
1  INTRODUCTION

One of the most important applications of GIS is the
display and analysis of data to support the process of
environmental decision-making. A decision can be
defined as a choice between alternatives, where the
alternatives may be different actions, locations,
objects, and the like. For example, one might need to
choose which is the best location for a hazardous
waste facility, or perhaps identify which areas will be
best suited for a new development.

Broadly, decisions can be classified into two
extensive categories – policy decisions and resource
allocation decisions. Resource allocation decisions,
as the name suggests, are concerned with control
over the direct use of resources to achieve a
particular goal. Ultimately, policy decisions have a
similar aim. However, they do so by establishing
legislative instruments that are intended to influence
the resource allocation decisions of others. Thus, for

example, a government body might reduce taxes on
land allocated to a particular crop as an incentive to
its introduction. This is clearly a policy decision; but
it is the farmer who makes the decision about
whether to allocate land to that crop or not.

To be rational, decisions will be necessarily based
on one or more criteria – measurable attributes of
the alternatives being considered, that can be
combined and evaluated in the form of a decision
rule. In some circumstances, allocation decisions can
be made on the basis of a single criterion. However,
more frequently, a variety of criteria is required. For
example, the choice between a set of waste disposal
sites might be based upon criteria such as proximity
to access roads, distance from residential and
protected lands, current land use, and so on.

This chapter focuses on the very specific problems
of spatial resource allocation decisions in the
context of multiple criteria – a process most
commonly known as multi-criteria evaluation
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Multi-criteria evaluation in GIS is concerned with the allocation of land to suit a specific
objective on the basis of a variety of attributes that the selected areas should possess.
Although commonly undertaken in GIS, it is shown that the approaches commonly used in
vector and raster systems typically lead to different solutions. In addition, there are
ambiguities in the manner in which criteria should be standardised and aggregated to yield
a final decision for the land allocation process. These problems are reviewed and the
theoretical structure of fuzzy measures is offered as an approach to the reconciliation and
extension of the procedures currently in use. Specifically, by considering criteria as
expressions of membership in fuzzy sets (a specific instance of fuzzy measures) the
weighted linear combination aggregation process common to raster systems is seen to lie
along a continuum of operators mid-way between the hard intersection and union operators
typically associated with Boolean overlay in vector systems. A procedure for implementing
this continuum is reviewed, along with its implications for varying the degrees of
‘ANDORness’ and trade-off between criteria. In addition, the theoretical structure of fuzzy
measures provides a strong logic for the standardisation of criteria and the evaluation of
decision risk (the likelihood that the decision made will be incorrect).



(MCE) (Voogd 1983). In some instances, this term
has also been used to subsume the concept of multi-
objective decision-making (e.g. Carver 1991; Janssen
and Rietveld 1990). However, it is used here in a
more specific sense. An objective is understood here
to imply a perspective, philosophy, or motive that
guides the construction of a specific multi-criteria
decision rule. Thus in siting a hazardous waste
facility, the objective of a developer might be profit
maximisation while that of a community action
group might be environmental protection. The
criteria they each consider and the weights they
assign to them are likely to be quite different. Each
is likely to develop a multi-criteria solution – but a
different multi-criteria decision. The resolution of
these differing perspectives into a single solution is
known as multi-objective decision-making – a topic
which will not be covered in this chapter (see
Campbell et al 1992 and Eastman et al 1995 for two
prominent approaches to this problem in GIS).

Almost all of the case study examples in this
chapter are based on an analysis of suitability for
industrial development for the region of Nakuru,
Kenya. Nakuru is a region of strong agricultural
potential that has experienced rapid urban
development in recent years. It is also the location of
one of the more important wildlife parks in Kenya
(the large area of restricted development to the
south of Plate 32) – one of Kenya’s soda lakes in the
Great Rift Valley, it is the home of over two million
flamingoes as well as a wide variety of other species.

