
1  PHYSICAL PRINCIPLES

1.1  Remote sensing: inference and estimation

Broadly speaking, the subject matter of terrestrial
remote sensing encompasses the set of instruments
(sensors), platforms, and data-processing techniques
that are used to derive information about the
physical, chemical, and biological properties of the
Earth’s surface (i.e. the land, atmosphere, and
oceans) without recourse to direct physical contact.
Information is derived from measurements of the
amount of electromagnetic radiation reflected,
emitted, or scattered from the Earth surface, and its
variation as a function of wavelength, angle
(direction), wave polarisation, phase, location, and
time. A variety of sensors is commonly employed in
this context – both passive (i.e. those reliant on
reflected solar radiation or emitted terrestrial
radiation) and active (i.e. those generating their own
source of electromagnetic radiation) – operating
throughout the electromagnetic spectrum from
visible to microwave wavelengths (see also Dowman,
Chapter 31). The platforms on which these
instruments are mounted are similarly diverse:
although Earth-orbiting satellites and fixed-wing

aircraft are by far the most common, helicopters,
balloons, masts, and booms are also used. Finally, a
wide range of data-processing techniques has been
developed, often in response to advances in sensor
technology, but increasingly to meet the demands of
a growing set of applications.

The problem with the definition of remote
sensing outlined above is that it focuses on the
technology, as opposed to the science, of remote
sensing. In doing so, it obscures two fundamental
aspects of the remote sensing process, namely
inference and estimation. The role of inference
becomes clear when it is understood that very few
properties of interest to the environmental scientist
can be measured directly by remote sensing. Instead,
they must be inferred from measurements of reflected,
emitted, or scattered radiation using some form of
mathematical model, or via their relationship with a
surrogate variable (e.g. land cover) that can be derived
more readily from the remotely-sensed data (see also
Bibby and Shepherd, Chapter 68; Fisher,
(Chapter 13). The accuracy with which a given
property can be inferred is therefore dependent on the
quality (generality, applicability, reliability, etc.) of the
model and algorithms used, or on the degree of
correlation between the surrogate and target variables,
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This chapter explores the nature and properties of digital remotely-sensed data. Rather than
simply summarising the ever-growing range of airborne and satellite sensor systems,
together with their technical characteristics, the chapter is divided into three distinct parts,
namely: (a) the interaction of electromagnetic radiation with Earth surface materials,
focusing on the physical, chemical, and biological properties that control their reflectance,
emittance, and scattering characteristics; (b) the impact of sensor and platform design on
the ability to record the surface-leaving radiation and the nature of the data that are
produced; and (c) the production of data-processing algorithms to translate the recorded
signals into estimates of the intrinsic properties of the observed surfaces.



together with the accuracy and suitability of any
land-cover classification scheme involved and the
classes that this defines. Unfortunately, our
understanding of these relationships is, in many
instances, still quite poor (see also Dowman, Chapter
31). Even where our knowledge is well developed, we
may be forced to employ models involving a number
of approximations or simplifications, perhaps to
reduce the computational load in time-critical
applications. As a consequence, the values inferred
from remotely-sensed data are almost always
estimates of the actual quantities of interest.

1.2  Sources of information

There are five main sources of information that can
be exploited by remote sensing systems. These relate
to variations in the recorded signal as a function of:

● wavelength (‘spectral’);
● angle (‘directional’);
● wave polarisation;
● location (‘spatial’);
● time (‘temporal’).

1.2.1  Inference and estimation from spectral variations
Most remote sensing studies attempt to exploit
spectral (i.e. wavelength dependent) variations in
the radiation emanating from the Earth’s surface:
these are controlled by the physical and chemical
properties of Earth surface materials. In the case
of healthy green leaves, for example, the
principal controlling factors are plant pigments
(e.g. chlorophyll, xanthophyl, and the carotenoids),
lignin, cellulose, protein, and leaf-water content
(Asrar 1989; Jacquemoud and Baret 1990). In the
case of soils, the most important factors are the
content of moisture, iron oxides, and organic matter,
together with surface structure (Price 1990;
Jacquemoud et al 1992).

There are two main ways in which the
relationship between surface properties and spectral
response can be exploited. At one level, the aim may
be simply to distinguish different types of surface
material. In this case, the objective is to identify
those wavelengths at which the contrast between
their reflectance, emittance, or scattering
characteristics is maximised. Since not all surface
materials can be distinguished at a given wavelength,
it is common to record data in several parts of the
electromagnetic spectrum (i.e. multispectral remote

sensing). A subsequent aim may be to identify the
nature of the surface materials; that is, to assign
each a label from a set of pre-defined classes,
typically expressed in terms of land cover.

The second major use of multispectral data is to
estimate values for selected properties of the
observed surface materials. For example, many
studies have attempted to derive information on the
above-ground biomass, leaf area index (LAI), and
levels of photosynthetic activity of vegetation
canopies. This is commonly based on linear
combinations of data recorded in two or more
spectral wavebands, generally centred on the visible
red and near-infrared wavelengths (Myneni and
Williams 1994). Use of this type of empirical model
– referred to generically as vegetation indices – is
widespread, despite their well-known limitations
(Baret and Guyot 1991; Myneni et al 1995); indeed,
new indices are continually being developed. The
enduring attraction of vegetation indices lies in their
conceptual and computational simplicity. This goes
some way to explain the enduring popularity of the
normalised difference vegetation index (NDVI),
most recently for mapping and monitoring
vegetation at regional and global scales
(Townshend et al 1995).

