
1  INTRODUCTION

It is common for statisticians to confine their
attention to data description, including exploratory
analysis, and induction, the development of
generalisations about a defined population on the
basis of a sample drawn from that population. Map-
oriented researchers have long been interested in
data description and induction, usually searching the
statistics literature for ideas on how to extract as
much information as possible from georeferenced
data. The search is often directed toward biometry,
psychometry, geology, econometrics, and statistics
(see also Fischer, Chapter 19). A relatively small area
of original research that cuts across these fields can
be attributed to the work of spatial statisticians, who
can be distinguished by their attention to
georeferenced or spatial data. In recent years, some
of this work has been spurred by the development of
GIS. In this chapter, spatial data analysis with
particular emphasis on the uses and applications of
spatial statistics in a GIS environment is discussed.

Spatial statistics can be considered a distinct area
of research. Traditional statistical theory bases its

models on assumed independent observations.
Although common sense tells us that in most real-
world situations independence among observations
on a single variable is more the exception than the
rule, independence is still a suitable benchmark from
which to identify statistically significant non-
independent phenomena. The field of spatial
statistics is based on the non-independence of
observations; that is, the research is based on the
assumption that nearby units are in some way
associated (Tobler 1979). Sometimes this association
is because of a spatial spillover effect, such as the
obvious economic relationship between city and
suburb. Sometimes the association is a distance
decline effect; that is, as distance increases from a
particular observation, the degree of association
between observations lessens. An example is the
influence of an earthquake; its effect declines with
distance from the epicentre.

Statistics, in general, and spatial statistics with its
emphasis on location, are the glue that holds much
of our research efforts together. In the search for a
high degree of certainty, we look to statistics. As the
GIS community matures, it will draw more and more
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The field of spatial statistics is based on the assumption that nearby georeferenced units
are associated in some way. More and more, the GIS community needs to draw upon the
work of the spatial statistician to help find meaning in spatial data. The precursors of
current spatial statistical researchers include those who sought to describe areal
distributions, the nature of spatial interactions, and the complexities of spatial correlation.
The spatial statistical methods in current use, and upon which research is continuing,
include: spatial association, pattern analysis, scale and zoning, geostatistics,
classification, spatial sampling, and spatial econometrics. In a time-space setting, scale,
spatial weights, and spatial boundaries are especially difficult problem areas for further
research. Those working in GIS welcome comprehensive packages of spatial statistical
methods integrated into their software.



upon the work of the statistician to help to find
meaning in spatial data and in the development of
GIS functionality.

The approach in this chapter is to trace briefly
and selectively, in section 2, the pre-GIS
contributions of map-oriented researchers to spatial
statistics. In section 3, brief synopses of statistical
analytical devices that spatial analysts use are
provided. The distinction is made between the work
of the spatial statisticians (those statisticians,
biologists, econometricians, atmospheric/oceanic
scientists, and geographers who seek to identify the
statistical parameters of spatially distributed
variables) and the geo-statisticians (those
statisticians, geologists, and mining engineers who
analyse their data at a number of scales in terms of
spatial trend and correlation). Each subsection
contains examples of, and key references to, current
research. Finally, in section 4, some of the problems
and challenges that face spatial researchers are
outlined, with a reflection on the nature of statistical
work in a GIS environment.

2  PRE-GIS USES OF SPATIAL STATISTICS

Geography has a long history of development of
clever cartographic devices that allow for
particularly insightful views of spatial data. From
Lalanne’s (1863) hexagonal railway patterns to the
map transformations of Tobler (1963), the pre-GIS
literature is filled with interesting ideas designed to
enable spatial data to ‘speak for themselves’. The
desire to make maps a useful part of analysis led
pre-computer geographical writers to try to find
ways to depict spatial distributions of data in
imaginative ways. It was just a short step from
interesting depictions on maps to statistical tests on
their significance relative to some supposition about
the meaning of the maps. Now we have powerful
computers and extensive software that guide us
toward the production of new and unusual maps.
Concomitantly, new statistical devices have been
developed, albeit at a slower rate of growth, to
answer questions about mapped patterns. Knowing
that the spatial perspective is an important aspect of
knowledge, analysts seek better ways to depict data
on maps and to test hypotheses based on some
expected pattern form or structure. Four themes can
be considered antecedents of what has become the
modern statistical analysis of spatial data.