2  TRADITIONAL APPROACHES TO MCE IN GIS

In GIS, multi-criteria evaluation has most typically
been approached in one of two ways. In the first, all
criteria are converted to Boolean (i.e. logical
true/false) statements of suitability for the decision
under consideration. (The term Boolean is derived
from the name of the English mathematician, George
Boole, who first abstracted the basic laws of set
theory in the mid 1800s. It is used here to denote any
crisp spatial mapping in which areas are designated by
a simple binary number system as either belonging or
not belonging to the designated set.) In many
respects, these Boolean variables can be usefully
thought of as constraints, since they serve to delineate
areas that are not suitable for consideration. These
constraints are then combined by some combination
of intersection (logical AND) or union (logical OR)

operators. This procedure dominates MCE with
vector software systems, but is also commonly used
with raster systems. For example, Figure 1 shows
how Boolean images, along with their intersection
achieved through the characteristic overlay
operation of a GIS, may be used here to find all
areas suitable for industrial development, subject to
the following criteria: suitable areas will be near to a
road (within 1 km – upper left), near to a labour
force (within 7.5 km of a town – middle left), on low
slopes (less than 5 per cent – upper right), and
greater that 2.5 km from designated wildlife reserves
(middle right). In addition, development is not
permitted in wildlife reserves (lower left). These
criteria are aggregated by means of an intersection
(logical AND) operator, yielding the result on the
lower right. Note that the distance to labour force
was calculated from a cost distance surface that
accounted for road and off-road frictions.

In the second most common procedure for MCE,
quantitative criteria are evaluated as fully
continuous variables rather than collapsing them to
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Fig 1.  An example of multi-criteria evaluation using Boolean
analysis.



Boolean constraints. Such criteria are typically
called factors, and express varying degrees of
suitability for the decision under consideration.
Thus, for example, proximity to roads would be
treated not as an all-or-none buffer zone of suitable
locations, but rather, as a continuous expression of
suitability according to a special numeric scale
(e.g. 0–1, 0–100, 0–255, etc.). The process of
converting data to such numeric scales is most
commonly called standardisation (Voogd 1983).

Traditionally, standardised factors are combined
by means of weighted linear combination – that is,
each factor is multiplied by a weight, with results
being summed to arrive at a multi-criteria solution. In
addition, the result may be multiplied (i.e. intersected)
by the product of any Boolean constraints that may
apply (Eastman et al 1995). For example:

suitability = ∑ wiXi * ∏ Cj

where  wi =  weight assigned to factor i
Xi =  criterion score of factor i
Cj =  constraint j

Figure 2 illustrates this approach where a
comparable example is developed to that in Figure 1.
Again, the intention is to find areas suitable for
industrial development, subject to the following
criteria: suitable areas will be near to a road (as near
as possible – upper left), near to a labour force (as
near as possible – middle left), on low slopes (as low
as possible – upper right) and as far from the wildlife
reserve as possible (middle right). As in Figure 1,
development is not permitted in wildlife reserves
(lower left) through use of a Boolean constraint.
These criteria are aggregated by means of a
weighted average of the criterion scores. In this case,
all criteria were standardised before weighting to a
common numeric range using the most commonly
used (but not necessarily recommended) technique –
linear scaling between the minimum and maximum
values of that criterion. The linear rescaling is to a
consistent range (0–255) as follows:

Xi = (xi - mini) / (maxi - mini)

where Xi = criterion score of factor i
xi = original value of factor i
mini = minimum of factor i
maxi = maximum of factor i

In addition, to provide the most direct comparison
to the results of Figure 1, equal weight (0.25) was
assigned to each criterion with the wildlife reserve
constraint acting as an absolute barrier to

development. The result of the averaging process is
shown on the lower left. The image on the lower
right shows the result of selecting the best areas
from this suitability map in order to match the total
area of that selected by Boolean analysis in Figure 1.
Note that as in Figure 1, the distance to labour force
was calculated from a cost distance surface that
accounted for road and off-road frictions.

The continuous suitability map shown in Figure 2
has the same numeric range as the standardised
factors if the weights that are applied sum to 1.0.
A specific decision can then be reached by rank
ordering the alternatives (in this case, pixels) and
selecting as many of the best ranked areas as is
required to meet the objective of the analysis in
question. In Figure 2, this has been done in order to
select as many of the best areas as were selected by
the Boolean analysis in Figure 1.

This procedure of weighted linear combination
dominates multi-criteria approaches with raster-
based GIS software systems. However, there are a
number of problems with both approaches to multi-
criteria evaluation.
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Fig 2.  An example of multi-criteria evaluation using weighted
linear combination.



