell, by defining molecular polygons made up of
different numbers of atomic hexagons, it is possible to
generate a large number of hexagonal hierarchies.
While such hierarchies can always be grouped upwards,
they cannot necessarily be decomposed downwards.
These molecular polygons are referred to as n-shapes.
More than one n-shape is possible for a given value of
n (see Figure 8) and by using different rotations, the
same molecular cell can give rise to more than one
hierarchy (Diaz 1986) (compare the ‘propeller’ in
Figure 8(b) with the ‘wombat’ in Figure 8(c)).

The n-shape which has received most attention is
the 7-shape whose form most closely resembles that
of the atomic hexagon (see Figure 9). Unfortunately,
as Figure 9 shows, each level of the hierarchy formed
by this 7-shape is rotated by an irrational angle with
respect to the previous one.
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Fig 8.  Three different hexagonal hierarchies using 4-shapes.

(a)

(b) (c)



Even though the cells of a hexagonal tessellation are
not infinitely recursively decomposable, by
representing each hexagonal cell by its centroid, a
triangular lattice is formed in which it is possible to
embed similar (triangular), finer grids (Holroyd and
Bell 1992) (e.g. the lattices formed by the cell
centroids in Figure 9). Recognising this, Bell et al
(1989) propose a compromise between [44] and [36]
by presenting a point lattice over which both a
hexagonal and a rhombic (4-edge) tessellation can be
placed (see Figure 10). At the lowest hierarchical
level, the lattice points are simultaneously the
vertices of the rhombic tessellation and the centroids
of the hexagonal tessellation. The rhombic lattice
has the same properties as [44] in terms of adjacency
and unlimitedness while the hexagonal tessellation
can be amalgamated by a 4-shape which is only
limited at the atomic level and which, unlike the
7-shape hexagonal tessellation described above, also
maintains the same orientation for molecular cells at
all levels. Bell et al (1989) call this the hexagonal or
rhombic (HoR) tessellation. Despite providing an
addressing system for HoR and showing that it has
advantages over the addressing system for the
7-shape, they do not appear to have been successful
in persuading others to adopt it.

As another illustration of how the properties of
regular tessellations influence their use in GIS,

consider a situation from spatial statistical analysis.
Recently, there has been considerable interest in
integrating spatial data analysis in GIS (see Anselin,
Chapter 17; Church, Chapter 20; Fischer, Chapter 19;
Getis, Chapter 16; Openshaw and Alvanides, Chapter
18; Ding and Fotheringham 1992; Fotherigham and
Rogerson 1993; Goodchild et al 1992). One measure
used extensively in spatial analysis which is already
incorporated in many GIS is spatial autocorrelation.
Although spatial autocorrelation has numerous uses
in spatial data analysis (Griffith 1992), one of the
most fundamental is as an indicator of the spatial
pattern exhibited by the values of a variable x
recorded at a set of observations (cells, in the case of
tessellations) located in space. The most frequently
used measure of spatial autocorrelation is Moran’s I
given by Equation 8:

I = (n / ∑ ∑ dij) [∑ ∑ dij (xi –x–) (xj –x–) / ∑ (xi–x–)2] (8)
i      j              i     j                                            i

where n is the number of cells, dij is a measure of the
spatial relationship between cells i and j, xi is the value
of variable x for cell i, and x– is the mean value of x.

The expected value of I is E(I) = –[1/(n–1)]. Positive
spatial autocorrelation, I>E(I), occurs when similar
values of x are found in spatial juxtaposition while
negative spatial autocorrelation, I<E(I), occurs when
neighbouring values of x are dissimilar. Since this
statistic incorporates a measure of the spatial
association between pairs of cells in the tessellation, the
calculated value of I reflects the underlying geometry
of the tessellation as well as the values of the variable
x. In particular, Jong et al (1984) show that the
tessellation geometry imposes limits on the feasible
values of I. To demonstrate this, first consider an
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Fig 9. Hexagonal hierarchy using a 7-shape.