2.1  Statistical analysis of areal distributions

Although the roots of his work go back to the
nineteenth century, Neft (1966), working under the
direction of Warntz, was the first to produce a
comprehensive, mathematically consistent system for
describing areal distributions. Drawing on the work
of Carey (1858), Mendeleev (1906), the location
theorists – Thünen (1826), Weber (1909), Christaller
(1935), and Lösch (1954) – and the ideas of the
social physicists – particularly those of Stewart
(1950) and Warntz and Neft (1960) – Neft described
the statistical moments of areal distributions. For
point distributions, he produced statistical measures
of skewness and kurtosis of average position
(various centroids), spatial dispersion, and surfaces.
In addition, he addressed one of the challenging
tasks still very much on the agenda of current spatial
statistical researchers: producing valid measures of
statistical association of spatial variables.

2.2  Spatial interaction

There is no more important topic for the spatial
analyst who deals with human issues than the study
of the interaction of activities in one place with
those in another. Research in this area has a long
and distinguished history, dating back to Carey
(1858), Ravenstein (1885), Reilly (1929), Zipf (1949),
and Stewart and Warntz (1958). The famous
Newtonian formula, m1m2 /d2 , where m1 and m2 are
measures of mass at sites 1 and 2, and d is the
distance separating the masses at those sites, was the
foundation stone. Modified by spatial theorists, this
physical law has been used to great advantage to
study and to predict a wide variety of human spatial
interactions, such as transportation movements, the
spread of information, and the potential for
economic growth. Modern expositions of the theory
and statistical estimation procedures make up a
significant portion of modern transportation and
marketing literature (Birkin et al, Chapter 51;
Gatrell and Senior, Chapter 66). The work of Wilson
(1967) must be singled out as a relatively recent
attempt to derive practical spatial interaction theory.
Rather than depend on physical science analogies,
Wilson devised probabilistic laws that described
possible human movement. Nowadays an important
use of GIS is to allow for the manipulation of data
so that parameters that describe movement can be
calibrated and evaluated.
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2.3  Spatial correlation

Before the 1960s, only a modest literature had
developed in geography on perhaps the most
challenging spatial question: in an unbiased way,
how is one to account for the correlation in spatially
distributed variables? The fundamental ideas
concerning the measurement of, and testing for,
spatial autocorrelation were spawned in geography
by Robinson (1956), and Thomas (1960) saw the
difficulties in dealing with dependent unequally sized
units. Through their work and that of others, the
modifiable areal unit problem was addressed and
spatial residuals from regression were evaluated. It
was during this period that the statisticians Moran
(1948) and Geary (1954) developed their measures of
spatial autocorrelation. Building on the work of
Moran (1948) and Krishna Iyer (1949), Dacey
(1965) addressed the issue of the possible association
among contiguous spatial units. These join count
statistics led to the work of Cliff and Ord, whose
monograph ‘Spatial Autocorrelation’ (1973) opened
the door to a new era in spatial analysis. In section 3,
we outline the link between the Cliff–Ord work and
modern approaches to spatial statistical analysis.

2.4  Hypotheses about settlement patterns

Much of the excitement in the University of
Washington’s Department of Geography during the
late 1950s and early 1960s centred on understanding
and testing the theories of the economic geographer,
Walter Christaller, and the economist, August
Lösch. From the standpoint of spatial statistics, of
note is the work of Dacey (1963), who by taking the
lead from the plant ecologists such as Clark and
Evans (1954), tested various statistical distributional
theories using sets of georeferenced data that
represented the location of towns in a settlement
system. From this work, a point pattern ‘industry’
developed that featured the work of King (1962),
Getis (1964), Harvey (1966), Clark (1969), and
Rogers (1969).

3  SPATIAL STATISTICS IN CURRENT USE

The types of statistical methods popular today are a
function of both the nature of the problems being
studied and the availability of computers. Seven
areas of research are listed that are particularly
favoured. Each is described in terms of the kinds of

problems being solved, their general formulation (if
not discussed in detail elsewhere in this book), and
their usefulness to the GIS community of analysts.
In addition, current research themes are noted
together with key references. Such areas of inquiry
as spatial neural nets, spatial fuzzy sets, and
simulated annealing are just now being developed
and are discussed by Fischer (Chapter 19).