First, despite a casual expectation that the two
procedures should yield similar results, they very often
do not. For example, the results of the decision
portrayed in the lower right of Figures 1 and 2 are in
agreement only by 53 per cent. The reason clearly has
to do with the logic of the aggregation operation. For
example, Boolean intersection results in a very hard
AND – a region will be excluded from the result if any
single criterion fails to exceed its threshold. Conversely,
the Boolean union operator implements a very liberal
mode of aggregation – a region will be included in the
result even if only a single criterion meets its threshold.
Weighted linear combination is quite unlike these
options. Here a low score on one criterion can be
compensated by a high score on another – a feature
known as trade-off or substitutability. While human
experience is replete with examples of both trade-off
and non-substitutability in decision making, the tools
for flexibly incorporating this concept are poorly
developed in GIS. Furthermore, a theoretical
framework that can link the aggregation operators of
Boolean overlay and weighted linear combination has,
until recently (Eastman and Jiang 1996), been lacking.

The second problem with MCE has to do with
the standardisation of factors in weighted linear
combination. The most common approach is to
rescale the range to a common numerical basis by
simple linear transformation (Voogd 1983), as was
applied in Figure 2. However, the rationale for doing
so is unclear. Indeed, there are many instances where
it would seem logical to rescale values within a more
limited range. Furthermore, there are cases where a
non-linear scaling may seem appropriate. Since the
recast criteria really express suitability, there are
many cases where it would seem appropriate that
criterion scores asymptotically approach the
maximum or minimum suitability level.

The third issue concerns the weights that are
applied. Clearly they can have a strong effect on the
outcome produced. However, not much attention
has been focused in GIS on how they should be
developed. Commonly they represent the subjective
(but no less valid) opinions of one or more experts
or local informants. How can consistency and overt
validity be established for these weights?
Furthermore, how should they be applied in the
context of varying trade-off between factors?

A fourth problem concerns decision risk.
Decision risk may be considered as the likelihood

that the decision made will be wrong. For both
procedures (Boolean analysis and weighted linear
combination) it is a fairly simple matter to propagate
measurement error through the decision rule and
subsequently to determine the risk that a given
location will be assigned to the wrong set (i.e. the set
of selected alternatives or the set of those not to be
included). However, the continuous criteria of
weighted linear combination would appear to
express a further uncertainty that is not so easily
accommodated (see Fisher, Chapter 13). The
standardised factors of weighted linear combination
each express a perspective of suitability – the higher
the score, the more suitable. However, there is no
real threshold that can definitively allocate locations
to one of the two sets involved (areas to be chosen
and areas to be excluded). How are these
uncertainties to be accommodated in expressions of
decision risk? If these criteria really express
uncertainties, why are they combined through an
averaging process?

The surprising feature of multi-criteria evaluation
is that, despite its ubiquity in environmental
management, so little is understood of its character
in GIS. In the following sections we survey the issues
involved, and offer a perspective on a resolution
through the concept of fuzzy measures.

3  FUZZY MEASURES

This discussion of fuzzy measures is adapted from
Eastman and Jiang (1996). The term fuzzy measure
refers to any set function which is monotonic with
respect to set membership (Dubois and Prade 1982;
see also Fisher, Chapter 13). Notable examples of
fuzzy measures include probabilities, the beliefs, and
plausibilities of Dempster-Shafer theory, and the
possibilities of fuzzy sets. Interestingly, if we consider
the process of standardisation in MCE to be one of
transforming criterion scores into set membership
statements (i.e. the set of suitable choices), then
standardised criteria are fuzzy measures.

A common trait of fuzzy measures is that they
follow DeMorgan’s Law in the construction of the
intersection and union operators (Bonissone and
Decker 1986). DeMorgan’s Law establishes a
triangular relationship between the intersection,
union, and negation operators such that:
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T(a,b) = ~ S(~a, ~b)

where T = intersection (AND) = T-Norm
and     S = union (OR) = T-CoNorm
and     ~ =   negation (NOT)

The intersection operators in this context are known
as triangular norms, or simply T-Norms, while the
union operators are known as triangular co-norms,
or T-CoNorms.