Recent advances in sensor technology, specifically
those relating to improvements in spectral resolution
(Vane and Goetz 1993), have prompted more detailed
studies of the relationships between spectral
response and surface biochemical properties
(Wessman et al 1988; Hunt 1991). Many of these
studies continue to make use of simple empirical
transformations (such as ratios) of data measured in
a number of spectral wavebands (Danson et al 1992).
Attention has also been focused on locating the
so-called ‘red edge’ (the wavelength of maximum
slope in the spectral response of vegetation between
690µm and 740µm; Figure 1), using this as an
indicator of photosynthetic activity and leaf
biochemistry (Boochs et al 1990; Filella and
Peñuelas 1994; Curran et al 1995). More
importantly, attempts have also been made to
develop physically-based models to account for the
optical properties of individual leaves in terms of
their chemical and physical characteristics
(Jacquemoud and Baret 1990). In principle, these
models should be less data-dependent and site-
specific than their empirical counterparts. It may
also be possible to invert them, so that estimates of
their parameters – and, hence, the surface
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biophysical properties to which they relate – can be
derived from multispectral measurements made by
remote sensing systems.

Whichever methods are employed, it should be
noted that vegetation canopies do not behave simply
as ‘big leaves’, so that problems arise in attempting to
apply the techniques described above directly to
remotely-sensed images. More specifically,
relationships determined in vitro, or in vivo at the scale
of a single leaf, are complicated by differences in,
among other things, the spatial and geometric
structure of vegetation canopies and variations in the
soil substrate (Goel 1989; Asrar 1989). For this
reason, attempts to estimate biophysical or
biochemical properties at the canopy scale require the
use of coupled models of canopy and leaf reflectance
(Jacquemoud 1993; Jacquemoud et al 1995).

1.2.2  Inference and estimation from directional variations
The detected reflectance of most Earth surface
materials varies, sometimes considerably, as a

function of the angles at which they are illuminated
by the Sun and viewed by the sensor. The form and
magnitude of this effect are controlled by:

● the optical properties of the component elements
of the surface material (e.g. the spectral
reflectance and transmittance of plant leaves,
stems, tree crowns, and soil facets);

● the spatial and geometric arrangement of these
elements;

● the spectral and angular distribution of the incident
solar radiation (Goel 1989; Barnsley 1994).

The angular distribution of the reflected radiation is
described by the bidirectional reflectance
distribution function (BRDF). Research in this
area has focused on the development and
implementation of various mathematical models
(Myneni et al 1990), ranging from simple empirical
(e.g. Walthall et al 1985) and semi-empirical
functions (e.g. Roujean et al 1992), to models with a
more direct foundation in physical principles
(e.g. Ahmad and Deering 1992; Kuusk 1994).
Interest in these models arises from their potential to
derive quantitative estimates of certain biophysical
properties of the Earth surface (e.g. the LAI). This
can be achieved by inverting the model against
measurements of reflected radiation made at a
number of different sensor view angles and solar
illumination angles with respect to a fixed point on
the Earth surface (Plate 21; Goel 1989; Barnsley et al
1994). Estimates of the surface albedo can also be
obtained through numerical or analytical integration
of the modelled BRDF (Kimes et al 1987; Barnsley
et al 1997a).

1.2.3  Inference and estimation from wave polarisation
Electromagnetic radiation considered in wave form
has two fields (electric and magnetic) which are
perpendicular both to one another and to the
direction of propagation (Rees 1990). The
orientation of these two fields, known as the wave
polarisation of the radiation, has been observed to
change as a result of scattering and reflection within
the atmosphere and at the Earth surface. The
majority of studies in this area have employed data
from the microwave region of the electromagnetic
spectrum. For example, polarimetric radar data have
been used to distinguish different stands in
coniferous forests (Grandi et al 1994) and to assess
their biophysical characteristics (Baker et al 1994).
A smaller number of studies has explored
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Fig 1.  (a) Example leaf reflectance spectrum at visible and
near-infrared wavelengths; (b) first derivative spectrum produced
from Figure 1(a), showing position of the ‘red-edge’ (peak in
derivative spectrum) at 0.693µm.
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polarisation characteristics of Earth surface materials
at visible and infrared wavelengths (e.g. Vanderbilt
et al 1991; Ghosh et al 1993). This is partly attributable
to the paucity of appropriate airborne and satellite
sensors, and partly because the polarisation signal is
dominated by the atmosphere at these wavelengths.