Fig 10.  Hexagonal or rhombic (HoR) tessellation.



alternative graph theory representation of a
tessellation. This involves defining a binary
connectivity matrix, C, whose elements cij=1 if cells
i and j have a common edge, and 0, otherwise (by
definition cii=0). Jong et al (1984) demonstrate that the
maximum and minimum values of I can be obtained
from the largest and smallest eigenvalues of the matrix

MCM = (I–11T /n) C(I–11T /n) (9)

The limits on I are investigated here for the three
regular tessellations. Since the geometry of a bounded
tessellation is not independent of the number of cells
n in the tessellation (e.g. as n increases, the proportion
of boundary cells decreases), tessellations of three
different sizes (n=64, 256, 1024) are examined.

Table 1 shows a number of ways in which the
limits on I are influenced by the geometry of the
tessellation. First, for any given regular tessellation,
the range of feasible values of I changes as n
changes. Second, for any given value of n, the limits
for the tessellations of squares and triangles are
quite similar and, further, this similarity increases as
n increases. Third, the absolute values for the upper
and lower limits for the tessellations of squares and
triangles are approximately equal, indicating that
similar magnitudes of spatial autocorrelation of
both a positive and negative kind can occur. In
contrast, for a tessellation of hexagons, extreme
positive spatial autocorrelation is approximately
twice the magnitude of extreme negative spatial
autocorrelation. Clearly, these results suggest that
caution should be exercised when interpreting
differences in values of I obtained from spatial
patterns observed in different tessellations, and that
such differences should not be ascribed solely to
different spatial characteristics of the variable(s)
being studied.

Further results with relevance for GIS can be
derived from C. Griffith (1996) shows that the

eigenvectors of MCM identify the possible mutually
exclusive geographical patterns of attribute values
with levels of spatial autocorrelation equal in
magnitude to the associated eigenvalues. To illustrate
this, the three regular tessellations for the three sizes
considered above are used. The geographical
patterns of spatial autocorrelation remain essentially
the same for a given tessellation as n changes. For
example, Figure 11 shows the spatial patterns of the
first nine eigenvectors of MCM for a tessellation of
squares. Note that numerical eigenvectors are unique
to a multiplicative factor of -1 so that patterns such
as those for the third eigenvectors for n=256 and
n=1024 are considered identical even though they
are mirror images of each other. Also note that the
pattern for eigenvector 1 for n=64 is the same as that
for eigenvector 2 for n=256, while eigenvector 2 for
n=64 is the same as that for eigenvector 1 for n=256
(the same also holds for the eighth and ninth
eigenvectors of the two tessellations). This arises
because the order of the two eigenvectors is
arbitrary since they have the same associated
eigenvalue. However, observe that different patterns
result for different tessellations. Compare the
patterns in Figures 12 and 13 for n=1024 for
tessellations of triangles and hexagons with the
corresponding patterns for the tessellation of
squares in Figure 11(c). Only the pattern for the first
eigenvector of MCM is the same for all three
tessellations. Some patterns, such as that displayed
by the fourth eigenvector for the tessellation of
squares, are unique. Thus, all patterns of spatial
autocorrelation are not equally likely to occur for all
regular tessellations.

4  IRREGULAR TESSELLATIONS

Many tessellations encountered in GIS, such as
those formed by the spatial units of a choropleth
map, are highly variable in terms of the
characteristics of their constituent cells.
Consequently, we might anticipate that it would not
be possible to identify any properties of such
tessellations beyond the general ones described in
Section 2. However, empirical investigation has
revealed that two linear relationships hold for a
typical (i.e. randomly selected) n-sided cell in many
irregular, normal tessellations consisting of only
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n Squares Triangles Hexagons

64 -1.0739 0.9747 -1.0725 1.0330 -0.5519 1.0065
256 -1.0485 1.0216 -1.0477 1.0375 -0.5330 1.0403

1024 -1.0276 1.0206 -1.0273 1.0247 -0.5186 1.0306

Table 1  Limits on the value of Moran’s I for regular
tessellations.



convex cells. Because of their extensive occurrence,
these relationships are usually referred to as ‘laws’.

The first is Lewis’ law, so named because the
relationship was first observed by Lewis (1928, 1930,
1931, 1943, 1944) in empirical studies of a variety of
biological tessellations. Lewis’ law states that the
average area of a typical n-sided cell increases with
n in a linear fashion as described by Equation 10:

A
–

n = (A0 / C) + b(A0 / C) (n–6) (10)

where A
–

n = average area of a n-sided cell; A0 = total
area of the tessellation; C = number of cells in the
tessellation; and b = a constant.

