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Spatial analysis: retrospect and prospect

M M FISCHER

1 INTRODUCTION

Spatial analysis is a technology which typically
requires two types of information about spatial
objects: attribute and locational information. The
scope of discussion here will be restricted to
methods and techniques for spatial data analysis
(SDA), often referred to as spatial analysis in the
strict sense. Smoothing techniques such as areal
interpolation (Flowerdew and Green 1991), Kriging
(Isaaks and Srivastava 1989), and kernel smoothing
methods (Silverman 1986) as well as (locational and
attribute) error assessment (Goodchild and Gopal
1989) and the modifiable areal unit problem
(Openshaw and Alvanides, Chapter 18;
Fotheringham and Wong 1991; Openshaw 1984) are
precluded from the discussion, even though they are
often fundamental steps and problems in spatial
analysis. These issues are addressed in part by other
authors in this volume (e.g. Martin, Chapter 6;
Openshaw and Alvanides, Chapter 18; Goodchild
and Longley, Chapter 40).

The chapter is organised into six sections. It is
useful to begin by trying to understand the salient
features which make spatial analysis special and
different from other forms of data analysis (section
2). Section 3 briefly deals with the development of
SDA and describes some significant achievements to
date. This is followed by a discussion of Openshaw’s

This chapter briefly reviews spatial analysis as a technology for analysing spatially
referenced data. Spatial data analysis techniques are important and are becoming even
more so as the supply of spatial data increases. Novel new modes of computation, known
collectively as ‘computational intelligence technologies’ will meet some of the new analysis
needs that have been stimulated by GIS. Computational intelligence technologies in general
and neural networks in particular provide novel, sophisticated, and interesting models and
methods which are potentially applicable to a wide range of applications. They are thus seen
as the way forward to analyse the data-rich environments of contemporary GIS.

(1994a) basic rules for identifying future ‘GISable’
spatial analysis technology (section 4). Leading from
this, section 5 argues for a very different non-
conventional style of approach based upon novel
modes of computation — which are collectively known
as ‘computational intelligence’ (CI) technologies — as
laying the foundations for a new generation of useful
and more powerful SDA tools relevant to data-rich
spatial data environments. In particular, neural
networks, the single most important component of
Cl-driven spatial analysis, are seen to offer spatial
analysts rich and interesting classes of novel data
driven non-linear models, and are deemed to be
applicable to a wide range of application domains.
The potential of this approach is exemplified in two
classical spatial analytic tasks: spatial interaction
modelling and pattern classification (section 6). In the
concluding section some major aspects of this new
paradigm are summarised and directions for further
research are outlined.

2 WHAT MAKES SPATIAL DATA
ANALYSIS SPECIAL?

Given the diversity of analytical perspectives within
GIS it is difficult to define SDA as anything more
specific than a body of methods and techniques for
analysing ‘events’ at a variety of spatial scales, the
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results of which depend upon the spatial
arrangement of the ‘events’ (Goodchild et al 1992;
Haining 1994). ‘Events’ may be represented as point,
line, or area ‘objects’ or ‘spatial primitives’ which are
located in geographical space and possess a set of
(one or more) other attributes. Location, topology,
spatial arrangement, distance, and spatial
interaction become the focus of attention in SDA
activities. The outcomes of analysis are: detection of
patterns in spatial data; exploration and modelling
of relationships between such patterns; enhanced
understanding of the processes that might be
responsible for the observed patterns; and improved
ability to predict and control events arising in
geographical space. It is the explicitly spatial focus of
spatial analysis that distinguishes SDA from other
forms of data analysis (Goodchild et al 1992).

It follows that two different types of information
are integral to SDA:

® [ocational (geometric/topological) information
about the spatial objects of concern which are
generally described by means of their position on
a map or using geographical coordinate systems.
The spatial objects utilised in most spatial
analyses are statistical areas such as census tracts,
or points which are sampled from continuous
geographical space (Martin, Chapter 6). For some
types of spatial analysis it is common practice to
represent areas by points (2-dimensional discrete
representation of space).

® Artribute information about the spatial objects of
interest. Two types of attributes may be
distinguished: primary attributes (e.g.
socioeconomic characteristics, physical
properties); and secondary attributes of, or
relations between, spatial objects (e.g. flows of
information, capital, goods, or people).

