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Principles of spatial database analysis and design

Y BEDARD

and design methods.

1 INTRODUCTION

This chapter examines the principles of spatial
database analysis and design. These two critical phases
of system development remain informal in most small
GIS projects. However, when one needs to build a large
system, to facilitate its maintenance or to work with a
team of information technology specialists, formal
engineering-like methods must be adopted.

Formal methods for database analysis and design
have been developed to master complex problems.
They provide fundamental principles and well-
defined steps aimed at improving the efficiency of the
database development process and the quality of the
result. These methods have existed since the 1970s
and rely heavily on models and dictionaries. They
have been supported for more than ten years by
computer assisted software engineering (CASE) tools
which facilitate the building of these models and
dictionaries. Although a growing number of GIS
specialists master formal methods, they rarely use
CASE tools to create their spatial database schema
and dictionary or to generate GIS code. This is partly
because existing methods and tools must be extended
to become truly effective with spatial databases.

The following sections cover the fundamentals of
spatial database analysis and design. After defining
basic concepts, the rationale of formal analysis and

This chapter covers the fundamentals of spatial database analysis and design. It begins by
defining the most important concepts: ‘spatial database’, ‘analysis’, ‘design’, and ‘model’;
and continues with a presentation of the rationale supporting the use of formal methods
for analysis and design. The basic elements and approaches of such methods are
described, in addition to the processes used. Emphasis is placed on the particularities of
spatial databases and the improvements needed for non-spatial methods and tools in
order to enhance their efficiency. Finally, the chapter presents a set of tools, called CASE
(computer-assisted software engineering), which are built to support the formal analysis

design is presented. This is followed by a discussion of
the methods used, and by a description of the process
to follow for spatial databases. Characteristics of
spatial databases are discussed along with examples.
Finally, CASE tools are presented and discussed in a
spatial database context.

2 BASIC DEFINITIONS AND CONCEPTS

For the purpose of this chapter, ‘spatial database’
refers to any set of data describing the semantic and
spatial properties of real world phenomena (temporal
properties are also possible). Such spatial databases
can be implemented in a GIS, in a computer-assisted
design (CAD) system coupled with a database
management system (DBMS), in a spatial engine
accessed through an application programming
interface (API), and sitting on top of a DBMS, in a
universal (object-relational) server with spatial
extension, in a web server with spatial viewer, etc.
These spatial databases can use flat file, hierarchical,
network, relational, object-oriented, multidimensional
or hybrid structures. In addition, they can be organised
in very diverse architectures such as stand-alone GIS,
client-server solutions, intranets or spatial data
warehouses. Gone are the days of a spatial database
implemented solely on a stand-alone GIS.
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Many definitions exist with regards to ‘analysis’
and ‘design’, sometimes in contradiction with each
other, sometimes very specific to a full life-cycle
system development method (see Carmichael 1995
and Olle 1991 for a comparison of methods). This
chapter uses the most common and intuitive
definitions of analysis and design, but also
recognises the fuzziness of the distinction between
them (Jacobson and Christerson 1995). In a spatial
database context, analysis is the action of
understanding and describing what the users need
for their spatial database. Thus, it results in a formal
and detailed database requirements specification.
Similarly, design is the action of defining and
describing how the analysis result will be
implemented in the selected technology. It is where
we consider practical issues such as the limitations of
the technology used to manage the spatial database,
the desired performance and flexibility, the
implementation of security requirements, etc.
Design, therefore, results in a formal and detailed
programming specification.

Another fundamental definition is that of
‘models’ since formal models are the thinking tools
as well as the final results of database analysis and
design. In this context, models are formal
representations of something that needs to be
understood, remembered, communicated, and
tested; they are purposeful surrogates built at a given
level of abstraction to include only what is relevant
to the system being developed. When a model
represents how users’ reality is organised in terms of
objects, properties, relationships, and processes, then
it is described as an ‘analysis model’, and represents
what users want to be implemented in their spatial
databases. The analysis model is also called the
business model, conceptual model, user’s model, and
sometimes specification model. When a model
represents the database internal structure and related
processes as implemented, then it is described as a
‘design model’. This latter is also called the
implementation model, internal model, or physical
model, although the level of detail may vary.