The other is Aboav’s law, in recognition that it was
first observed by Aboav (1970) in studies of various
polycrystalline materials. This law states that the total
number of sides of the cells neighbouring a typical
n-sided cell is linear in n as described in Equation 11:

nmn = (6a+µ2) + (n– – a) n (11)
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Fig 11.  Spatial patterns of the elements of the first 9 eigenvectors of MCM for a tessellation of squares: (a) n=64; (b) n=256; and
(c) n=1024. (Continued on pages 512–13)
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where mn = number of sides of a randomly chosen
neighbour of a typical n-sided cell; n– = mean 
value of n for the tessellation;
µ2 = n– 2 – (n–)2 ;
n–2 = mean value of n2 for the tessellation.

This law implies that, on average, cells with few
sides are likely to be adjacent to those with many
sides, and vice versa.

No satisfactory explanations for the laws have yet
been found. Most arguments involve an approach
which maximises the entropy of pn, the distribution of
n for the tessellation, subject to a minimal set of
constraints (Chiu 1995; Peshkin et al 1991; Rivier
1985, 1986, 1990, 1991, 1993, 1994; Rivier and
Lissowski 1982). Both laws are seen as the most likely
relationships to arise by chance in the absence of any
other constraints.

Given that many kinds of tessellation encountered
in GIS (e.g. politico-administrative units at all spatial
scales) are likely to contain non-convex cells and may 
have non-trivalent vertices, it might be anticipated
that neither law has much relevance to GIS. However,
this conclusion would be incorrect. To illustrate this,
consider the counties of the states of the USA. To
avoid departing completely from the conditions
specified in the laws, states with less than 25 ‘internal’
counties or with more than 10 non-trivalent vertices
are not considered. ‘Internal’ counties are those for
which none of the sides are part of the state
boundary (including coastlines). These restrictions
result in 24 states being examined (see Table 2).
Somewhat surprisingly, the counties of 18 states are
consistent with either Lewis’ law or Aboav’s law, while
both laws hold for eight states (see Table 2). Figure 14
shows a weighted least squares (WLS) fit of Lewis’
law to the data for Pennsylvania (see Table 3), while
Figure 15 shows a similar WLS fit of Aboav’s law for
Georgia (see also Table 4). Both laws also hold for
both the 94 interior departments and 222 interior
arrondissements of France (Le Caer and Delannay
1993), while Aboav’s law holds for the interior
administrative subdivisions of Indian states (Boots
1979), parishes of counties in southwest England
(Boots 1980), and parishes of Lorraine, France
(Pignol et al 1993).

What are the implications of these findings for
GIS? The most obvious is that, because of the
geometric constraints imposed on the 2-dimensional 

tessellations, there is more order present in irregular
tessellations than might be suspected and that other
laws may well await discovery. In terms of sampling
tessellations for statistical analysis, in order to derive
a sample of independent cells, it will be necessary to
ensure that cells which are neighbours are not
chosen. The findings also have implications for local
data structures, storage, and revision.

B Boots
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State Lewis’ law Aboav’s law

Alabama *
Arkansas  *
California             
Colorado * *
Georgia * *
Illinois * *
Indiana * *
Kentucky
Louisiana * *
Minnesota
Mississippi *
Missouri *
Montana * *
New York *
N. Carolina * *
N. Dakota *
Ohio *
Oklahoma *
Pennsylvania *
S. Dakota
Tennessee * *
Virginia *
W. Virginia
Wisconsin

n f(n) A
–

n*

4 10 0.711
5 32 0.752
6 35 1.030
7 24 1.253
8 6 1.375
9 1 1.093

10 1 1.540

A–n* = A–n / (A0 /C)

For definition of symbols, see text.

Table 2  The incidence of Lewis’ law and Aboav’s law for
counties of selected states in the USA.

Table 3  Lewis’ law for the counties of Georgia,
USA.



5  GENERALISED VORONOI DIAGRAMS

As well as occurring directly, tessellations can also
arise from data transformations performed in GIS.
One such transformation involves an operation
which parallels that used to create a dual tessellation
(see section 1) and gives rise to a large family of
tessellations known collectively as 
generalised Voronoi diagrams (GVDs). In two
dimensions such tessellations can be created for any
set of s-dimensional (s≤2) geometric entities
(generators) in the plane such as points, line
segments, arcs or polygons, or any combination of
such elements, by assigning each location in the
plane to the ‘nearest’ generator (Figure 16). By using
different distance metrics, different definitions of
nearest are possible. The presence of obstacles
(non-generator, s-dimensional (s≤2) entities) can also

Spatial tessellations
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Fig 16.  Voronoi diagram of points (stations), lines (rivers), and
polygons (parks) in part of the Sumida-Kohto district of Tokyo.