4 FUZZY MEASURES AND AGGREGATION
OPERATORS

A T-Norm can be defined as (Yager 1988):

a mapping T: [0,1] * [0,1] → [0,1] such that:

T(a,b) = T(b,a) (commutative)
T(a,b) ≥ T(c,d) if a ≥ c and b ≥ d (monotonic)
T(a,T(b,c)) = T(T(a,b),c) (associative)
T(1,a) = a

Some examples of T-norms include:

min(a,b) (the intersection operator of fuzzy sets)
a * b (the intersection operator of classical sets)
1 – min(1,((1–a)p + (1–b)p )(1/p) ) (for p ≥ 1)
max(0,a + b – 1)

Conversely, a T-CoNorm is defined as:

a mapping S: [0,1] * [0,1] → [0,1] such that:

S(a,b) = S(b,a) (commutative)
S(a,b) >= S(c,d)  if a ≥ c and b ≥ d (monotonic)
S(a,S(b,c)) = S(S(a,b),c) (associative)
S(0,a) = a

Some examples of T-CoNorms include:

max(a,b) (the union operator of fuzzy sets)
a + b – a*b (the union operator of classical sets)
min(1,(ap + bp )1/p) (for p≥1)
min(1,a + b)

Interestingly, while the intersection (a*b) and union
((a+b) – (a*b)) operators of Boolean overlay represent
a T-Norm/T-CoNorm pair, the averaging operator of
weighted linear combination is neither, because it
lacks the property of associativity (Bonissone and
Decker 1986). Rather, it has been determined
(Bonissone and Decker 1986) that the averaging
operator falls midway between the extreme cases of
the T-Norm (AND) of fuzzy sets (the minimum
operator) and its corresponding T-CoNorm

(OR – the maximum operator) – in essence, a perfect
ANDOR operator. In fact, Yager (1988) has
proposed that weighted linear combination is one of
a continuum of aggregation operators that lies
between these two extremes. Further, he has
proposed the concept of an ordered weighted average
that can produce the entire continuum. Recently,
Eastman and Jiang (1996) have implemented this
operator, with modifications, in a raster GIS. In
doing so, the traditional aggregation operators of
vector and raster GIS have been united into a single
theoretical framework.

4.1  The ordered weighted average

With the ordered weighted average, criteria are
weighted on the basis of their rank order rather than
their inherent qualities. Thus, for example, we might
decide to apply order weights of 0.5, 0.3, 0.2 to
weight a set of factors A, B, and C based on their
rank order. Thus if at one location the criteria are
ranked BAC (from lowest to highest), the weighted
combination would be 0.5*B + 0.3*A + 0.2*C.
However, if at another location the factors are
ranked CBA, the weighted combination would be
0.5*C + 0.3*B + 0.2*A. In the implementation of
Yager’s concept by Eastman and Jiang (1996), the
concept of weights that apply to specific factors has
also been incorporated, yielding two sets of weights
– criterion weights that apply to specific criteria and
order weights that apply to the ranked criteria, after
application of the criterion weights.

The interesting feature of the ordered weighted
average is that it is possible to control the degree of
ANDORness and trade-off between factors within
limits. For example, using order weights of [1 0 0]
yields the minimum operator of fuzzy sets, with full
ANDness and no trade-off. Using order weights of
[0 0 1] yields the maximum operator of fuzzy sets
with full ORness and no trade-off. Using weights of
[0.33 0.33 0.33] yields the traditional averaging
operator of MCE with intermediate ANDness and
ORness, and full trade-off. Trade-off is thus
controlled by the degree of dispersion in the weights
while ANDness or ORness is governed by the
amount of skew. For example, order weights of
[0 1 0] would yield an operator with intermediate
ANDness and ORness, but no trade-off, while the
original example with order weights of [0.5 0.3 0.2]
would yield an operator with substantial trade-off
and a moderate degree of ANDness.
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This quality of variable ANDORness has
interested some in the decision science field (e.g.
Yager 1988) because of the recognition that in
human perception of decision logics, it is not
uncommon to wish to combine criteria with
something less extreme than the hard operations of
union or intersection. In the context of GIS,
however, it is the property of trade-off that is of
special interest. The minimum operator is
occasionally used in GIS applications, and
represents a form of limiting factor analysis. Here
the intent is one of risk aversion, by characterising
the suitability of a location in terms of its worst
quality. The maximum operator is the opposite, and
can thus be thought of as a very optimistic
aggregation operator – an area will be suitable to the
extent of its best quality. Both of these operations
permit no trade-off between the qualities of the
criteria considered. Furthermore, in cases where set
membership approaches certainty, the results from
fuzzy sets will be identical to those of Boolean
overlay. However, with weighted linear combination,
trade-off is clearly and fully present.