1.2.4  Inference and estimation from spatial variations
The amount of radiation reflected, emitted, or
scattered from the Earth’s surface varies spatially in
response to changes in the nature (type) and properties
of the surface materials. These variations may be
continuous, discrete, linear, or localised, depending on
the controlling environmental processes (Davis and
Simonett 1991). They may also be manifest at a variety
of different spatial scales (Townshend and Justice
1990; Barnsley et al 1997b; Figure 2). The relationships
between surface type, surface properties, and spatial
variability in land-leaving radiance has been exploited
using measures of:

● texture – the statistical variability of the detected
signal, typically based on the grey-level
co-occurrence matrix, measured at the level of
individual pixels (Richards 1993);

● pattern – including the size and shape of discrete
spatial entities (regions), typically land-cover parcels,
identified within the scene, as well as the spatial
relations between them (LaGro 1990; Lam 1990);

● context – referring to the structural and semantic
relations between discrete spatial entities identified
within the scene (Barr and Barnsley 1997).

1.2.5  Inference and estimation from temporal variations
The reflectance, emittance, and scattering properties
of most Earth surface materials vary with respect to
time. This may be in response to diurnal effects (e.g.
changes in the leaf-angle distribution of vegetation
canopies attributable to moisture deficiency or
heliotropism), seasonal effects (e.g. phenology),
episodic events (e.g. rainfall and fire), anthropogenic
influences (e.g. deforestation), or long-term climate
change. There are several ways in which these
temporal variations can be exploited, namely:

● to assist in distinguishing surface materials, by
selecting the time of day or year at which the
contrast between their reflectance, emittance, or
scattering properties is greatest;

● to detect a change in the dominant land-cover type
or biophysical property of an area by measuring

variations in the amount of surface-leaving
radiation over time (known as change detection);

● to determine the physical, chemical, and
biological properties of Earth surface materials.
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Fig 2.  (a) LANDSAT-TM sub-scene (2048 by 2048 pixels; near-
infrared waveband) covering part of southeast England;
(b) Scale variance analysis (Townshend and Justice 1990)
applied to the LANDSAT-TM sub-scene of southeast England (a).
The diagram shows the different scales of spatial variability that
occur in this scene, indicated by the two peaks in variance at
approximately 250m and 5km, respectively. Barnsley et al
(1977b) suggests that the first peak corresponds to variation in
detected reflectance at the scale of individual field parcels,
while the second peak relates to broader edaphic and geological
differences across the scene.
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For example, the third approach has been used to
produce land cover maps at regional and global
scales from coarse spatial resolution satellite sensor
images (Lloyd 1990). Lloyd’s approach is based on
an analysis of the date-of-onset, duration, and
amplitude of the ‘greening-up’ curve, derived from a
time-series of NDVI values (Figure 3).

2  MEASURING THE SIGNAL

This section considers the impact of sensor
and platform design on the ability to record surface-
leaving radiation. While some space is dedicated to
specific sensor systems and the characteristics of the
data that they produce, the intention is not to provide
a summary of current and future remote sensing
devices. Rather, the aim is to examine the way in
which their general design affects the ability to
translate the recorded signals into estimates of the
intrinsic properties of the Earth surface. Thus, the
sensor system is viewed both as a measurement device
and as ‘filter’ to the surface-leaving signal.

2.1  Spectral resolution and spectral coverage

Since most remote sensing studies – particularly
those concerned with the use of optical instruments
– exploit spectral variations in surface-leaving
radiation, it seems appropriate to begin with a
consideration of the spectral characteristics of
remote sensing systems, namely:

● the number of spectral wavebands in which the
sensor operates (see also Estes and Loveland,
Chapter 48);

● the position of these spectral wavebands within
the electromagnetic spectrum (spectral coverage);

● the range of wavelengths covered by each
waveband (spectral bandwidth or spectral
resolution) (Davis and Simonett 1991).

Clearly, the specific configuration adopted for a given
sensor is determined by the scientific objectives of the
mission, but it is also conditioned by a number of
fundamental technical constraints. The latter include
the need to locate the wavebands within ‘atmospheric
windows’, the total volume of data that must be
handled (including telemetry to Earth, in the case of
spaceborne sensors), and the need to achieve an
acceptable signal-to-noise ratio (SNR).

2.1.1  Atmospheric windows
The atmosphere scatters and absorbs radiation during
its passage from the Sun to the Earth’s surface and
from the Earth’s surface to the sensor. In doing so, it
attenuates the amount of radiation reaching the
ground and, subsequently, the sensor. It also alters
the spectral composition and the angular distribution
of this radiation (Diner and Martonchik 1985;
Kaufman 1988). The magnitude of these effects varies
strongly with wavelength. Sensors designed to study
either the land surface or the oceans operate in
regions of the electromagnetic spectrum in which the
transmission of radiation through the atmosphere is
high – known as ‘atmospheric windows’. Even so,
solar radiation may be scattered within the
atmosphere into the path of the sensor without
interacting with the Earth surface. Among other
things, this component of the signal detected by the
sensor, known as path radiance, reduces the apparent
contrast between surface materials within the
resultant image (Kaufman 1993).