Fig 14.  Weighted least squares fit of Lewis’ law to the counties
of Pennsylvania. Values in brackets are the number of
observations used to calculate the mean value.
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Fig 15.  Weighted least squares fit of Aboav’s law to the counties
of Georgia. Values in brackets are the number of observations
used to calculate the mean value.
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Table 4  Aboav’s law for the countries of
Pennsylvania, USA.



be accommodated. By nature of their construction
GVDs are necessarily edge-to-edge tessellations.
Note that the three regular tessellations (square,
triangle, hexagon) described in Section 1 can be
generated by defining the Voronoi diagram of a set
of points located on a square, hexagonal, and
triangular lattice, respectively (see Figure 17).
Conceptualised in this way, regular tessellations can
be thought of as representing both area and point
information simultaneously (Gold 1990).

GVDs are particularly useful for performing a
variety of nearest neighbour operations which
address locational issues arising in spatial analysis

and planning, including solving continuous location
problems of both location-allocation and locational
optimisation kinds (Okabe et al 1994; Okabe and
Suzuki 1995). In addition, individual types of GVD
are useful for addressing other issues. To illustrate
the potential of GVDs, two types are considered,
chosen because of their implications for GIS.

5.1  Ordinary Voronoi diagram

The ordinary Voronoi diagram (OVD) uses individual
points and a Euclidean distance metric to define the
tessellation. Formally, suppose that we have a set of n
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Fig 17.  (a) Square, (b) hexagonal, and (c) triangular point lattices.
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(2 ≤ n ≤ ∞) distinct points (generators), P = {p1,...,pn},
located in a finite region S in 2-dimensional space ℜ2.
To avoid complicated treatment, assume that S is
convex. Let d (p, pi) be Euclidean distance between
location p and generator pi.

We define the region given by:

V (pi) = {p | p∈S; d (p, pi) ≤ d (p, pj), j ≠ i, j=1,...,n} (12)

as the ordinary Voronoi polygon (OVP) associated
with pi and the set given by

υ (P) = {V (p1),..., V (pn)} (13)

as the OVD of P.
Thus, the interior of V(pi) consists of all locations

in S which are closer to pi than to any other generator,
while the edges and vertices of V(pi) represent those
locations which are equidistant from two or more
generators (see Figure 18). Although Voronoi diagrams
can be defined for either raster-based or vector-based
data structures, the above definition is consistent with
the latter. This situation is maintained for all the
GVDs discussed here since it permits a more explicit
treatment of their topological relationships.

To show how the OVD can be used for
locational decision-making, assume that the set of
points P in Figure 18 are fire stations and S is a
city and that among the questions to be answered
are the following:

1 What is the area of the city for which the nearest
fire station is the one at pi?

2 Which is the nearest fire station to a given
location p?

3 Which location in the city is farthest from a
fire station?

The answer to 1 is given by the OVP of pi, while 2
is answered by observing which OVP contains p. For
example, in Figure 18, p is closest to the station at p3.
Since V(pi) is a convex polygon, the location in V(pi)
which is farthest from pi is found in the vertices of
V(pi). These vertices may include those formed by the
set of intersections of cell edges with the edges of S,
and the set of vertices of S. Define qij as the jth vertex
of V(pi), j=1,..., ni where ni is the number of vertices
of V(pi). Then the farthest location in V(pi) from pi
is given by the vertex qi

* of V(pi) that satisfies

d (pi,qi
*) = max {d (pi,qij) | j = 1,...,ni}. (14)

For example, in Figure 18, for V(p1) this is q1
*.

(3) may be answered by searching for the longest
distance among

{d (pi,qi
*) | i = 1,...,n} (15)

or by identifying the vertex qk** which satisfies

d (pk,qk
**) = max {d (pi,qi

*) | i = 1,...,n}. (16)

In Figure 18, this is the vertex q3**. Note that qk** is
the centre of a circle radius d(pk, qk**) (the dashed
circle in Figure 18). This circle is the largest circle
whose centre is in S and which does not contain any
points in P in its interior.