SDA employs a wide range of tools ranging from
spatial autocorrelation measures, through nearest
neighbour methods, K-functions, spatial
classification and regionalisation methods, to spatial
extensions of conventional statistical techniques such
as regression models. In principle, we may distinguish
between those SDA techniques that use locational
information alone and those that use both locational
and attribute information. The first class of
techniques is essentially concerned with the analysis
of spatial distributions (Longley and Batty 1996) and
includes techniques such as point pattern analysis
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(Goodchild et al 1992). The second class includes
techniques such as spatial regression models, and
utilises both locational and attribute data in order to
assess the spatial variation in attribute measurements.
This class may be further disaggregated into
techniques and methods that deal with primary
attributes (interval and/or categorical scale) and
those that deal with secondary attributes (relations).
The latter includes spatial interaction models,
interregional input—output accounting systems of
various kinds, and log-linear models: all of these
generally rely on 2-dimensional discrete, rather than
continuous, geographical spaces.

The crucial role of geographical location of
objects, both in an absolute and a relative sense
(spatial arrangement), has profound implications
for the way in which they can be analysed (Anselin
and Getis 1993). In fact, location leads to two
different types of spatial effects: spatial dependence
(often referred to as spatial autocorrelation) and
spatial heterogeneity. The first directly results from
Tobler’s (1979) ‘First Law of Geography’ where
‘everything is related to everything else, but near
things are more related than distant things’. Thus,
spatial dependence implies that the data for
particular spatial units are related and similar to
data for other nearby spatial units (Getis 1992).
Spatial dependence caused by a variety of
measurement problems (e.g. the arbitrary
delineation of spatial units of observation, the
problem of spatial aggregation, the presence of
spatial externalities, and spillover effects) poses
particular challenges for conventional statistical
analysis since this assumes that units of observation
are statistically independent of one another
(Anselin and Getis 1993; Griffith 1993). The second
and equally important spatial effect — spatial
heterogeneity or non-stationarity — is related to
spatial differentiation which follows from the
intrinsic uniqueness of each location, as is evident
in spatial regimes for variables, functional forms, or
model coefficients (Anselin 1994a). These special
features of spatial data render classical statistical
methods unreliable unless they have been modified
to accommodate the spatial problems at hand. The
complications are similar to those found in time
series analysis but are exacerbated by the multi-
directional, 2-dimensional nature of dependence in
space rather than uni-directional nature in time
(Griffith 1993).



3 SPATIAL DATA ANALYSIS: ORIGINS
AND PROGRESS

The origins of SDA lie in the development of
quantitative geography and regional science, and
date back to the early 1960s. The use of quantitative
(mainly statistical) methods and techniques to
analyse the pattern and form of geographical objects
(points, lines, areas, and surfaces: Martin, Chapter
6) depicted on maps or defined by coordinates in

2- or 3-dimensional space characterised this early
research. Later on, more emphasis was placed on the
inherent properties of geographical space, on spatial
choice processes, and the spatial-temporal evolution
of complex spatial systems.

Many of the SDA techniques were developed in
the 1960s and 1970s, in an era of limited computing
power, small datasets, and rudimentary computer
graphics. Today, as a consequence, current
implementations take only limited advantage of the
data storage, retrieval, and visualisation capabilities
of GIS. Early attempts to implement SDA
techniques in a computational environment relied on
source code programming, especially FORTRAN.
The 1970s saw the advent of statistical software
packages such as BMDP, SPSS, and SAS, which
soon became the primary applications medium, even
although these packages were, and are still, based on
statistical techniques which are fundamentally non-
spatial in nature. Even today, much SDA activity
remains embedded in the aspatial environment of
software packages such as SAS, Minitab, Systat,
SPSS, S-Plus, and GLIM (Goodchild et al 1992).