2.1.2  Data volumes and spectral redundancy
Over the last twenty years or so, there has been
a continuing trend towards sensors that are able
to record data in a greater number of (typically
narrower) spectral wavebands, resulting in an
increase in the total volume of data acquired. In
general, however, the amount of useful information
that can be extracted from these data does not
increase linearly with the number of available
spectral wavebands: there is often a strong statistical
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Fig 3.  Diagrammatic representation of the variation in the
normalised difference vegetation index (NDVI) for a vegetated
surface over the growing season. The figure illustrates the
concepts of the date-of-onset, the duration, and the amplitude of
the ‘greening-up’ curve used by Lloyd (1990) to map land cover
at the regional scale using coarse spatial resolution satellite
sensor images.
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correlation between the data recorded in different
parts of the electromagnetic spectrum, particularly
those from adjacent spectral wavebands. As a result,
the intrinsic dimensionality of a multispectral
dataset may be very considerably smaller than the
number of available wavebands. This is sometimes
referred to as ‘spectral redundancy’.

2.1.3  Imaging spectrometers and signal-to-noise ratio
Despite the observations made above, one of the
major developments in optical sensor technology in
recent years has been the advent of imaging
spectrometers and imaging spectroradiometers –
instruments capable of recording data in tens, or
even hundreds, of very narrow (typically contiguous)
spectral channels (Vane and Goetz 1993). The
manner in which data from these sensors are
generally employed differs from that of conventional
multispectral scanners. Instead of focusing on the
data simply as a set of 2-dimensional images,
emphasis is placed on an analysis of the detailed
spectral response recorded for each pixel. These can
be compared against spectra for a range of different
surface materials, drawn either from an on-line
library or from representative pixels sampled within
the image itself. In addition to the overall shape of
the spectra, comparisons can be made in terms of
the presence, depth, and width of absorption
features associated with specific biochemical
constituents. This may allow the analyst to derive
detailed information on the nature, properties, and
proportions of the different surface materials
present in the corresponding area on the ground.

The Advanced Visible and Infrared Imaging
Spectrometer (AVIRIS) instrument operated by
NASA is one example of an imaging spectrometer
(Vane et al 1993). This airborne sensor records
data in approximately 200 narrow spectral channels
in the region 0.4µm to 2.5µm. One of the
penalties commonly associated with the use of
narrow spectral wavebands is a reduction in the
SNR of the sensor, because of the smaller number
of photons admitted to the detector. This can be
compensated for by increasing the sensor dwell-time
(at the expense of a reduction in the effective sensor
spatial resolution) or by combining images from
several successive flights over the same target.

A spaceborne imaging spectrometer, known as
HIRIS (High Resolution Imaging Spectrometer),
was originally scheduled for launch at the end of the
decade as part of NASA’s ‘Mission to Planet Earth’

programme (Goetz and Herring 1989). The
instrument was, however, de-selected at an early
stage because of budgetary constraints. A second
imaging spectrometer, known as MODIS (Moderate
Resolution Imaging Spectrometer) is due to be
launched in 1998/9, although this sensor has a much
smaller number of spectral wavebands (30, cf. ~200
for HIRIS) and a considerably coarser spatial
resolution (250m to 1 km, cf. 30m for HIRIS;
Ardanuy et al 1991).

2.2  Radiometric resolution and radiometric
calibration

2.2.1 Radiometric resolution
The radiometric resolution of a sensor can be
thought of as its ability to distinguish different
levels of reflected, emitted, or scattered radiation.
Expressed more precisely, radiometric resolution
involves three key concepts, namely:

● quantisation;
● signal-to-noise ratio;
● dynamic range.

A digital remote sensing device converts the
radiation incident on its detectors initially into an
analogue signal (i.e. an electrical voltage) and
subsequently into a digital signal. After the
analogue-to-digital (A-to-D) conversion, the
detected signal is represented as a numerical value,
referred to (somewhat tautologously) as a digital
number (DN). The set of possible values for the
DN is determined by the quantisation level: thus, if
a sensor has 8-bit quantisation, it will record values
in the range 0 to 255 (i.e. 28 or 256 different levels of
incident radiation), where a value of 0 indicates the
lowest level of detectable radiance and 255 the
highest. The sensor designer must also decide how
the range of DN are to be used to record incident
radiation. It is possible, for example, to design an
instrument that is capable of recording the full range
of radiances expected under normal illumination
conditions from surfaces with reflectances varying
between 0 and 1. Alternatively, if the intention is
primarily to observe relatively dark targets, such as
the oceans, the dynamic range of the instrument
might be limited accordingly. Thus, the set of
available DNs would be optimised to distinguish
surfaces in the desired range of reflectances,
although the instrument response would saturate
over brighter targets.
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2.2.2  Radiometric calibration
One characteristic of some of the most recent and
many of the proposed future satellite sensors is the
greater attention that is being given to their absolute
radiometric calibration. This ensures that the recorded
DN can be related accurately to known levels of
surface reflectance (or emittance) (Price 1987). This
assists in the retrieval of datasets expressed in terms of
standard geophysical units and ensures greater
consistency between datasets generated by different
sensors, or by the same sensor over a prolonged period
of time (Hall et al 1991). The lack of accurate
radiometric calibration in early satellite sensors has
been one of the major hindrances to the use of these
data for long-term regional and global-scale
environmental monitoring (Hall et al 1995).