3 THE RATIONALE FOR FORMAL ANALYSIS
AND DESIGN METHODS

For any database, analysis and design models
determine what can be done easily, with difficulty, or
not at all, once the system has been implemented.
However, the impact of bad models appears to be
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higher for spatial databases than it is for non-spatial
databases. Consequently, and especially when
considering the high cost of spatial data and the
long delays in acquiring them, an organisation’s
return on investment is very sensitive to good
analysis and design.

Using a formal method to complete such tasks
provides guidance, supports the thinking process and
encourages consistent communication and
documentation. There are several such methods. The
most recent are based on the object-oriented
paradigm (Worboys, Chapter 26; Booch 1994; Coad
and Yourdon 1991a, 1991b; Cook and Daniels
1994a; Jacobson et al 1993; Martin and Odell 1993;
Rumbaugh et al 1991; Shlaer and Mellor 1991).
Although these methods have been created to
support any type of software development and built
to support object-oriented (OO) programming, they
can be used efficiently for database development.
They all rely on solid theoretical concepts and have
all been tested over and over again so they have
acquired formal rigour and proved their utility. Once
a formal method is mastered, it is faster and better
results are delivered, especially when supported by
CASE tools (see section 5). Mastering a method also
helps developers to solve the most important
problems before computerisation; the sooner the
problems are solved, the less expensive they are to
solve. Finally, good documentation facilitates
maintenance (e.g. adding new data types and new
processes, migrating to new equipment) as well as
software reuse; it also frees the system from its
dependency upon individuals. It has been recognised
for several years that the higher cost of such a formal
approach is lower than the continuous hidden costs
of chaotic data and processes. Figure 1 illustrates the
impact of good analysis and design methods on the
efforts to build and maintain a spatial database.

Use of formal analysis and design methods is also
being pushed by the increasing complexity of the
spatial database development process. The recent
evolution of the software industry indicates that
spatial databases are becoming mainstream
solutions seamlessly integrated with non-spatial
corporate data. This is happening more and more,
with new categories of tools outside the traditional
GIS packages. In comparison to non-spatial
databases, these solutions offer a higher level of
diversity both within and across categories. The
complexity of spatial objects is also inherently
higher; issues such as geometry, spatial reference
systems, movement, spatial precision, spatial
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Fig 1. Impact of formal analysis and design methods on efforts to build and maintain a spatial database.

integration, metadata management, database
versioning, data quality analysis, and so on may
have a tremendous impact when designing a
database for spatial querying, spatial analysis, spatial
data exchange, and system interoperability
(Oosterom, Chapter 27). A look at the ISO
SQL3/MM spatial standard (ISO 1996a), the ISO
TC211 document Geographic Information — Rules for
Application Schema (ISO 1996b), and the Open GIS
Virtual Geodata Model (OGC 1996) rapidly
convinces the reader of this inherent complexity of
spatial data (see Sondheim et al, Chapter 24). Such
complexity adds to the omnipresent need for very
high performance, a need which encourages database
structures which are denormalised and difficult to
understand. Thus, spatial database analysis and
design must rely more than ever on formal methods
to cope efficiently with such levels of complexity,
especially in large projects. Consequently, spatial
database developers have a higher need to split the
problem between analysis and design and to deliver
separate models. According to previous definitions,
analysis focuses on real-world issues independent of
the technology, while design focuses and depends
completely on the technology selected. Such a
separation helps to better understand users’ needs,
to structure the database, to facilitate maintenance,
and to encourage metadata management and
software reuse. This split is essential for multi-
platform environments and systems interoperability
— one of today’s most challenging issues for spatial
databases (Sondheim et al, Chapter 24). Such a
‘divide and conquer’ strategy has been used for over
20 years in database design (ANSI/SPARC 1975). It
is clearly defined in most formal methods, including
OO methods, in spite of a different claim in their

first years. (The initial claim stated that there is a
perfect one-to-one mapping between the objects of
the analysis model and the objects implemented with
OO programming tools. However, with real and
large projects, it became obvious that the ‘analysis-
to-design’ translation was not straightforward, even
with the best OO systems. In addition, most of
today’s commercial database technologies still rely
on the relational approach, with or without OO
extensions, thus offering only limited and indirect
capability to support OO concepts; this is especially
true for spatial databases.) As clearly stated by Cook
and Daniels (1994b), ‘an important question is the
extent to which the activities of analysis and design
can be merged. The simplistic approach is to say that
object-oriented development is a process requiring
no transformations, beginning with the construction
of an object model and progressing seamlessly into
object-oriented code . . . While superficially
appealing, this approach is seriously flawed. It
should be clear to anyone that models of the world
are completely different from models of software.’
Today’s practice is to use at least two levels of