3.1  Spatial association

The Cliff–Ord monograph enabled researchers to
assess statistically the degree of spatial dependence
in their data, and, in so doing, to search for
additional or more appropriate variables, and to
avoid many of the pitfalls that arise from
autocorrelated data. Many GIS contain the
Cliff–Ord routines that allow for the calculation of
spatial autocorrelation. Much of present-day
interest in spatial analysis derives directly from the
1973 Cliff-Ord monograph and the authors’
subsequent (1981) more complete discussion. These
shed light on the problem of model mis-specification
owing to autocorrelation and demonstrated
statistically how one can test residuals of a
regression analysis for spatial randomness. They
explicated the nature of the spatial weight matrix
and provided step-by-step procedures for applying
statistical tests on Moran’s I and Geary’s c, the two
major autocorrelation statistics.

Finding the degree of spatial association
(autocorrelation) among data representing related
locations is fundamental to the statistical analysis of
dependence and heterogeneity in spatial patterns.
Like Pearson’s product–moment correlation
coefficient, Moran’s statistic is based on the
covariance among designated associated locations,
while Geary’s takes into account numerical
differences between associated locations. The tests
are particularly useful on the mapped residuals of an
ordinary least squares regression analysis.
Statistically significant spatial autocorrelation
implies that the regression model is not properly
specified and that one or more new variables should
be entered into the regression model.

Mantel (1967), Hubert (1979), and Getis (1991)
have shown that statistics of this nature are special
cases of a general formulation, gamma, that is defined
by a matrix representing possible locational
associations (the spatial weights matrix) among all
points, multiplied by a matrix representing some
specified non-spatial association among the points. The
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non-spatial association may be an economic, social,
or other relationship. When the elements of these
matrices are similar, high positive autocorrelation
ensues. Gamma describes spatial association based
on covariances (Moran’s statistic, I), or subtraction
(Geary’s statistic, c), or addition (the G statistic of
Getis and Ord 1992). These statistics are global
insofar as all measurements between locations are
taken into account simultaneously. Aspinall
(Chapter 69) provides examples in the realm of
landscape conservation.

When the spatial weights matrix is a column
vector, gamma becomes local; that is, association is
sought between a single point and all other points
(Ii, ci, Gi). Research on local statistics has been
especially active recently because they lend
themselves to kernel-type analyses in a GIS where
datasets are large (Anselin 1995; Getis and Ord
1992; Ord and Getis 1995). Local statistics have been
used to classify remotely-sensed data (Getis 1994),
and to show associations between neighbourhoods’
crime rates (Anselin 1993) and countries’ conflict
propensities (O’Loughlin and Anselin 1991).

Some current research themes in this area are:

• the identification of spatial spillover or nuisance
autocorrelation (Anselin and Griffith 1988;
Anselin 1990a; Anselin and Rey 1991);

• characteristics of the structure of spatial weight
matrices (Griffith 1988; Anselin 1986; Boots and
Kanaroglou 1988);

• heterogeneity issues in local measurements of
spatial association (Bao and Henry 1996);

• determining the exact distribution of spatial
autocorrelation statistics (Tiefelsdorf and
Boots 1994);

• alternatives to the Cliff–Ord approach (Kelejian
and Robinson 1995);

• multivariate spatial association (Wartenberg 1985).

3.2  Pattern analysis

Popular in the 1960s was point pattern analysis based
on the spatial homogeneous Poisson process (see also
Fischer, Chapter 19). It was common to find a
researcher working at a light table making
measurements from numbered points to the first
nearest neighbour of each point. Now, with the use of
digitised georeferenced data, we are easily able to take
measurements from all points to all other points. In
addition, measurements of line segments, distances
between line intersections, areas, and characteristics

of areas such as perimeter length, neighbouring
areas, and so on, are basic within most GIS.

Pattern analysis in the spatial sciences grew out of
an hypothesis-testing tradition, not out of the
extensive pattern recognition literature. Nearest
neighbour work continues today, but the work of
Clark and Evans (1954) has now been modified for
the sake of unbiasedness to take into account the
length of the perimeters of study areas (Donnelly
1978) and the distance to study area boundaries
(refined nearest neighbour analysis: Diggle 1979;
Boots and Getis 1988).

In recent years, point pattern analysis has
regained its vigour as an area of study as a result of
the ability of computers to handle large numbers of
objects. Statistical approaches are usually based on
hypotheses of complete spatial randomness (CSR),
that is, the theoretical pattern is assumed to be
representative of: (a) objects that are located
independently of each other; and (b) a study area
where each location has an equal chance of receiving
an object. The pattern analyst tests hypotheses about
the spatial characteristics of point, line, or area
patterns. These geometric forms represent everything
from the location of individuals suffering from an
infectious disease to the shape of hardened basalt
flows (Boots and Getis 1988).