In the early days of SDA there was strong
momentum behind the spatial geometric view with its
strong emphasis on point pattern analysis, quadrat
analysis, and nearest neighbour methods (Dacey
1960; Getis 1964; Haggett et al 1977; Rogers 1965).
This approach used locational data only and
attempted to describe the spatial patterning of point
objects (events) by comparing observed patterns
with those that might theoretically be expected from
various normative models, especially those based
upon spatial randomness. More recently,
geographers (e.g. Getis, Chapter 16; Getis 1983) have
realised that better descriptions of point patterns
may be obtained by using second-order methods, that
is methods which describe the relative positioning of
pairs of points (Diggle 1983). One such method is to
compute a (multivariate) K-function (Ripley 1977)
which examines all inter-point distances rather than
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just those separating nearest neighbours. A
comparison of the observed K-function with those
derived from possible explanatory models (e.g. those
based upon the Poisson model of spatial
randomness) over the study area permits assessment
of whether the observed occurrences are likely to
have arisen from the processes underlying such
models (Getis and Boots 1978). By extension, such
SDA tools are now available to ‘explain’ one pattern
of particular interest in terms of others (in the
multivariate case), as well as to deal with situations
involving space-time patterns.

The interest in point pattern analysis was
complemented by the application of standard
statistical techniques to spatial data (Berry and
Marble 1968; Haggett 1965; King 1969). In
particular, spatial analysts have used the general
linear model (e.g. multiple regression analysis), factor
and principal components analysis, regional
taxonomic methods (spatial classification and
regionalisation), multidimensional scaling,
discriminant analysis, and trend surface analysis.
Only a small number of these SDA tools (notably
regionalisation methods with spatial contiguity
constraints) were actually developed from first
principles within the spatial sciences rather than
being based on methods and techniques adapted
from other disciplines. One consequence has been
that very few SDA techniques have taken into
account the special characteristics of spatial data
when invoking statistical assumptions, particularly
when modelling using statistical packages. Increasing
awareness of the problems caused by spatial
heterogeneity and dependence, and their effects upon
the validity of conventional statistical tools, has led
to the development of a large body of methods and
techniques (e.g. Anselin and Griffith 1988).

Despite the very large number of rather diverse
contributions three major areas can be identified
where significant progress has been made in the last
decades (see also Getis, Chapter 16):

® Spatial dependence and heterogeneity descriptors.
The problem of spatial heterogeneity and
dependence has received substantial attention in
recent times (Cliff and Ord 1981). Spatial analysts
concerned with spatial dependence now have a
number of tools available. Important measures
include Moran’s 7 and Geary’s ¢ (Cliff and Ord
1981), semi-variogram parameters, and
generalised measures of spatial autocorrelation.
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Such measures are of use in a general exploratory
sense to summarise the overall existence of a
stable pattern of spatial dependence in attribute
data, to establish the validity of various
stationarity assumptions prior to modelling, and
to identify possible forms of a spatial model for
the data. They are extremely useful for small
datasets, but only of very limited use in the
context of large and very large GIS datasets
where several regimes of spatial association might
be present (Anselin 1997a). It is only very recently
that a focus on detecting local rather than global
patterns of association has been developed to
provide a more appropriate perspective. Examples
of these descriptors are the distance-based G-
statistics of Getis and Ord (1992) which can easily
be implemented into a GIS-framework (Anselin
et al 1993; Ding and Fotheringham 1992). The
idea behind these descriptors has been extended
to a general class of ‘local indicators of spatial
analysis’ (termed LISA: Anselin, Chapter 17;
Anselin 1995).

® Spatial regression modelling. In essence, spatial
regression models may be viewed as spatial
extensions to the familiar family of standard
elementary linear regression models for non-
spatially related cross-sectional data. This extension
is typically achieved by means of a (N x N) matrix
of spatial weights (typically a first-order binary
contiguity matrix) and a spatial autoregressive
structure for the error terms, where N denotes the
number of observations (spatial units). N is usually
quite small and thus represents only a coarse level
of spatial resolution. This has significant
implications for the correct specification,
estimation, and testing of spatial linear regression
models. Following the pioneering work of Getis and
Boots (1978), Paelinck and Klaassen (1979), Cliff
and Ord (1981) among others, considerable progress
has been made in various directions: the refinement
of the original framework of spatial linear process
models, with a special focus on estimation and
testing (the development of new and alternative
tests and estimators for various types of spatial
linear regression models), the development of more
complex models that incorporate different
contributions of spatial dependence and
heterogeneity, and extensions from a purely cross-
sectional to a space-time context. This progress is
manifest in a series of recent monographs and
edited volumes on spatial statistics and spatial
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econometrics by Upton and Fingleton (1985),
Anselin (1988), Griffith (1988), Arbia (1989),

and Cressie (1993) among others, but its
dissemination into practice has been hampered by
the lack of readily available software (Anselin and
Hudak 1992).