models, separating the ‘what’ from the ‘how’ and
leading to more robust and reusable results.
Depending on the formal method being used, these
levels are based either on different modelling
techniques (e.g. entity/relationship schema for the
conceptual level, relational schema for the logical
level, structured query language, SQL, code for the
physical level) or on the same technique (e.g. the
additive approach where more details are introduced
while going from the analysis level to the
implementation level). Batini et al (1992) offer an
excellent description of the common three-levels
approach used with the entity/relationship
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paradigm. Cook and Daniels (1994b) explain their
three levels in an OO paradigm. Rumbaugh (1996)
clearly presents the layered additive approach
common in the OO community (Worboys, Chapter
26). When applied correctly, the multi-level approach
is quite powerful since it allows developers to work
at different levels of abstraction for different
purposes. Integrating all the above mentioned issues
into only one model makes the work much less
efficient and the result less reusable. Consequently
the GIS community is also embracing the multi-level
approach in major efforts such as the OGIS Object
Model (OGC 1996) and the ISO-TC211 rules for
application schema (ISO 1996b).

While doing analysis and design, spatial database
developers benefit from a method with a higher
power of expression than traditional methods.
Research in recent years has made high-level

modelling more efficient and semantically complete,
including for spatial databases (e.g. Bédard et al
1996; Caron and Bédard 1993; Golay 1992; ISO
1996b; Pantazis and Donnay 1996). However, spatial
database analysts still need to improve their
modelling techniques to depict better the spatial and
temporal properties of geographic features (e.g.
Figure 2) and to include geometric considerations
better. This is needed to help the developer to
convince the user that he or she understands how
every piece of information is semantically and
geometrically defined and related to the others, how
it is used, what are the allowed values, where it
comes from, how reliable it is, etc. Similarly, spatial
database designers must convince users that they
have created a solution offering the best way to map
every element of the analysis model into a piece of
code supported by the client’s technology. To do so
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Fig 2. Extract of an analysis model made with Oracle Designer 2000 (Oracle Corporation 1996) where spatial and temporal
pictograms (see Figures 4 and 5) are added to indicate the geometry and temporality of geographical features (model in development
for Québec Ministry of Transportation at the time of writing the present chapter).
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efficiently and to facilitate communication,
especially in the multipurpose context of many
spatial databases, one must extend the traditional
methods, as explained in the next section.

Finally, database developers rely more and more
on CASE packages. The arrival of such tools has
been a big incentive for databases developers to
embrace formal methods, especially when the tools
automatically generate code from the models and
vice versa (cf. reverse engineering). In the GIS arena,
a similar movement has started. For example, there
already exist graphical schema builders with an
integrated data dictionary for the design of the
spatial database (e.g. Intergraph MGE). However,
we need to go further and to automate this process
right from the analysis model. Although no
complete tool exists for spatial databases outside
university laboratories (e.g. Orion, developed in 1992
by the author), we can expect that the present
international standardisation efforts and the strong
demand for GIS interoperability will push the
development of such extended methods and tools.

4 FORMAL METHODS FOR SPATIAL DATABASE
ANALYSIS AND DESIGN

A formal analysis and design method is a set of
guidelines and rules to capture the semantics of
users’ reality and to build a spatial database
supporting it. It is used for thinking, documenting,
and communicating in a consistent and coherent
manner via models. Thus, modelling is the
foundation of analysis and design. Any model is
built out of a deliberately limited but sufficiently
powerful and crisply defined set of constructs. These
constructs, along with a simple notation and a small
set of rules, constitute a ‘formal language’ (also
called a formalism). Such a formalism can have a
textual notation, a graphical notation, or a mix of
the two. Human cognitive research and psychology
have shown that graphical languages are more
efficient for synthetic views and textual languages for
detailed descriptions (see Figure 2 which shows both
graphical and textual notations). Cognitive sciences
have also shown that combining both graphical and
textual languages is necessary to achieve clear
understanding. This fact is recognised by formal
methods, since they offer graphical notations to
create, present, validate, and manipulate models and
use textual details in dictionaries and programming
code. However, the graphical notations are the most
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visible part of a method and may mistakenly be
thought of as the method. This is misleading since
graphical notations only reflect a part of the
underlying constructs proposed by a method.