2.3  Spatial resolution

In simple terms, the spatial resolution of a sensor
determines the level of spatial detail that it provides
about features on the Earth’s surface. Beyond this,
spatial resolution can be defined in a number of
different ways (Forshaw et al 1983). For example, the
instantaneous field-of-view (IFOV) defines the
(nominal) angle, subtended at the sensor, over which
the instrument records radiation emanating from the
Earth’s surface at a given instant in time. The area
on the Earth’s surface to which this corresponds,
known as the ground resolution element (GRE), is
therefore controlled by the IFOV and the height of
the sensor above the ground. The actual area of
ground from which radiation is incident on the
detector is, however, larger than this and is
determined by the sensor’s point spread function
(PSF). Finally, ‘pixel size’ denotes the area of
ground covered by a single pixel in the resultant
image. This may differ from the GRE because of the
effects of over-sampling, variations in the height of
the terrain below the sensor, and variations in the
attitude and altitude of the platform on which the
sensor is mounted (Forshaw et al 1983).

2.3.1  Impacts of sensor spatial resolution
Images produced by digital sensors can be thought of
as 2-dimensional grids or arrays of data cells
(‘picture elements’ or pixels). The spatial resolution
of the sensor defines the size of these cells, in terms
of the area that they represent on the ground
(Plate 22). Thus, a remotely-sensed image represents
a spatial regularisation of the observed scene (Jupp et

al 1988). One effect of this process is that two or
more surface materials may fall within a single pixel,
producing a ‘mixed pixel’ (or ‘mixel’). The extent to
which this occurs is, of course, dependent on the
spatial resolution of the sensor and the spatial
variability of the observed surface. The mixed pixel
effect has a number of implications for information
retrieval from remotely-sensed images. First, the
detected spectral response of a mixel will be some
composite of the individual spectral signals from the
constituent surface materials (Smith et al 1985).
Second, the size, shape, and spatial arrangement
(pattern) of the major spatial entities present within
the scene will be to some extent obscured
(Woodcock and Strahler 1987). The first of these
two problems has been addressed through the
development of a number of techniques designed to
‘un-mix’ the component spectral responses contained
in each pixel (Ichoku and Karnieli 1996). The most
widely used of these is linear mixture modelling, in
which the composite signal is assumed to be a linear
summation of the spectral curves for the component
land-cover types, weighted by their relative
abundance (i.e. proportion of ground covered) within
the pixel. The second problem has received rather less
attention in the field of remote sensing, although it is
the subject of detailed investigation by landscape
ecologists (Barnsley et al 1997b).

2.3.2  Current and future directions
In recent years, there has been an intriguing
bifurcation in the spatial resolution of spaceborne
optical sensors. One element of this has been the
widespread development of ‘moderate’ (or
‘medium’) resolution (~1km) devices (as is shown in
Table 1 and Figure 4; see also Ardanuy et al 1991;
Diner et al 1991; Prata et al 1990). The lineage of
these sensors is simple to trace – deriving from the
outstanding and, to a certain extent, unanticipated
success of the current generation of NOAA’s
Advanced Very High Resolution (AVHRR) sensors
in monitoring the land surface at continental and
global scales.

Hand-in-hand with this, there is a continuing trend
– initiated with LANDSAT-TM and SPOT-HRV
during the mid 1980s – towards sensors with an
increasingly fine spatial resolution. This trend has
been extended through the availability of data from a
range of Russian satellite sensors (e.g. KFA-1000 and
KFA-3000), as well as the Panchromatic sensor
on-board the Indian satellite IRS-1C, and is set to
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Fig 4.  Diagrammatic representation of the range of current and proposed satellite sensors, together with their main spectral and
spatial characteristics.
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Table 1  Characteristics of a number of ‘medium’ or ‘moderate’ spatial resolution satellite
sensors currently in operation or scheduled for launch in the next few years. Some other
‘standard’ remote sensing image sources are set out in Estes and Loveland (Chapter 48)
and Dowman (Chapter 31 Table 1).

Sensor Satellite Spatial Number of Year of launch
resolution spectral bands (actual or 
(at nadir) projected)

ATSR-1 ERS-1 1km 4 1994
ATSR-2 ERS-2 1km 6 1995

POLDER ADEOS-1 6km by 7km 16 1996

VEGETATION SPOT-4 1.15km 4 1997/8

MODIS EOS-1 AM 250m, 500m 30 1998/9
and 1km

MERIS ENVISAT-1 250m (land) 15 (programmable 1988
and 1km (oceans) in position and width)

MISR EOS-1 AM 250m and 1km 4 1998/9



continue with the launch of a number of new,
commercially-operated satellite devices (Table 2).
Each of these instruments will be capable of producing
digital image data with a spatial resolution of between
1 and 5 metres (McDonald 1995; Fritz 1996).

2.4  Angular sampling

Interest in the directional reflectance properties of
Earth surface materials has grown considerably in
recent years, partly in response to the increasing
availability of satellite sensors that can record data
at several different angles with respect to the Earth
surface. This can be achieved in a number of ways
(Barnsley 1994), namely:

● by means of a very wide across-track field-of-
view (e.g. NOAA’s AVHRR sensors, and the
proposed SPOT-4 VEGETATION, MODIS,
and MERIS [Medium Resolution Imaging
Spectrometer] instruments);

● through the use of a very wide field-of-view in
both the along-track and across-track directions

(e.g. the POLDER [polarisation and
directionality of the Earth’s reflectances] sensor
on board the ADEOS-1 satellite);

● by pointing the sensor off-nadir in the across-
track direction (e.g. the HRV [high resolution
visible] instruments on the SPOT-series of
satellites), the along-track direction, or both;

● through the use of multiple sensors pointed
forward, nadir and aft of the platform (e.g. the
multi-angle imaging Spectroradiometer [MISR]
scheduled for launch as part of NASA’s Earth
Observing System); or

● through the use of a conical scanning motion
(e.g. the Along-Track Scanning Radiometer
ATSR on the European remote sensing
[ERS] satellites).