Another fundamental use of the OVD is to define
spatial relationships between individual points
belonging to a planar point set P such as that
defined above. Most work has concentrated on
adjacency relationships or the problem of defining a
set of neighbours for a given point pi in P. One
solution to this problem is to use the so called
‘natural’ neighbours of pi (Sibson 1981) which are
those points whose OVPs are adjacent to (pi) in
V(P). For example, in Figure 18 υp1, p3, p6, p7, and
p8 are the natural neighbours of p2. This solution
has been used in a variety of situations. One involves
operationalising spatial models (Besag 1974, 1975;
Ord 1975) including spatial autocorrelation models
such as Moran’s I discussed in section 3. For
example, in a study of spatial trends in the grain
handling system in the province of Manitoba,
Canada from 1943 to 1975, Griffith (1982) set dij =1
in Equation 8 if two grain handling centres were
natural neighbours and dij=0 otherwise. Another
example arises in missing data problems where the
unknown value of a variable at a given location must
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Fig 18.  Ordinary Voronoi diagram.
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be estimated from known values at other locations.
In their study of rainfall data for Kansas and
Nebraska, USA, Haining et al (1984) use natural
neighbours to identify which weather stations to use
in estimating missing values at other stations.

The missing value problem represents a special
case of the more general problem of spatial
interpolation (Mitas and Mitasova, Chapter 34). Here
there exists a set of n data sites P={p1,...,pn}, located
in (a 2-dimensional) space S, at which the values of
some variable z are observed. If it is assumed that
these values are observations from a surface defined
by z over S, spatial interpolation involves finding a
function f(x) which best represents the entire surface
and which predicts the values of z for locations other
than P. Local interpolants represent the value of the
surface f(x) at an arbitrary location p in S as a
weighted, usually linear, function of values at nearby
data sites, D(p) (D(p) �P), so that

n
D

f (x) = ∑ wi zi, pi ∈ D (p) (17)
i=1

where nD is the number of nearby sites and wi is the
weight attached to pi.

There are many ways in which D(p) can be
selected (Watson 1992) but one, which also has other
advantages described in section 5.2.3, is to use the
natural neighbours of p (Gold 1991; Sambridge et al
1995; Sibson 1981; Watson and Philip 1987).

That adjacency relationships for generators are
uniquely defined in the OVD (and GVDs, in general)
has led Gold (1991, 1992) to propose the GVD as
an alternative spatial data model to both the raster
and vector ones since it possesses desirable
properties of both; a known spatial adjacency
structure (raster) and a one-to-one mapping with
‘real’ map objects (vector).

In terms of spatial relationships, however, the OVD
(and GVDs, in general) is not limited to considerations
of adjacency. Edwards (1993) and Edwards and
Moulin (1995) show that a wide range of linguistic
concepts of space such as ‘near’, ‘between’, ‘among’,
etc. are amenable to such treatment. For example,
suppose there exists a set of fixed reference points,
R1, ...,R10 as shown in Figure 19(a) and a displaceable
query point Q. Realisation of the relative concepts
‘near’ and ‘far’ for Q with respect to the pair of
reference points R1, R2, can be achieved in the

following way. First, define the OVD of the reference
points (Figure 19(b)). Next, define the OVD of the
reference points plus the query point Q. Figures
19(c) and 19(d) show such OVDs for two different
locations of Q. Comparison of Figures 19(c) and
19(d) with Figure 19(b) reveals that the OVP for Q is
created by ‘stealing’ pieces of the OVPs of the
reference points (the shaded regions in Figures 19(c)
and (d). In Figure 19(c) Q is ‘near’ to R1, R2 and as a
result much of its OVP is stolen from the OVPs of
these points. In contrast, in Figure 19(d) Q is ‘far’
from R1, R2, so that it steals little of their OVPs.
Edwards and Moulin (1995) suggest that the sum of
the areas of the regions stolen by Q from R1, R2
relative to the area of the OVP of Q may be used as
a way of quantifying this notion.