The basic constructs are very similar in nature
across formal methods of the same type but differ
among types (relational, entity relationship, and object
oriented). The relational approach relies on one basic
construct called a relation which is a table of columns
(attributes) and rows (occurrences of a phenomenon)
manipulated with a relational algebra. The elegance of
the relational approach lies with its simplicity, while its
popularity relies on the fact that most commercial
DBMS have implemented the relational structure.
However, it is widely known that ‘the relational model
is limited with respect to semantic content (i.e.
expressive power) and there are many design problems
which are not naturally expressible in terms of
relations. Spatial systems are a case where the
limitations become clear.” (Worboys et al 1990)

The entity/relationship approach utilises more
constructs, such as ‘entity’, ‘attribute’, and
‘relationship’. This provides a better expressive
power; however, few DBMS support the
entity/relationship structure. Also, an
entity/relationship schema must be translated into a
relational schema to be implemented in a relational
DBMS. Worboys et al (1990) mention that ‘many
systems may be modelled using entities, attributes
and relationships, including systems with a
dominating spatial component ... However,
experience has shown that for many systems the
initial set of modelling constructs (entity, attribute,
and relationship) is inadequate’. In fact, the last few
years have witnessed the addition of several
extensions to entity/relationship constructs,
including aggregation, generalisation, geometry, and
temporality (e.g. Modul-R: Bédard et al 1996; Caron
and Bédard 1993).

Finally, the OO approach relies on: (1) ‘objects’
encompassing ‘properties’ (or attributes) with the
‘operations’ modifying data (also called methods
and procedures); (2) on ‘relationships’ between
objects; (3) on aggregation of objects into more
complex objects; and (4) on generalisation or
specialisation of the types of objects to more general
or more specific types, respectively. The OO
approach also uses ‘states’, ‘events’, and ‘messages’
to show the behaviour of objects. Such an integrated
description leads to richer database analysis and
design (see the Unified Modelling Language for the
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most recent and robust constructs: Booch et al
1996; Worboys 1995). It is undoubtedly the most
powerful modelling paradigm nowadays. Part of
the success of the OO approach lies in the fact that
‘the object-oriented paradigm, which originated
from programming languages, has been
successfully applied to the analysis and design and
even earlier phases of system development’
(Magrogan et al 1996).

Like entity/relationship, it is possible to extend
OO methods with spatial and temporal ‘plug-ins’ to

RNS Segment

increase efficiency (Figure 3). The new constructs
must include abstraction mechanisms powerful
enough to facilitate the analysis phase. At the design
phase they must also map to the built-in proprietary
components of GIS, CAD, universal servers, and
similar tools on the market. It must be remembered
that these generic structures and operators deal with
geometric primitives, graphic properties, spatial
reference systems, topological relationships, spatial
operators, and so on which do not exist in
traditional DBMS.
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Fig 3. Extract of an object model using spatial ‘plug-ins’ (Bédard and Sondheim 1996); see Figure 4 for explanation of pictograms.
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While at the design level the offered primitives
must be considered, at the analysis level these
complexities are hidden from the user; only the
general geometric information is relevant (e.g. does
the user want to have this type of object represented
on the map? using which type of shape?). In fact,
during the analysis phase, users do not have to deal
with the intricacies of points vs nodes vs vertices, lines
vs arcs vs polylines, metric vs topology, and so on;
they should only deal with houses, lots, streets, and
similar concepts of interest. Accordingly, methods
should be extended with the proper geometric
constructs and coding rules. Their availability in
commercial CASE tools will improve the efficiency
of analysis and design for spatial databases.

All of the constructs mentioned above result from
the fundamental abstraction concepts used by
humans to understand the world where they live:
classification, association, aggregation, and
generalisation. These are used by the system analyst
who tries to understand the users’ perceptions of their
reality (e.g. the types of objects they deal with, their
properties, how they relate to each other, how they are
geometrically represented, how they behave, how they
are used to provide new information, how they are
spatially related). These are also the abstraction
mechanisms used by the system designer to build
efficient programming code on the selected spatial
database technology. The process used when applying
these abstraction mechanisms is a subtle one. It calls
for creativity as well as observation and rigour. When
a formal method is used it adds an engineering-like
rationality to a work of art. The next paragraphs
explain some technical elements of the analysis and
design processes for spatial databases.