® Discrete spatial data analysis. The mainstream
tradition in SDA has been focused on aggregated
spatial data. One area where scholarly interest has
been growing in the last two decades is the area of
discrete or categorical data analysis (Wrigley
1985). Logistic/logit regression models and
(quasi) log-linear models for spatial contingency
tables (Aufhauser and Fischer 1985) are the
primary workhorses of discrete SDA. The family
of statistical models used for discrete SDA is a
part of Nelder and Wedderburn’s (1972) unified
family of generalised linear models, in which a
response variable is assumed to come from the
exponential family of probability distributions
(with the normal, Poisson, binomial, and
multinomial distributions).

In spite of these various technical advances, the
flurry of results on methods and techniques in SDA
has had only limited impact outside the research
community. To a large extent this state of affairs is
attributable to the lack of readily available software
that incorporates explicitly spatial tests and
estimators. Currently, none of the popular statistical
or econometric packages includes any tools for
spatial data analysis, and the only generally available
program that performs a range of spatial statistical
techniques is Anselin’s SpaceStat (1992; Anselin,
Chapter 17). The same holds true to a large extent
for commercial GIS. Consequently, the actual
application of appropriate spatial data analytic
techniques has been very limited, even within the
academic community of geographers and regional
scientists. In contrast (and as documented
throughout these volumes) there has been recent and
very rapid growth in the availability and richness of
spatial data as a consequence of the GIS data
revolution, making the somewhat esoteric area of
SDA of considerable potential interest. The
momentum behind developments in GIS, however, is
not the academic arena with its theoretical and
methodological interests in knowledge acquisition,
but rather the concern to analyse spatial databases
for a variety of applied purposes.



4 THE NEW ANALYSIS NEEDS — OPENSHAW’S
CRITERIA FOR IDENTIFYING FUTURE SDA
TECHNOLOGY

The next few years seem set to provide a unique
opportunity for spatial analysts to enter a new era in
the development of novel SDA styles. New analysis
needs are being created and stimulated as a by-
product of developments in GIS technology. GIS is
creating extremely data rich and multi-domain, but
theory poor and hypothesis-free, environments which
are different from those within which computational
SDA techniques have hitherto been applied.

While there is a general consensus that the lack of
SDA functionalities in current GIS seriously limit the
usefulness of GIS as a research tool to analyse spatial
data and relationships (Anselin and Getis 1993;
Fischer and Nijkamp 1992; Goodchild 1987;
Openshaw 1991), there is little agreement about the
kinds of SDA techniques and methods that are most
relevant to GIS environments. Openshaw (1991,
1994f) and Openshaw and Alvanides (Chapter 18)
suggest several criteria that aim to distinguish
between ‘GISable’ and ‘GIS-irrelevant’ technology.
These relevancy criteria provide a useful guide to the
new analysis needs, without specifying in detail how
such SDA methods might be developed. The most
important criteria for ‘relevance’ are:

e A GISable SDA tool should be able to handle /arge
and very large numbers (from a few tens to millions)
of spatial objects without difficult and thus meet
the large-scale data processing needs in GIS.

e GIS relevant SDA techniques should be sensitive
to the special nature of spatial information.

® The most useful GISable SDA techniques
and models will be frame independent (i.e.
invariant under different spatial partitionings of
a study region).

® GIS relevant SDA should be a safe technology (i.e.

the results should be reliable, robust, resilient,
error and noise resistant, and not based in any
important way on standard distributions).

e GISable SDA techniques should be useful in
an applied sense (i.e. they should focus upon
spatial analysis tasks that are relevant to
GIS environments).

® The results of SDA operations should be
mappable in order to afford understanding and
insight, since GIS is a highly visual and graphics-
oriented technology.
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These criteria make it apparent that future
GISable spatial analysis technology will be data
driven rather than theory driven in nature, and
essentially exploratory rather than inferential in a
conventional spatial hypothesis-testing sense. There
is a clear need for a quantitative exploratory style of
spatial analysis which can complement the map-
oriented nature of GIS. Exploratory spatial data
analysis (ESDA; Anselin, Chapter 17), a spatial
extension of mainstream exploratory data analysis,
provides a useful means of generating insights into
(global and local) patterns and associations within
spatial datasets. The search process is controlled by
the user in a highly interactive graphical
environment as, for example, in Regard (Unwin
1993). The use of ESDA techniques, however, is
generally restricted to expert users interacting with
the data displays and statistical diagnostics to
explore spatial information, and to fairly simple low
dimensional datasets.