Figure 3 illustrates various degrees of trade-off
(and ANDORness) between the same four factors
considered in Figures 1 and 2. The same criteria
were used as for Figure 2, except that the scaling was
changed to facilitate comparison to the results in
Figure 1 – a sigmoidal fuzzy membership function
was used such that the thresholds used to create the
Boolean images in Figure 1 correspond to
membership values of 0.5 for the fuzzy criteria in
this example (i.e. scaling was asymptotic to
membership values of 1.0 and 0.0 at values of
0–2 km for proximity to roads, 0–15 km for
proximity to the labour force, 0–10 per cent for slope
gradients, and 5–0 km for distance from designated
wildlife reserves). In addition, to facilitate
comparison, equal criterion weights were applied as
in Figure 2. Thus the differences between these
aggregations arise solely from the effects of different
order weights. The v-shaped sequence, from top to
bottom, used order weights of [1 0 0 0], [.60 .20 .15
.05], [.4 .3 .2 .1], [.25 .25 .25 .25], [.1 .2 .3 .4], [.05 .15
.20 .60], and [0 0 0 1]. This sequence progresses from
full ANDness and no trade-off for the first (the
minimum function), to intermediate ANDORness
and full trade-off for the middlemost (equivalent to
a standard weighted linear combination), to full
ORness and no trade-off with the last
(corresponding to the maximum operator). The

image on the middle left is a median operator
produced with order weights of [0 .5 .5 0], producing
an aggregation with intermediate ANDORness (like
weighted linear combination) but almost no trade-
off.

The similarity of the result with full ANDness (and
thus no trade-off) to the Boolean result in Figure 1 is
striking. In fact, when these suitability values are rank
ordered and enough of the best pixels are selected to
equal the area of the Boolean result, the solution is
identical. Thus the reason for the difference in the
Boolean and weighted linear combination results is
clear – the characteristic Boolean overlay operation of
vector GIS produces an aggregation of criteria with
full ANDness and no trade-off while the typical
weighted linear combination operation of raster GIS
produces intermediate ANDness and full trade-off.
The results are different because the aggregation
operators are different.

Recognising that a full spectrum of aggregation
operators exists opens up a much richer set of
possibilities for implementing decision rules in GIS.
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Fig 3.  A spectrum of aggregations using the ordered weighted
average procedure.
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For example, Plate 32 illustrates the effects of
combining three of the factors with trade-off and
one without. In this case, proximity to roads is given
a criterion weight of 0.45, proximity to the labour
force is given a weight of 0.12, and the slope factor
is given a weight of 0.43. These are combined using
a standard weighted linear combination. This result
is then combined with the distance from wildlife
reserve factor using a minimum operator. The
absence of trade-off in this last step is clear – the
distance from wildlife reserve factor dominates the
result until it no longer represents the limiting
factor. The effect is clearly similar to that of a
constraint, but lacks the crispness of a traditional
constraint. In effect, the minimum operator with a
fuzzy measure represents a form of soft constraint.
Soft constraints are particularly useful where a
specific boundary cannot be reasonably established.
Indeed, it might be argued that this is more
commonly appropriate than the artificial boundaries
of traditional constraints.

5  FUZZY MEASURES AND STANDARDISATION

Clearly, this consideration of fuzzy measures has
implications beyond those of the aggregation
process alone. It also provides a very strong logic for
the process of standardisation. In this context, the
process of standardising a criterion can be seen as
one of recasting values into a statement of set
membership – the degree of membership in the final
decision set. Indeed, Eastman and Jiang (1996)
argue that such statements of set membership in fact
constitute fuzzy sets (a particular form of fuzzy
measure), while those of Boolean constraints
represent classical sets. This clearly opens the way
for a broader family of set membership functions
than that of linear rescaling alone. For example, the
commonly used sigmoidal (s-shaped) function of
fuzzy sets provides a simple logic for cases where a
function is required that is asymptotic to 0 and 1. It
also suggests that the minimum and maximum raw
factor values should not blindly be used as the
anchor points for such a function. Rather, anchor
points that are consistent with the logic of set
membership are clearly superior. For example, in
Figure 4, sigmoidal membership functions were
created for each factor, with anchor points set at the
points where the factor begins to have an effect and
where the effect is no longer relevant. The distance

to wildlife reserve factor, for instance, starts to rise
above 0.0 immediately at the park boundary, but
approaches 1.0 at a distance of 5 kilometres. Further
distance does not lead to an increase in the factor
score since the distance is far enough.