The range of view angles and solar illumination
angles over which a given instrument can acquire
data is controlled not only by the geometry of the
sensor, but also by the orbital characteristics of the
satellite on which it is mounted (Barnsley et al 1994).
In most cases, the actual number of angles at which
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Table 2  Characteristics of a number of very high spatial resolution satellite sensors
currently in operation or planned for launch in the near future (see also Dowman,
Chapter 31 Table 1).

Sensor Year of Spatial resolution Swath width Stereoscopic
launch Pan         XS Pan        XS viewing
(actual or capability
projected)

KFA-1000 1994 6m — 80km — No

KFA-3000 1994 3m — 27.5km — No

IRS-1C 1995 5.8m — 70km — Yes

KVR-1000 1996* 2m — 40km — No

Earlybird 1997 3m 15m 6km 30km Yes

AVNIR 1997 8m 16m 80km 80km Yes

EROS 1997 1m 1.5m 15km 15km Yes

Quickbird 1997 1m 4m 6km 36km Yes

Space Imaging 1997 1m 4m 11km 11km Yes

Orbview-1 1998 1–2m 4m 8km 8km Yes

GDE 1998 1m — 15km — Yes

* digital format



reflectance data can be sampled is quite limited
(Figure 5). Appropriate mathematical models are
therefore required to interpolate between, and to
extrapolate beyond, these sample measurements to
describe and account for the full BRDF. If the
models are also invertible, it may be possible to
retrieve estimates of certain properties of the surface
(e.g. LAI) from the sample directional reflectance
data. Various BRDF models have been developed
for this purpose, ranging from simple empirical
formulations through to more complex, physically-
based models. While the latter offer significant

advantages in principle, inversion of such models
typically demands the use of computationally-
intensive numerical procedures. For this reason,
attention is currently being focused on the use of
so-called ‘semi-empirical, kernel-driven’ BRDF
models, which can be inverted analytically
(Wanner et al 1995; Barnsley et al 1997c). These
models, however, tend not to be specified in terms of
measurable biophysical properties of the land
surface, so that further work is required to establish
the relationships between such properties and the
model parameters.
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Fig 5.  Angular (directional) sampling capability of NASA’s proposed MODIS (moderate resolution imaging spectrometer) satellite
sensor (in the form of a polar plot) for a fixed site at 50°N over a 16-day period around the vernal equinox (Barnsley et al 1994).
Each dot indicates a single occasion on which the sensor is able to observe the target; the position of the dot in the plot indicates the
angles at which this was achieved. The figure illustrates the comparatively sparse sample of directional reflectance data that can be
acquired using this and other, similar sensors.
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2.5  Wave polarisation

The majority of sensors able to measure the
polarisation properties of Earth surface materials
operate in the microwave region of the
electromagnetic spectrum. Sensors such as these can
transmit and receive (record) radiation in a given
plane polarisation. Where the transmitted and
received radiation have the same plane polarisation,
the signal is referred to as being like-polarised; where
they are of different polarisations, the signal is said
to be cross-polarised (Rees 1990). Imaging radar
polarimeters can derive a measure of backscattered
radiation for any configuration of transmitted and
received radiation using a process known as
polarisation synthesis (Zyl et al 1987).

The POLDER instrument, launched on board the
ADEOS-1 satellite in 1996, offers the capability to
measure polarisation properties at visible and
near-infrared wavelengths (Deschamps et al 1990).
The primary use envisaged for these data is, however,
to derive information on atmospheric aerosol
properties, rather than the biophysical
characteristics of land surface materials.

2.6  Temporal resolution

In simple terms, temporal resolution refers to the
frequency with which repeat data can be acquired
for a given area on the Earth’s surface. This is
controlled both by the geometry of the sensor and
by the orbital characteristics of the satellite on
which it is mounted. In terms of the latter, two
main types of orbit are used by Earth-observing
sensors, namely: (a) Sun-synchronous, near-polar;
and (b) geo-stationary (or geo-synchronous).