In view of these limitations, it becomes evident
that we urgently need novel exploration tools which
are sufficiently automated and powerful to cope with
the data richness-related complexity of exploratory
spatial analysis of large (multiple gigabyte) datasets
(Openshaw 1995). The need is for tools that
intelligently allow the user to sift through large
quantities of spatial data, to simplify multivariate
data, and efficiently and comprehensively to explore
for patterns and relationships against a background
of data uncertainty and noise.

From this perspective the question of how to link
SDA technology and GIS (Anselin and Getis 1993;
Fischer et al 1996; Goodchild et al 1992) becomes
less important than the need to rethink spatial
analysis technology fundamentally, to adopt the
most useful and relevant technologies for solving
problems in new data-rich environments, and to
demonstrate the utility of novel approaches to
spatial analysis (Openshaw and Fischer 1995).

5 COMPUTATIONAL INTELLIGENCE — A NEW
PARADIGM FOR SPATIAL ANALYSIS

Novel modes of computation which are collectively
known as CI-technologies hold some promise to
meet the needs of SDA in data-rich environments.
Following Bezdek (1994) we use the term
‘computational intelligence’ in the sense that the
lowest-level forms of intelligence stem from the
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capacity to process numerical (low-level) data,
without explicitly using knowledge in an artificial
intelligence sense. CI tolerates imprecision and
uncertainty in large-scale real-world problems in
order to achieve tractability, robustness,
computational adaptivity, low cost, real-time speed
approaching human-like turnaround and error rates
which approximate to human performance.

Artificial life, evolutionary computation, and
neural networks are the major representative
components in this arena. Artificial life is a
methodological approach incorporating
evolutionary principles: it is based on population
rather than individual simulation, simple rather than
complex specifications, bottom-up rather than top-
down modelling, and local rather than global
control (Langton 1989). It has great potential to
develop novel exploratory approaches capable of
efficiently and comprehensively exploring large
spatial databases for patterns and relationships, as
illustrated in Openshaw (1994¢). Evolutionary
computation (genetic algorithms, evolutionary
programming, and evolutionary strategy) derives
from biology and has proved its merit in treating
hard optimisation problems where classical
optimisation algorithms (e.g. hill climbers and
simplex) and less classical ones (e.g. simulated
annealing) tend to be inappropriate. Evolutionary
computation might be adopted in SDA, for example
to improve the quality of results of spatial
optimisation problems (e.g. optimal sizing: Birkin et
al 1995), route choice, and zone design problems.

No doubt, CI is currently best suited to systems
which can efficiently process information in a
massively parallel way and which can ‘learn’ by
adjusting certain parameters. This neural network
view is extremely attractive in a world where
information abounds, as in the case of large spatial
databases. Neural networks are likely to become the
single most important component of a CI-driven
SDA program (Fischer 1997). The recent
re-emergence of neural-network-based approaches
has been accomplished by a massive expansion of
research, spanning a range of scientific disciplines —
perhaps wider than any other contemporary
intellectual endeavour. Much of the recent interest
of computational geographers in neural network
modelling (e.g. Leung 1997; Openshaw 1993) stems
from the growing realisation of the limitations of
conventional tools as vehicles for exploring patterns
and relationships in GIS and remote-sensing
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environments and from the consequent hope that
these limitations may be overcome by judicious use
of neural net approaches.

Neural networks (connectionist models) are
parallel distributed information processing
structures consisting of simple, but generally non-
linear processing elements (which can possess a local
memory and can carry out localised information
processing operations with adaptative capabilities),
massively interconnected via unidirectional signal
conduction paths called connections. Each
connection has a weight associated with it that
specifies the strength of this link. Each processing
element (PE) can receive any number of incoming
connections and has a single output connection
which can branch into copies to form multiple
output connections, where each carries the same
signal. The information processing active within
each PE can be defined arbitrarily with the
restriction that it has to be completely local — that is,
it has to depend only on the current values of the
input signals arriving at the PE and on values stored
in the PE’s local memory (Hecht-Nielsen 1990).
Characteristically, two mathematical functions are
active at each PE. The first integrates the connection
weights with the inputs arriving via the incoming
connections which impinge upon the PE. Each PE
then typically applies a transfer (activation) function
to the value of the integrator function and produces
its output signal. A common choice is the logistic
function in the case of continuous network inputs
(see Fischer 1995, 1997).