To start the analysis phase, the different types of
features which are of interest to the users (e.g. house,
street, owner, contract) must be identified; these
features may or may not exist in their present
systems. Then the semantic properties and identifiers
of these features (e.g. the value, style, and address of
the feature ‘house’) should be selected. In the case of
geographical features, the types of geometry must be
identified as well as a spatial reference system.
Bédard et al (1996) present such geometries. They
combine a dimensional pattern (0-dimensional,
1-dimensional, 2-dimensional, 3-dimensional) with a
composition pattern (simple, complex, alternate,
multiple). More specifically, the ‘simple’ pattern is
used when a geographic feature is geometrically
represented by only one occurrence of a given
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dimension (e.g. a park represented by a single
polygon, i.e. a 2-dimensional primitive); this is the
most frequent situation. The ‘complex’ pattern
indicates geometric aggregations (e.g. hydrographic
networks made of 1-dimensional rivers and
2-dimensional lakes). The ‘alternative’ pattern
indicates mutually exclusive geometries (e.g. parks
digitised as points if smaller than 500 square metres
or as polygons if larger). Finally, the ‘multiple’
pattern is the rarest of all. It indicates that more than
one shape must be digitised for each occurrence of a
geographical feature; this happens when the desired
shapes cannot be deduced from each other. Consider,
for example, the feature ‘city’ which is represented by
a polygon on certain maps and by a point located
downtown on other maps; the point cannot be
derived from the polygon and thus requires its own
digitising. Figure 4 shows the graphical notation used
for these patterns in the Modul-R method while
Figure 2 illustrates their use in a model.

For spatio-temporal databases (e.g. temporal
GIS), the types of temporality needed for each type
of feature must be added. These temporalities
follow the same logic as the spatial patterns, i.e.
dimensional pattern (instantaneous 0-dimensional,
durable 1-dimensional) and composition pattern
(simple, complex, alternate, multiple). These
patterns apply to the existence of the feature, its
presence, its functionality, and its evolution
(semantic and geometric). (See Figures 2 and 5.)

Once the desired features are defined with their
semantic, geometric and temporal properties, the
analyst must identify the relationships of interest
between these features. These include semantic
relationships (e.g. house ‘is owned by’ owner) as well
as semantically significant spatial and temporal
relationships (e.g. house ‘is on’ lot). Integrity

Simple (e.g. 0-dimensional) E|

o] [

Complex (e.g. 1-dimensional
and 2-dimensional)

Alternative (e.g. 0-dimensional
or 2-dimensional)

Multiple (e.g. 0-dimensional
or 2-dimensional)

Fig 4. Graphical notation used for spatial patterns.
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Simple (e.g. 0-dimensional)

O
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Complex (e.g. 0-dimensional
and 1-dimensional)

Alternative (e.g. 0-dimensional
or 1-dimensional)

Multiple (e.g. 0-dimensional,
0-dimensional plus
1-dimensional)

Fig 5. Graphical notation used for temporal patterns; an
example of a spatio-temporal pattern is also presented, that
is one of a 0-dimensional object (e.g. an emergency vehicle)
with a position which sometimes varies continuously and
sometimes remains stable.

constraints must also be specified as they restrict
the content of the spatial database. There are
attribute rules (e.g. lists of values for nominal
attributes, ranges for numeric attributes), inter-
attribute rules (e.g. building.area smaller than
lot.area), and inter-object rules (e.g. lot existed
before building). The latter include the cardinalities
of relationships (e.g. houses built on only one lot,
but a lot may have 0 to N houses).

All along this process the analyst must build a
schema and dictionary which are sufficiently
complete for the programmers while keeping the
result understandable to the users. Such a
compromise between two contrasting objectives can
be accomplished through the building of views, that
is, exact or modified-but-compatible subsets of the
global model and dictionary. Views also help to
divide the problem into smaller and more
manageable parts. The analyst must also decide the
level of detail for the model and dictionary:

‘it is not always possible or desirable to capture every
nuance and restriction in a model: similarly, there is
always a danger in producing a convoluted model
that captures every small detail at the expense of
general understandability. As a basic principle,
therefore, we follow the maxim: “If you must choose
between undermodelling and overmodelling, choose
the undermodel and add textual commentary™.’
(Booch et al 1996)

The analyst verifies the logic, coherence, and
completeness of his or her model, dictionary, and
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views. At this point the model is normalised if the
approach is relational or entity/relational.
Normalisation is used to eliminate data
redundancies and dependencies, to facilitate the
maintenance of the integrity of the database, and to
build application-independent structures. If the
analyst works with an extended entity/relationship
or an OO approach, then objects can be generalised
with common properties and relationships to create
supertypes. In the case of OO methods, operations
may be added and the dynamic models may be built.
The last verifications are made with additional
interviews and site visits, with formal walk-throughs
with the users, or with testing scenarios.