A final use of the OVD is to reconstruct
tessellations from incomplete data. For example, in
the UK considerable use has been made of the
postcode system as a means of georeferencing
socio-economic data. However, since no boundaries
are defined for unit postcodes, there is a problem
reconciling such data with census geography. As a
solution, Boyle and Dunn (1991) suggest creating
unit postcode zones by defining a Voronoi polygon
for each address location contained in the postcode
(see Figure 20).

5.2  Higher-order Voronoi diagrams

5.2.1  Order-k Voronoi diagram
As with the ordinary Voronoi diagram, begin with a
set of points P = {p1, ..., pn} but now, instead of
dealing with individual points, consider subsets of
k points selected from P. Although any value of
k (k<n) may be considered, for simplicity the
situation where k = 2 is examined, that is, the focus
is on pairs of points. The extension to k>2 is
described by Okabe et al (1992: 142–158).

Let A(2)(P) = {P1
(2), ..., Pi

(2), ..., Pl
(2)}, where Pi

(2)

= {pi1, pi2}, pi1, pi2 ∈ P and l = nC2, be all the
possible subsets of P which consist of two points.
Let p represent an arbitrary location in the plane
and d(p, pij) the Euclidean distance from p to pij.
We define the order-2 Voronoi polygon (O2VP) of
Pi

(2) as 

V (Pi 
(2)) = {p | d (p,pi1) ≤ d (p,pj) (18)

and d (p,pi2) ≤ d (p,pj) for pj ∈P\Pi 
(2)}.
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Fig 19.  (a) Set of reference points; (b) Ordinary Voronoi diagram of reference points; (c) and (d) Ordinary Voronoi diagram of
reference points and query point Q for two different locations of Q. 
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Thus, V(Pi
(2)) consists of all locations for which

either pi1 or pi2 is the first or second nearest point.
The set

υ (A(2) (P)) = υ(2) = {V (P1
(2)), ..., V (Pl

(2))}    (19)

is called the order-2 Voronoi diagram (O2VD)
generated by P. Figure 21 shows the order-2
Voronoi diagram for the point set in Figure 18.

5.2.2  Ordered, order-k Voronoi diagram 
In the order-k Voronoi diagram there is no concern
with which of the k points in Pi

(k) is the nearest,
second nearest, ..., or kth nearest. However, in the
ordered, order-k Voronoi diagram, this order is

considered explicitly. Again, we examine the
situation where k = 2, that is, for a pair of points.
Let A<2>(P) be the set of all ordered pairs of points
obtained from the set of points P = {p1, ..., pn}, that
is, A<2>(P) = {P1

<2>, ... , Pi
<2>, ... , Pl

<2>} where
Pi

<2> = (pi1, pi2), pi1, pi2 ∈ P, and l = n (n – 1).
Let p be an arbitrary location in the plane and

d(p, pij) the Euclidean distance from p to pij. For a set
Pi

<2> in A<2>(P), define

V(Pi
<2>) = {p | d(p,pi1) ≤ d(p,pi2) ≤ d(p,pj), (20)

pj ∈P\{pi1 , pi2}}.

The set V(Pi
<2>) is called the ordered, order-2

Voronoi polygon (OO2VP) associated with Pi
<2>.

V(Pi
<2>) consists of all locations for which pi1 and pi2

are the first and second nearest points, respectively.
The set

υ (A<2>(P)) = υ<2> = {V (P1
<2>), ..., V (Pl

<2>)} (21)

is called the ordered, order-2 Voronoi diagram
(OO2VD) of P. The OO2VD corresponding to the
O2VD of Figure 21 is shown in Figure 22.

5.2.3  Applications 
As with the ordinary Voronoi diagram, higher
order Voronoi diagrams can be used to address
locational problems. Once more assume that the
points in Figure 18 represent the locations of fire
stations in a city. However, this time the possibility
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Fig 20.  Generating unit postcode boundaries.
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Fig  21.  Order-2 Voronoi diagram.
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Fig 22.  Ordered order-2 Voronoi diagram.
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is recognised that, on a given occasion, the
equipment at the fire station closest to a given
location may already be fully committed, leading to
questions such as the following:

1 What are the two closest fire stations to a given
location p?

2 What are the first and the second nearest fire
stations to a given location p?

3 What is the region of the city for which the
station at pi is the second nearest?

Question 1 may be answered by examining the
O2VD of the fire stations and observing in which
O2VP the query location p occurs. For example, the
two nearest fire stations to p in Figure 21 are those
located at p1, p2. Questions 2 and 3 require the
consideration of the OO2VD of the fire stations.
The answer to (2) is found by observing the OO2VP
in which p is located (e.g. the first and second nearest
fire stations to p in Figure 22 are those at p2 and p7,
respectively). To answer question 3 we need to find
all OO2VPs for which station pi is the second
nearest. The union of these polygons gives the
required region (e.g. for the station at p3 this is the
shaded region in Figure 22).