Although a vast variety of neural network models
exist, and more continue to appear as research
continues, many of them have common topological
characteristics, PE properties, and training (learning)
heuristics. Three basic entities characterise a neural
network (Fischer and Gopal 1993):

e the network topology or interconnection of its
PEs (called the neural networks architecture);

e the characteristics of its PEs;

e the method of determining the weights at
the connections (called the training or
learning strategy).

Different interconnection strategies lead to different
types of neural net architectures (e.g. feedforward
versus recurrent) which require different learning
(training) strategies. At the most fundamental level
two categories of training may be distinguished,
namely supervised and unsupervised. In supervised



learning the network is trained on a training set
consisting of a sequence of input and target output
data. Training is accomplished by adjusting the
network weights so as to minimise the difference
between the desired and actual network outputs.
Weight adjustment is based on the definition of a
suitable error function, which is then minimised with
respect to the weights and biases in the network
using a suitable algorithm (e.g. gradient descent or
global optimisation). Alternatively, unsupervised
learning (also called self-organisation) requires only
input data in order to train the network. During the
training process the network weights are adjusted so
that similar inputs produce similar outputs. This is
accomplished by a training algorithm that extracts
statistical regularities from the training set,
representing them as the values of network weights
(Fischer and Gopal 1994b; Fischer 1995). Prior
knowledge may be used to specify the properties of
the network learning methods. Bootstrap techniques,
for example, may be used for estimating the bias of
network parameters.

Multilayer feedforward networks (perceptrons
and radial basis function networks) have emerged as
the most attractive neural network architecture for
various spatial analysis tasks (Fischer and Gopal
1994a; Gopal and Fischer 1996, 1997; Leung 1997).
Analytical results show that two-layer (one hidden
layer) feedforward networks are very capable of
approximating arbitrary mappings in the presence of
noise. However, they do not provide more than very
general guidance on how this can be achieved, and
what guidance they do offer suggests that network
training will be difficult. Consequently, there is an
urgent need to develop application domain-specific
methodologies which provide more specific
guidelines for judicious use of neural network
approaches in SDA.

One critical issue for a successful application of
neural-network-based spatial analysis is the complex
relationship between learning (training) and
generalisation. It is important to stress that the
ultimate goal of network training is not to create an
exact representation of the training data itself, but
rather to build a model of the process which
generates the data in order to achieve a good
generalisation (out-of-sample) performance of the
model. One method of optimising the generalisation
performance of a model is to control its effective
complexity where complexity is measured in terms
of network parameters.
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The attraction of neural-network-based SDA
essentially stems from the following features:

e representational flexibility and freedom from
linear model design constraints;

® inbuilt ability (via net representation and
training) to incorporate rather than ignore the
special nature of spatial data;

e robustness and fault tolerance to deal with noisy
data and missing or fuzzy information;

e cfficiency of large spatial datasets analysis, raising
the prospect of being able to process finer
resolution data or to carry out real-time analysis;

® inbuilt capability to adapt the connection weights
to changes in the surrounding environment
(learning);

e improved generalisation (out-of-sample
performance) capabilities;

® potential to improve the quality of results
by reducing the number of rigid assumptions
and shortcuts introduced by conventional
methodologies.

6 APPLICATION DOMAINS AND
EXAMPLES OF NEURAL-NETWORK-BASED
SPATIAL ANALYSIS

Neural network models in general, and feedforward
neural network models in particular, can provide novel,
elegant, and extremely valuable classes of
mathematical tools for SDA, based on sound
theoretical concepts. They may be viewed as non-linear
extensions of conventional spatial statistical models
such as regression models, spatial interaction models,
linear discriminant functions, and pattern recognition
techniques (Fischer and Gopal 1994a; Fischer et al
1997). They are particularly appropriate to two major
domains (Fischer 1994):

® as universal function approximators in spatial
regression, spatial interaction modelling, spatial
choice, and space-time series analysis;

® as pattern recognisers and classifiers of large
datasets (e.g. census small area statistics, high-
resolution remote sensing data).