With regard to the design phase, one needs new
basic constructs. These constructs vary widely
among spatial database management systems, since
they depend on their primitives. For example,
relational systems require foreign keys to materialise
relationships, object-oriented systems require
messages to activate operations, and commercial
GIS require specific links between geometric
primitives and semantic objects. As stated by
Giinther and Lamberts (1994), ‘for the geometric
representation there exists a large variety of spatial
data structures that each support a certain class of
spatial operators’. It may also be required to
optimise the database structure with careful
denormalisations of relational tables or with proper
fusion and separation of objects. In particular,
denormalisation is a very popular technique for
spatial databases because of the large amount of
spatial data handled for every single request,
coupled with the need for very high performance
(Egenhofer and Frank 1992). This is especially true
when one wants to accelerate spatial analysis.
However, alternative ways should be investigated to
improve the performance of the system, either
through better programming of queries and
procedures or through better indexing, clustering,
and buffer management.

To facilitate the preceding steps of analysis and
design, different techniques may be used, like
building throw-away and evolved prototypes to
validate user requirements. One may also include
‘use cases’ or ‘scenarios’ (Jacobson and Christerson
1995) and ‘CRC Cards’ (Wilkinson 1995) which
detail how users interact with a database. Finally,
database ‘patterns’ offer well-documented and tested
solutions to common problems (Coplien 1996;
Fowler 1995; Gamma et al 1995).



In spite of such aids, certain steps of analysis and
design lead to revisiting the models, redefining
objects, adding attributes, etc. Such trips back happen
naturally because the more we advance into the
details, the more we understand the subtleties. Thus,
analysis and design are not clear-cut sequential
processes, but rather are incremental and iterative
processes. In the past, most methods and CASE tools
forced the developer to create very definite breaks
between phases, and going back was difficult.
Nowadays, with CASE tools offering reverse
engineering, and OO methods suggesting additive
models, it has become natural to iterate. In spite of
this iterative nature and the resulting fuzzy boundary
between the analysis and design processes, there
remain two clearly distinct results: the technology-
independent analysis model describing the users’
spatial reality as understood once the project is
complete, and the design model describing the spatial
database as developed on the selected technology.

5 SOFTWARE SUPPORTING SPATIAL
DATABASE ANALYSIS AND DESIGN

In the first years of formal methods, all schemas and
dictionaries were made by hand. As a result, the
drawing and editing process took more time than the
thinking process, and manually keeping the
coherence among evolving models, views, and
dictionary proved to be an almost impossible task.
This problem was solved by the new category of
software created in the mid-1980s, namely CASE.
These packages offered drawing, dictionary,
checking, and reporting functions which accelerated
the creation and modification of the schemas, views,
and reports suggested by formal methods. Using

Easier analysis

Effort

1

Faster design
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such tools greatly increased productivity, especially
when one CASE could import and export results to
another CASE used in the preceding or subsequent
step (Bédard and Larrivée 1992). According to Roux
(1991), ‘the objectives of CASE tools are, in order of
importance: to reduce maintenance considerably, to
provide real quality, to speed up delivery, to develop
at less cost’ (author’s translation). Figure 6 illustrates
the impact of CASE tools on formal methods of
database development.

The first CASE tools copied what was done by
hand and specialised in one type of schema or in one
task of the development process (e.g. an entity/
relationship tool, a data flow diagram drawer, a screen
painter). Most of them were not compatible with
other CASE tools automating the preceding and
following tasks, resulting in limited productivity gains.
Nowadays, most CASE tools support all the schemas,
views, and reports suggested by a formal method, and
the result of a task situated early in the development
process can be used by another task situated later in
the process. This is done via a common dictionary
(also called encyclopaedia, repository, or information
resources dictionary system) which maintains the
coherence among models.