Related to pattern analysis is the continuing
interest that ecologists have in studying plant and
animal distributions. Surprisingly, only in recent
years have plant ecologists become aware that
because of dependence among nearby observations,
a particular pattern of plants may not represent a
suitable sample for model testing (Franklin 1995).
A set of key references in this area may be found in
Potvin and Travis (1993).

Perhaps the most important developments in
recent years are the applications of K-function
analysis to the study of point patterns, and the use
of Voronoi polygons to study spatial tessellations
(Boots, Chapter 36; Okabe et al 1992). In addition,
fractals study is a promising area for pattern analysis
(Batty and Longley 1994).

3.2.1 The idea behind the use of K-function analysis
The K-function is the ratio of the sum of all pairs of
points within a pre-specified distance, d, of all points
to the sum of all pairs of points regardless of
distance. The function is adjusted to take into
account distances that are closer to the boundary of
the study area than to d. The original K-function by
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Ripley (1977) was modified by Besag (1977) to take
into account the need to stabilise variance, and Getis
(1984) generalised the formula to include the
weighting of points, such that the sum of pairs of
points became the sum of the multiples of the
weights associated with each member of a pair of
points. Diggle (1983) has done much to exploit this
formulation to show many new features of patterns.
For example, not only can one easily show the
difference between an existing pattern and a random
pattern but one can also develop theoretical
expectations for other than random patterns. In
addition, patterns divided into different point types
(marked patterns) can be studied easily. For testing
purposes, an envelope of possible outcomes under
the hypothesis of say, randomness, is usually
constructed by means of a Monte Carlo simulation.
Studies of the spatial distribution of vegetation
dominate the empirical literature of K-function
analysis (Diggle 1983), but the method has been
used for the study of human population distribution
(Getis 1983) and disease distribution (Morrison et al
1996). Recently, Gatrell et al (1996) showed that the
K-function can be used as an indicator of time-space
clustering; that is, one simultaneously finds pairs of
points separated by designated units of time and
distances in space. This approach is particularly
useful for identifying disease clustering over time.

3.2.2  Successful applications to spatial phenomena
Some themes of current interest in pattern analysis are:

• the development and testing of time-space
pattern models (Griffith 1996; Gatrell et al 1996;
Jacquez 1995);

• search for pockets of extreme values in large
data-sets (Ord and Getis 1995; Haslett et al 1991);

• development of pattern models based on
differences, absolute differences, and similarities
between nearby observations (Getis and Ord 1996).

3.3  Scale and zoning (the modifiable areal unit
problem)

The problem of scale effects was made particularly
clear by the results of Openshaw and Taylor’s (1979)
study of voting behaviour in Iowa. They showed
that the level of spatial aggregation and
arrangement of spatial units (zoning) has a marked
effect on the correlation of variables. Fotheringham
and Wong (1991) identified the extent of the spatial
bias in a multivariate regression analysis and
Fotheringham et al (1995) carried out similar

research in a p-median problem context. The most
comprehensive treatment to date is that of Arbia
(1989), who identified the relationship between levels
of autocorrelation and spatial unit aggregation. A
recent study by Holt et al (1996) shows the scale
problem to be an area selection problem. Some
themes being pursued include:

• spatial aggregation biases (Okabe and Tagashira
1996; Tobler 1989);

• the relationship of spatial autocorrelation to scale
differences (Arbia et al 1996);

• the effect of different zoning on results of various
types of analyses (Openshaw 1996; Green and
Flowerdew 1996);

• identifying scale effects by use of principal axis
factor analysis (Hunt and Boots 1996);

• scale effects on parameters of spatial models
(Amrhein and Reynolds 1996; Wrigley et al 1996).

This theme is developed by Openshaw and
Alvanides (Chapter 18).

3.4  Geostatistics 

The variogram (or semivariogram) (Cressie 1991)
plays a useful role as the function that describes
spatial dependence for a regional (georeferenced)
variable. The term ‘intrinsic stationarity’ is used to
indicate the natural increase in variance between
observations of a regional variable as distance
increases from each observation. The semivariance –
a measure of the variance as distance increases from
all points or areas (blocks) – eventually reaches a
value equal to the variance for the entire array of
data locations, regardless of distance. Clearly, at zero
distance from a point, the semivariance is also zero,
but the semivariance increases until, at a distance
called the range and a semivariance value called the
sill, it is equal to the variance. The function
describing the semivariance is usually spherical,
exponential, or Gaussian.