The OO2VD can also be used in spatial
interpolation. Recall from the previous section that
local interpolants represent the value of a surface f(x)
at an arbitrary location p in the plane as a weighted
function of the data values at a set of nearby data
sites (see Equation 17). It has already seen how
natural neighbour relationships can be used to
determine the data sites selected. If the ordinary
Voronoi diagram is created of the set of data sites
P={p1,..., pn} plus p, � (P � p), we know that the
OVP of p, V(p), can be exhaustively subdivided into
OO2VPs V((p,pi)) (see Figure 23). Following Sibson
(1981), if we let | V((p,pi)) | be the area of V((p,pi)),
the normalised values | V((p,pi)) |  / ∑ | V((p,pi)) | can
be used as the weights in Equation 17 (see Okabe et
al 1992: 347–51 for details). Note that V((p,pi)) can
also be considered as the portion of V(pi) which is
stolen by the OVP V(p) created when  p is added to
P. Thus, the operationalisations of spatial concepts
proposed by Edwards and Moulin (1995) and
discussed in section 5.1 can also be thought of in
terms of OO2VDs.

The area stealing aspect of OO2VPs is also useful
in creating maps of nominal scale variables, such as
land use, soil or vegetation types, or surficial geology,

from values observed at a set of sampling points
P={p1,...,pn}, especially if we wish to convey the
degree of uncertainty involved in the map content
(Lowell 1994). Traditional thematic maps are
constructed using a Boolean logic which assigns non-
sampled locations to one, and only one, class, even
though most locations have the possibility of
belonging to several different classes. Lowell argues
that such situations are better represented by fuzzy
maps in which non-sampled locations are assigned
fuzzy membership values (FMVs) reflecting the
degree of certainty of their belonging to a given class.
To generate the FMVs for a given location q, Lowell
suggests generating the OVD of the sample points,
P, plus q (see Figure 24) and then examining the
OO2VPs V((q,pi)). The FMV for a given class x is
obtained as the sum of the areas of the V((q,pi)) for
which the value at pi is x, relative to the area of the
OVP of q. Thus, in Figure 24, the FMVs for q for
classes A, B and C are 0.25, 0.63, and 0.12 respectively.

6  CONCLUSIONS

In GIS, the attention paid to characteristics of
different tessellations depends greatly on the context.
Typically, such matters receive explicit consideration
only when an appropriate spatial data model is being
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Fig 23.  Voronoi diagram (P ∪p). Points shown as filled circles
are the natural neighbours of p.
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selected. Once this is accomplished and concerns
shift towards analytical issues, tessellation
characteristics are rarely considered again. While
this chapter reinforces the value of assessing
tessellation characteristics in spatial data model
selection, it also demonstrates that one should not
lose track of them in other contexts. In particular, it
is shown by way of examples involving spatial
autocorrelation that a tessellation’s properties
influence the results of analyses of data recorded
over the tessellation. Fortunately, staying aware of
such properties is not as onerous as might first
appear since, as also noted in this chapter, the
possible topologic and some metric properties of
both regular and irregular tessellations in
2-dimensional space are quite constrained.

Of course, there are many situations in GIS where
the objects under consideration do not take the form
of tessellations. However, in some of these situations
it is possible to generate tessellations from the
original objects. Characteristics of these tessellations
can then be used to undertake a variety of GIS-
related tasks for the original objects. This approach
is illustrated by exploring just two of the many
members of a family of tessellations known as
generalised Voronoi diagrams. Among the tasks

which such diagrams can perform are the
operationalisation of fundamental spatial concepts
such as near, adjacent, and between; spatial
interpolation of both nominally- and interval/ratio-
scaled variables; and solving locational optimisation
problems. While the potential for using tessellations
in such roles is already considerable, it is expected to
grow further as new forms of tessellations continue
to be developed in a number of disciplines interested
in various aspects of spatial modelling.
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