As opposed to diagramming, drawing, and CAD
packages such as Visio, Corel Draw and AutoCAD
respectively, CASE tools store the meaning of each
construct of a method and of each piece of a model
(e.g. objects, properties, relations). They use this
intelligence to enforce the rules of a method and to
control the behaviour of the constructs. For
example, a CASE tool may refuse an object in the
dictionary which is not depicted in a schema, or may
automatically fill parts of the dictionary from a
schema. When an object is moved in a diagram, the
software keeps intact its relationships with the other
objects. When one tries to draw a relationship

Easier programming
and faster delivery

Easier
maintenance

4y

1=Analysis of the requirements
2=Design of the spatial database

3=Programming of the spatial database
4=Maintenance of the spatial database

Time

Fig 6. Impact of CASE tools on formal methods of spatial database analysis and design.
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between two other relationships, the software refuses
this operation if it is not allowed by the method.
When one uses the same name for different objects,
the software requires a change, and so on. Products
such as ERWin, S-Designor, Sylverrun, IEF,
Designer2000, OMTool, and Rational Rose are a few
examples of intelligent CASE tools covering the
entire development and maintenance cycle. Like GIS,
some CASE tools cost thousands of dollars while
others cost a few hundreds, and the latest trend is to
embed limited CASE engines within programming
environments (e.g. Delphi, Visual Basic).

In the case of spatial databases, present
commercial CASE tools can be used. However,
extensions for spatial constructs, rules, and code
generation are needed. Therefore, spatial database

Z'_:;"_ObjectMaker - [mtgmed4] - mtqdic - Level IV - MODUL-R
File Edlit “ieww  Dat Tools TOK  Help
move rectangle 4 node ¥: YOIES DE COMMUNICATION

o1

developers must turn towards a more advanced
category of CASE tools: metaCASE tools. These are
specialised development packages working at the
metamodel level; they can be programmed to accept
the new constructs and rules of a new method and
afterwards to run like a CASE tool for that method.
Several large organisations rely on such a solution to
have a CASE tool adapted to their proprietary
method. This was used to build our spatial CASE
tool called Orion (Figure 7). ObjectMaker and
Paradigm Plus are such products. In comparison to
traditional CASE tools, they offer a large number of
methods. Some recent CASE tools offer similar but
limited extension capabilities. MetaCASE and
extensible CASE products represent the best choice
for spatial databases.
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Fig 7. Example of a screen display of the working prototype Orion built with the Object Maker metaCASE; it shows an extended
entity/relationship analysis model with spatial and temporal pictograms, as well as an extract of the extended data dictionary which is
partly filled automatically from the schema; it is used for automatic code generation for Intergraph GIS.
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6 CONCLUSION

This chapter has presented the fundamental
elements of spatial database analysis and design.
Good analysis and design rely on formal methods.
Such methods help us to work in a more rigorous
manner directed by principles, techniques, and
guidelines. This is particularly important for the
analysis phase: ‘although it represents only a small
proportion of the total development effort, its
impact on the final system is probably greater than
any other phase . . . Analysts estimate that a change
that costs $1 to fix in the requirements stage will cost
$10 in design, $100 in construction, and $1000 in
implementation!” (Moody 1996).

Formal methods rely on specific constructs,
models, and processes like the ones presented in this
chapter. The most recent methods are based on the
object-oriented paradigm, and they are the most
powerful. Like other methods, they are supported by
CASE tools to facilitate the building of models,
dictionaries, documentation, and maintenance.
Present methods and tools may already be used for
the analysis and design of spatial databases.
However, recent research and standardisation efforts
will help to adapt these methods and tools to spatial
information technology. This should further
encourage the development of spatial databases
which are robust and flexible, faster to build, easier
to maintain, and closer to interoperability. Finally,
this will help GIS developers to enter the
mainstream of information technologies which is a
natural evolution.

References

ANSI/SPARC 1975 ANSI/X3/SPARC Study Group on data
base management systems, interim report. ACM SIGFIDET
7:3-139

Batini C, Ceri S, Navathe S B 1992 Conceptual database
design, an entity—relationship approach. Redwood City,
Benjamin Cummings

Bédard Y, Caron C, Maamar Z, Moulin B, Valliére D 1996
Adapting data models for the design of spatio-temporal
databases. Computers, Environment, and Urban Systems 20:
19-41

Bédard Y, Larrivée S 1992 Développement des systémes
d’information a référence spatiale: vers I'utilisation d’ateliers
de génie logiciel. Journal of the Canadian Institute of
Surveying and Mapping 46: 423-33

Principles of spatial database analysis and design

Bédard Y, Sondheim M 1996 Road Network System data
model. Technical report. Geographic Data.
http:llwww.env.gov.be.calgdbclrns