6  DETERMINATION OF WEIGHTS

Given the consideration of factors as fuzzy sets
and the nature of the aggregation process, the
criterion weights of weighted linear combination
clearly represent trade-off weights – that is,
expressions of the manner in which they will trade
with other factors when aggregated in multi-criteria
evaluation. Rao et al (1991) have suggested that a
logical process for the development of such weights
is the procedure of pairwise comparisons
developed by Saaty (1977). In this process each
factor is rated for its importance relative to every
other factor using a 9-point reciprocal scale (i.e. if
7 represents substantially more important, 1/7
would indicate substantially less important). This
leads to a n x n matrix of ratings (where n is the
number of factors being considered). Saaty (1977)
has shown that the principal eigenvector of this
matrix represents a best fit set of weights. Figure 5,
for example, illustrates this rating scale along with
a completed comparison matrix and the best fit
weights produced. Eastman et al (1993) have
implemented this procedure in a raster GIS with a
modification that also allows the degree of
consistency to be evaluated as well as the location
of inconsistencies to allow for an orderly re-
evaluation. The process is thus an iterative one that
converges on a consistent set of consensus weights.

A problem still exists, however, in how these
weights should be applied in the context of the
ordered weighted average discussed above. It seems
clear that these weights will have full effect with the
weighted linear combination operator (where full
trade-off exists), and that they should have no effect
when no trade-off is in effect (i.e. with the minimum
and maximum operators). It seems logical,
therefore, that their effect should be graded between
these extremes as the degree of trade-off is
manipulated with the ordered weighted average
process. However, the logic for this gradation has
not been established. In their implementation of the
ordered weighted average for GIS, Eastman and
Jiang (1996) have used a measure of relative
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dispersion (a measure closely related to the entropy
measure of information theory) as the basis for this
gradation. However, further research is needed on
this important aspect of the ordered weighted
average procedure.

7  DECISION RISK

Uncertainty in the decision rule, and in the criteria
that are considered, implies some risk that the
decision made will be wrong. In the case of
measurement error, the effects of uncertainty can
fairly easily be propagated to the suitability map that
is produced in MCE (see Heuvelink, Chapter 14;
Heuvelink 1993). Furthermore, Eastman (1993) has
developed a simple operator that can convert such
an evaluation into a mapping of the probability
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Fig 4.  Saaty’s pairwise comparison procedure for the derivation of factor weights. Using a 9-point rating scale (a) each factor is
compared to each other factor for its relative importance in developing the final solution (b). The principal eigenvector of this matrix is
then calculated to derive the best-fit set of weights (c).
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Fig 5.  A procedure for calculating decision risk. Assuming a
normal distribution of errors, the probability that a data value
exceeds or is exceeded by a threshold can be calculated as the
area of the normal curve subtended by that threshold. [RMSE =
root mean square error]

Distribution of
measurements
about the true
value

RMSE

true
value threshold

Probability that
the value
exceeds the
threshold

f



that locations belong to the decision set (the
PCLASS operator of the Idrisi software system).
The operator assumes a normal distribution of
errors and calculates the area under the normal
curve subtended by a threshold that can distinguish
the cases that belong in the decision set from those
that do not (Figure 5). The result is an expression of
decision risk that is directly analogous to the
concept of a Type II error in statistical hypothesis
testing – that is, the likelihood that the alternative
does not belong to the decision set if we assume
that it does (Plate 33). The resulting probability map
can subsequently be thresholded to see the nature
of the decision set at any specified risk level (again
see Plate 33).