Feedforward neural network model building may be
considered as a three-stage process, as outlined in
Fischer and Gopal (1994a) and applied to telecom
traffic modelling by Gopal and Fischer (1996):

o identification of a specific model from a family of
two-layer feedforward networks which are
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characterised by specific types of non-linear
processing elements;

® cstimation of the network parameters of the
selected neural network model and the model
optimisation (using regularisation theory,
network pruning, or cross-validation) for the
given training set;

e testing and evaluating the out-of-sample
(generalisation) performance of the model.

There is little doubt that neural pattern classifiers
have an important role to play in high dimensional
problems of pattern recognition and classification of
massive quantities of data, for example associated
with national classifications based on census small
area statistics or with spectral pattern classification
problems using RS satellite imagery. For example,
Fischer and Gopal (1996) illustrate the virtues of
NN classification vis a vis its conventional ML
counterpart in a pixel-by-pixel supervised spectral
pattern classification of a Landsat-5 Thematic
Mapper image of Vienna. The task of
discriminating between a priori defined urban land
cover categories is challenging because urban areas
comprise a complex spatial assemblage of disparate
land-cover types — including built structures,
numerous vegetation types, bare soil and water
bodies — each of which has different spectral
reflectance characteristics. However, the results
suggest that neural network classifiers in general and
a fuzzy ARTMAP classifier in particular are very
powerful tools for classifying remotely-sensed
imagery if non-linearity is encountered in the
dataset. Indeed in the Vienna application it has an
outstanding out-of-sample classification accuracy of
99.26 per cent on the pixels testing dataset. This
error rate is less than 1/15 that of the two-layer
perception, 1/20 that of the Gaussian maximum
likelihood classifier and 1/30 that of the radial basis
function network. Inspection of the classification
error matrices reveals that the fuzzy ARTMAP
classifier accommodates more easily a heterogeneous
class label such as ‘densely built-up residential areas’
to produce a visually and numerically correct urban
land cover map, even given smaller numbers of
training pixels. In particular the normal maximum
likelihood classifier tends to be sensitive to the purity
of land cover signatures and performs poorly if they
are not pure. Another serious problem with the
normal classifier is its long processing time if RS
data of a large area are to be analysed — which is a
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common feature in GIS environments. This problem
will be exacerbated given anticipated increases in
data volumes from planned multichannel satellites
(Barnsley, Chapter 32; Dowman, Chapter 31).

7 CONCLUSIONS AND PROSPECTS

GIS technology has already greatly increased the
remit of SDA. Conventional SDA tools are generally
not sufficiently powerful to cope with the new
analysis needs. SDA is entering a new era of data-
driven exploratory searches for patterns and
relationships. CI technologies in general and neural
networks in particular provide an interesting and
powerful paradigm to meet the new challenges, yet
one that is likely to evolve slowly rather than instate
radical change within a short timeframe. The driving
forces behind this change are the large amounts of
GIS-based spatial data that are now available, the
availability of attractive and novel CI tools, the
rapid growth in computational power (especially
that delivered through massively parallel
computers), and the new emphasis on exploratory
data analysis and modelling.

Neural networks provide not only novel and
extremely valuable classes of data-driven
mathematical tools for a series of spatial analysis
tasks, but also an appropriate framework for re-
engineering our well-established SDA techniques to
meet the new large-scale data processing needs in
GIS. Application of neural network models to
spatial datasets holds the potential for fundamental
advances in empirical understanding across a broad
spectrum of application fields in spatial analysis. To
realise these advances, it is important to adopt a
principled rather than an ad hoc approach where
spatial statistics and neural network modelling have
to work together. The most important challenges in
the next years will be twofold: first, to develop
specific methodologies for particular application
domains; second, to gain deeper theoretical insights
into the complex relationship between learning and
generalisation. These are of critical importance for
the success of real-world applications.

The mystique and metaphorical jargon
promulgated by the field may have the effect of
lessening the amount of serious attention given to
the new neural networks paradigm. Nevertheless
many aspects of the study of neural networks lend
themselves to rigorous mathematical analysis, and



this provides a sound foundation on which to base a
study of the capabilities and limitations of neural
network systems and applications. Casting the
analysis in the universal language of mathematics
makes it possible to dispel much of the mystique
(White 1992). A start has been made for a neural-
network-based SDA, but much remains to be done.
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