Satellites in the first of these two orbits progress
in a near-circular path at an altitude of between
500km and 1000km above the Earth’s surface. The
orbital plane is inclined, so that the satellite passes
close to, but not over, the poles (hence ‘near-polar’).
By taking advantage of precession in the satellite’s
orbit, it is possible to ensure that the satellite crosses
the equatorial plane at approximately the same local
solar time on each orbit (hence ‘Sun-synchronous’).
The rotation of the Earth beneath the satellite means
that successive orbits pass over different regions of
the surface. Eventually the satellite will complete its
sequence of orbits and begin to trace the path of the
first orbit again. For a point on the equatorial plane,
the period between two such orbits is known as the
repeat cycle; LANDSAT-5, for example, has a repeat

cycle of 16 days. It is possible to observe a given point
on the Earth’s surface more frequently than this,
depending on the latitude of the site and the
configuration of the sensor. Since the satellite’s orbital
paths converge towards the poles, there is increasing
overlap between images acquired on different orbits at
higher latitudes; such sites can therefore be imaged
more frequently than those at lower latitudes. This
effect is also controlled by the field-of-view and,
hence, the swath width of the sensor: the wider the
swath width, the greater the number of occasions on
which a given point can be imaged during the
nominal repeat cycle. Even so, key episodic and
seasonal events may still be missed because of cloud
cover or simply because the event took place while
the satellite was tracing another orbit. The former is,
of course, less of a problem for active microwave
systems, since these can penetrate cloud. The latter
can be offset, to a certain extent, by tilting (or
pointing) the sensor away from the sub-satellite point
(i.e. off-nadir). This allows the sensor to target an area
for repeated imaging, even though the satellite is not
directly overhead (Barnsley et al 1994).

The second major type of satellite orbit referred
to above is the geo-stationary or geo-synchronous
orbit. Here, the satellite maintains a fixed position
above the Earth’s surface, usually at an altitude of
around 36 000 km. This orbit is generally reserved
for operational meteorological satellites which
require frequent coverage (i.e. once every 20 to
30 minutes) of very large areas at a comparatively
low spatial resolution (1–5 km) (Kramer 1994).

3  SELECTED DEVELOPMENTS IN DATA
PROCESSING

It is not possible, within the scope of this chapter, to
provide a comprehensive review of the full range of
techniques and algorithms that are used to derive
useful information from digital remotely-sensed
images; although some have already been mentioned
briefly in the preceding sections. Rather, this section
attempts to highlight just a few of the most important,
recent developments in image data processing.

3.1  Modelling surface-radiation interactions and
data assimilation

Perhaps the most significant developments in the
processing of remotely-sensed data over recent years
have been the increasing focus on converting the
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detected signals into estimates of key geophysical
units and the assimilation of these data into
numerical models of various environmental processes
(Hall et al 1995; Townshend et al 1995). The first of
these two elements is being achieved through the use
of increasingly sophisticated, deterministic, radiative-
transfer and energy-balance models, some of which
have been alluded to in the preceding sections. This
general approach is, for example, central to NASA’s
‘Mission to Planet Earth’ programme, embodied in
the Earth Observing System (EOS) and its
constituent satellite sensors (Running et al 1994).
The significance of this development cannot be
overstated: it marks the continuing transition of
digital remote sensing from being principally an
instrument for large-scale (land cover) mapping, to a
more comprehensive, robust, and effective scientific
tool for environmental monitoring.

The second element – assimilation of
remotely-sensed data products into models of, for
example, the global carbon cycle, the surface energy
balance, and the net primary productivity of the
land surface and oceans – is also receiving
widespread attention (Running et al 1994;
Townshend et al 1995). It reflects the recognition
among much of the remote sensing community that,
in addition to developing the science and technology
to underpin remote sensing sensu stricto, there is a
need to generate data products that are both
appropriate to, and immediately usable by, the
broader community of environmental scientists: that
the rationale for remote sensing lies not simply in the
development of sensors and algorithms, but more
importantly in addressing real environmental
problems. The scientific challenges that this creates
include the requirement (a) to handle very large
volumes (i.e. Tera-bytes) of data, often acquired by
more than one sensor and/or satellite; (b) to process
these data using robust, computationally-efficient,
and validated algorithms, based on methods
acceptable to most, if not all, of the target
community; and (c) to generate usable products at
the appropriate spatial and temporal scales, often in
near-real time. Ultimately, remote sensing will be
measured against how successful it is in meeting
these stringent challenges.

3.2  Image classification and segmentation

At a somewhat different level, the production of
thematic maps from digital, remotely-sensed images –

commonly referred to as image classification – remains
an area of considerable research interest. Attention is,
however, shifting from the use of standard, statistical
classification algorithms to the wider application of
artificial neural network (ANN), fuzzy-set, knowledge-
based and evidential reasoning techniques (Fischer,
Chapter 19; Bezdek et al 1984; Mesev et al 1995;
Schalkoff 1992; Wilkinson 1996). The attraction of
ANNs, for instance, lies in their ability to ‘learn’ by
example, as well as their relative freedom from
assumptions about the statistical distributions of the
candidate classes (cf. conventional statistical classifiers,
such as the maximum likelihood algorithm; Foody
1992). Fuzzy-set techniques, on the other hand, move
away from the notion that each pixel must be assigned
a single label drawn from a set of discrete, mutually
exclusive classes. In doing so, they provide another way
to account for the mixed pixel (‘mixel’) effect in
remotely-sensed images (Foody 1992; see also Fisher,
Chapter 13). Finally, both knowledge-based and
evidential reasoning approaches offer ways to
incorporate ancillary data (e.g. digital map data
exported from a GIS), heuristics, and facts or evidence
into the classification process (Wilkinson 1996).