To the extent that measurement error can be
quantified and propagated through an analysis, an
expression of decision risk is thus not very difficult to
achieve. However, the recognition of factors in MCE
as fuzzy sets implies a very different form of
uncertainty from that of measurement error. The
suitability map that results from weighted linear
combination is a clear expression of uncertainty
about the suitability of any particular piece of land
for the objective under consideration. However, as an
expression of uncertainty, it has no relationship to the
frequentist notion of probability that underlies the
treatment of decision risk in the context of
measurement error. Thus a traditional treatment of
decision risk as the probability that the decision made
will be wrong cannot be developed. Eastman (1996)
has therefore suggested that decision risk for such
cases be expressed by the concept of relative risk.

A mapping of relative risk can be very simply
achieved by rank ordering the alternatives and
dividing the result by the maximum (i.e. worst)
rank that occurs. The outcome is a proportional
ranking that can directly be interpreted as relative
risk. Then in cases where no specific area
requirement for the decision set is being sought
(e.g. the best 10 hectares), the final decision set can
be established by selecting the alternatives where
the relative risk does not exceed a specific threshold
(e.g. the best 5 per cent of the areas under
consideration). Figure 6 illustrates such a mapping
of relative risk for the result of Plate 32 along with
a mapping of the best (least risky) 10 per cent of
cases outside the wildlife reserve.

Such an expression of relative risk is quite
familiar in human experience. By rank ordering the
alternatives (on the basis of suitability) and
choosing the best ones, we use a procedure that

strives to pick the least risky alternatives (i.e. the
ones that are least likely to be poor choices). For
example, in screening applicants for employment we
may make use of a variety of criteria (e.g. test
scores, reference evaluations, years of experience,
etc.) that will allow the candidates to be ranked.
Then by choosing only the highest ranked
candidates we minimise our risk of choosing
someone who will perform poorly. However, we do
not know the actual degree of risk we are taking;
only that the candidates we have chosen are the
least risky of the alternatives considered.

From the perspective of considering the criteria
of MCE as fuzzy measures, then, it would appear
that the expression of decision risk needs to be 
different from that which arises from a consideration
of measurement error. However, in most cases, both
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Fig 6.  (a) A mapping of relative risk for the result in Plate 32.
The procedure involves a simple rank ordering of alternatives
followed by division by the maximum rank. (b) Areas outside the
wildlife reserve with a relative risk of 10 per cent or less.

Low

High

(a)

(b)



forms of uncertainty exist. Thus one might anticipate
the problem of having to express both forms of risk.
For example, given the presence of measurement
error in the development of a multi-criteria
suitability mapping, and a propagation of those
errors to the final suitability map, one realises that
this mapping is only one of a large number of
possible outcomes that might be produced by
randomly introducing the uncertainties in
measurement that exist. Thus by Monte Carlo
simulation (a capability that unfortunately exists in
only a small number of GIS software programs) one
could thus tabulate the proportion of simulations in
which each location falls within a specific threshold
of relative risk, or a specific areal requirement. This
then restores the frequentist notion of probability
and the usual expression of decision risk.

8  CONCLUSION

In this chapter an attempt has been made to
reconcile the differences between the typical
approaches to MCE used in vector and raster GIS.
By using the theoretical structure of fuzzy
measures, both approaches can be seen as special
cases of a single family of aggregation operators. In
the case of Boolean overlay as very typically used
in vector GIS, the decision problem is treated as
one of classical set membership, with the
intersection and union operations resulting in strict
ANDness or ORness with no trade-off. However, it
has been shown here that these hard constraints
represent no more than the crisp extremes of an
underlying logic of fuzzy sets. By considering the
more general class of fuzzy measures (of which
fuzzy sets are a member) it has been shown that
similar operations exist for the continuous factors
more commonly associated with raster systems (the
minimum and maximum operators). In addition, it
has been shown that the weighted linear
combination operator commonly used with such
factors lies on a continuum with these operators,
where it represents the case of intermediate
ANDness and ORness, and full trade-off between
the factors considered. Furthermore, it has been
shown that a more general operator (the ordered
weighted average) can produce all of these results
along with a continuum of other operators with
varying degrees of trade-off and ANDORness.
This not only acts as a strong theoretical
framework for consideration of the aggregation

operator, but also provides a logic for the
standardisation of factors, a rationale for the
expression of decision risk, and a high degree of
flexibility in the land allocation decision process.
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