Booch G 1994 Object-oriented analysis and design with
applications, 2nd edition. Redwood City, Benjamin Cummings

Booch G, Rumbaugh J, Jacobson 1 1996 The Unified
Modelling Language for object-oriented development,
documentation set version 0.9 addendum. Santa-Clara,
Rational Software Corporation. hhtp://www.rational.comlot./
uml. html

Carmichael A (ed.) 1995 Object development methods. New
York, SIGS Books

Caron C, Bédard Y 1993 Extending the individual formalism
for a more complete modelling of urban spatially referenced
data. Computers, Environment, and Urban Systems 17: 337-46

Coad P, Yourdon E 1991a Object-oriented analysis, 2nd
edition. Englewood Cliffs, Prentice-Hall

Coad P, Yourdon E 1991a Object-oriented design. Englewood
Cliffs, Prentice-Hall

Cook S, Daniels J 1994a Designing object systems: object-oriented
modelling with Syntropy. Englewood Cliffs, Prentice-Hall

Cook S, Daniels J 1994b Software isn’t the real world. Journal
of Object-Oriented Programming (May): 2-28

Coplien J O 1996 Software patterns. New York, SIGS Books

Egenhofer M J, Frank A U 1992 Object-oriented modelling
for GIS. Journal of the Urban and Regional Information
Systems Association: 3-19

Fowler M 1995 Analysis patterns: reusable object models.
Reading (USA), Addison-Wesley

Gamma E, Helm R, Johnson R, Vlissides J 1995 Design
patterns: elements of reusable object-oriented software.
Reading (USA), Addison-Wesley

Golay F 1992 ‘Modélisation des systémes d’information a
référence spatiale et de leurs domaines d’utilisation
spécialisés, aspects méthodologiques, organisationnels et
technologiques’. PhD thesis, Ecole Polytechnique Fédérale
de Lausanne, Switzerland

Giinther O, Lamberts J 1994 Object-oriented techniques for
the management of geographic and environmental data. The
Computer Journal 37: 16-25

ISO 1996a SQL multimedia and application packages

(SQLIMM) part 3: spatial. SQL/MM: MAD-005.
International Organisation for Standardisation

ISO 1996b Geographic information — rules for application
schema. ISO 15046-9. ISO TC211: WG2 N030 Geographic
information-Geomatics, Working group 2. International
Organisation for Standardisation

Jacobson I, Christerson M 1995 Modelling with use cases: a
confused world of OOA and OOD. Journal of Object-
Oriented Programming (September): 15-20

423



Y Bédard

Jacobson I, Christerson M, Jonsson P, Overgaard G 1993
Object-oriented software engineering. Reading (USA),
Addison-Wesley

Magrogan P J, Schardt J A, Chronoles M J 1996 Object-
oriented conceptualisation. Report on object analysis and
design. Journal of Object-Oriented Programming
(September): 54-63

Martin J, Odell J J 1993 Principles of object-oriented analysis
and design. Englewood Cliffs, Prentice-Hall

Moody D 1996 The seven habits of highly effective data
modellers. Database Programming and Design (October): 57-64

OGC (Open GIS Consortium) 1996¢c The Open GIS abstract
specification. http./lwww.openings.orglpubliclabstract. html

Olle T W 1991 Information systems methodologies, 2nd
edition. Reading (USA), Addison-Wesley

Oracle Corporation 1996 Oracle Designer/2000, Release 1.3

Pantazis D, Donnay J P 1996 La conception de SIG, méthode et
Jformalisme. Paris, Hermés

424

Roux F G 1991 Comment le génie vient au logiciel.
L'informatique professionnelle 93(April): 19-26

Rumbaugh J 1996 Layered additive models: design as a
process of recording decisions. Journal of Object-Oriented
Programming (March—April): 21-48

Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W
1991 Object-oriented modelling and design. Englewood Cliffs,
Prentice-Hall

Shlaer S, Mellor S 1991 Object lifecycles: modelling the world in
states. Englewood Cliffs, Prentice-Hall

Wilkinson N 1995 Using CRC cards: an informal approach to
object-oriented development. New York, SIGS Books

Worboys M F 1995 GIS: a computing perspective. London,
Taylor and Francis

Worboys M F, Hearnshaw H, Maguire D J 1990 Object-
oriented data modelling for spatial databases. International
Journal of Geographical Information Systems 4: 369-8