Despite these developments, the overwhelming
majority of studies continue to use image-
classification algorithms that operate at the level of
the individual pixel; that is, algorithms in which each
pixel is assigned a label solely on the basis of its
multispectral response, without reference to those of
neighbouring pixels or the context of that pixel
within the scene as a whole. By comparison,
relatively limited use has been made of syntactic
(or structural) pattern-recognition techniques,
which operate on discrete, multi-pixel regions
(i.e. meaningful spatial entities or ‘objects’) to infer
further, higher-level information about the scene
(Schalkoff 1992). Notable exceptions include the
studies by Moller-Jenson (1990) and Nichol (1990) –
on the spatial generalisation of thematic maps
derived from remotely-sensed data – and, more
recently, by Barr and Barnsley (1997) – to infer
information on land use in urban areas from satellite
sensor images. The comparative lack of attention
given to syntactic pattern-recognition techniques in
remote sensing to date is probably because of the
relatively coarse spatial resolution of the images
acquired by the current generation of satellite
sensors. This results in uncertainty, not only about
the nature (i.e. land cover type) of the principal
spatial entities present within the scene, but also their
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morphological properties (e.g. size, shape, and
boundaries) and the spatial (e.g. adjacency,
containment, distance, and direction) and structural
(e.g. ‘forms part of’) relations between them. This
situation is, however, likely to change with the advent
of the new generation of very high spatial resolution
(<5m), commercial satellite sensors (but see Smith
and Rhind, Chapter 47, for a discussion of some
residual limitations). Indeed, data acquired by these
new sensors demand alternatives to the conventional,
per-pixel classification algorithms, if we are to derive
information other than simple land cover about the
observed scenes. Syntactic pattern-recognition
techniques offer considerable potential in this context.

3.3  Integration of GIS and remote
sensing technologies

The relationship between remote sensing and GIS
has received considerable attention in the literature
and, indeed, remains the subject of continuing
discussion (Hinton 1996; Wilkinson 1996). Much of
this discussion revolves around the scientific and
technical issues relating to ‘integration’ of the two
technologies (Ehlers et al 1989, 1991), so that
remotely-sensed images can be used both as a source
of spatial data within GIS and to exploit the
functionality of GIS in processing remotely-sensed
data. Despite this, the actual progress towards the
goal of full integration is surprisingly slow. While
this is undoubtedly due to the very considerable
technical challenge of accessing, manipulating, and
visualising vector, raster, and tabular data
simultaneously, it seems unlikely that technical
constraints have been the sole barrier to achieving
full integration. It might be argued that competing
imperatives in both remote sensing and GIS have
tended to draw attention away from the issue of
integration. For instance, from a remote sensing
perspective, the recent focus on monitoring global
environmental change using coarse (~1km) spatial
resolution sensors – and the assimilation of the data
that they produce into various environmental
simulation models – has deflected some of the
attention away from the traditional issues of large-
scale mapping, which are more closely allied to the
concerns and use of GIS. Similarly, one can see a
number of other developments – such as the
emergence of GIS functionality (albeit fairly limited)
within standard office software, the potential for
wider access to GIS software via network/Web

platforms, and the role and application of
multimedia technology within GIS – that have
consumed much of the research and development
effort in the field of GIS.

Nevertheless, there are at least two reasons why
the issue of integration is likely to receive fresh
impetus in the near future. The first is the increasing
availability of data from the very high spatial
resolution, commercial satellite sensors that are
scheduled for launch over the next few years. These
will produce data appropriate to many of the
large-scale mapping projects in which GIS have
often been used, and are likely to compete directly
with the traditional aerial photography market. The
second is that these high resolution images require
the development of new data processing algorithms,
such as syntactic (or structural) pattern-recognition
techniques, to extract the maximum amount of
information about the observed scene. There is a
considerable overlap between the objectives and
functionality of these techniques and those used in
mainstream GIS, at least in terms of their potential
for spatial analysis, and this may also bring the two
communities closer together. Estes and Loveland
(Chapter 48) provide a more detailed overview of
the management of the data products of new remote
sensing technologies.

4  CONCLUSIONS

This chapter has attempted to provide a broad
overview of the nature of digital remote sensing,
including: (a) the physical, chemical, and biological
properties that control the interaction of
electromagnetic radiation with Earth surface
materials; (b) the impact of sensor and platform
design on the ability to record these signals and the
nature of the data that are produced; and (c) the
derivation of useful information from these data.
The coverage has necessarily been brief and
somewhat partial. It is impossible, within the scope
of this chapter, to do justice to all aspects of the
subject. For example, little has been mentioned of
the development of remote sensing as it relates to
the study of the Earth’s oceans and atmosphere, or
to the exciting advances that have been made in the
application of interferometric synthetic aperture
radar (SAR) to measure the morphology and
deformation of the Earth’s crust. Perhaps some of
these aspects are of less relevance to the wider GIS

Digital remotely-sensed data

463



community. What should be apparent, however, is
the rapid developments taking place in – and the
increasing breadth of – digital remote sensing at the
present time. Thus, while remote sensing will
continue to be an important source of spatial data
that can be used within GIS, the nature of these data
is set to change in terms of an increase in their
diversity and an improvement in their utility,
accuracy, and reliability.
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