The variogram is essential for Kriging, which is a
technique for estimating the value of a regional
variable from adjacent values while considering the
dependence expressed in the variogram. There are
many kinds of kriging, each designed to give the
highest possible confidence to the estimation of a
variable at non-data locations. If there is no bias in
the variogram, and all required assumptions are met,
the kriged values, as opposed to trend surface,
triangulated irregular network (TIN), or other
estimation devices, will be optimal.
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A large amount of literature has developed in
geostatistics. The definitive text by Cressie (1991)
details many instances where the geostatistical
approach has proved helpful. These include studies of
soil-water tension, wheat yields, acid deposition, and
sudden infant death syndrome. Aspinall (Chapter 69)
and Wilson (Chapter 70) discuss applications in
landscape conservation and agriculture, respectively.
The variogram has now been introduced into several
GIS, and programs that can be interfaced with GIS are
available to help construct variograms and to apply the
kriging process (GS+ 1995; GEO-EAS 1988;
S+SpatialStats 1996). The geographical literature on
practical applications is building rapidly. Of particular
interest is the work of Oliver and Webster (1990).

3.5  Classification

Interest in this problem rises or falls depending on the
challenges presented by the subject matter and the
type of data used. As part of any image analysis of
remotely-sensed data, grouping algorithms are
needed. Supervised and unsupervised classification
schemes have been developed that allow for pixel
values to be identified with a particular category of,
say, land cover. Spectral, regression tree,
autocorrelation, neural network, and fuzzy logic
schemes have been adapted to deal with the problems
of aggregation. Themes being pursued include:

• evaluation of neural pattern classifiers (Fischer,
Chapter 19; Fischer et al 1997);

• the degree of supervision needed in finding
statistically significant groupings (Gong and
Howarth 1990);

• effects of resolution and sensitivity on various
classification schemes (Marceau et al 1994);

• incorporation of non-remotely-sensed data in
decision tree algorithms (Michaelsen et al 1996);

• application of classification routines to the results
of spectral-unmixing (Mertes et al 1995);

• classification routines applied to hyperspectral
and high spatial resolution data (Barnsley,
Chapter 32; Barnsley and Barr 1996).

3.6  Sampling issues

Just as the jury selection process affects the outcome
of a trial, so does the sampling scheme influence
research results. Spatial sampling is a particularly
difficult problem to deal with, since the idea (unlike
many jury selection processes) is to select an

unbiased sample, but finding independent
observations is impossible. Spatial sampling requires
that the researcher recognise the degree of
dependence in the data. Very often, the surfaces from
which samples are taken are complex and oddly
shaped, presenting difficult problems to overcome in
the statistical analysis. For many years, considerable
effort was given to making sense from small samples.
The challenge now is to make sense of large datasets
(Fischer, Chapter 19; Openshaw and Alvanides,
Chapter 18), and one means of so doing is to sample
from them. Research in this area includes:

• line transects and variable circular plots,
including kernel sampling (Quang 1992);

• network sampling (Faulkenberry and Garoui 1991);

• cluster and systematic sampling (Thompson 1992);

• spatial sample size (Ripley 1981; Goodchild and
Gopal 1989; Haining 1990);

• strip and stratified adaptive cluster sampling
(Thompson 1992);

• heterogeneous data sampling (Griffith et al 1994).

3.7  Spatial econometrics

The fundamental work in this area can be traced to
Paelinck (1967; see also Paelinck and Klaassen
1979). Anselin has made spatial econometrics
accessible to a wide audience with his text (1988)
and software (Chapter 17; 1992). In addition, texts
by Haining (1990), Griffith (1988), and Upton and
Fingleton (1985) have helped to widen the appeal of
these methods in geography. As Anselin says, the
approach is ‘model driven’; that is, the focus is on
regression parameter estimation, model
specification, and testing when spatial effects are
present. Regression models constitute the leading
approach for the study of economic and social
phenomena. The assumptions required for the basic
linear regression model, however, do not satisfy the
needs of spatial regression models, which must take
into account spatial dependence and/or spatial
heterogeneity. Spatial dependence occurs when there
is a relationship between observations of one or
more variables at one point in space with those at
another point in space, while spatial heterogeneity
results from data that are not homogeneous – for
example, population by areas which vary
considerably by size and shape.

A number of spatial autoregressive models have
been developed that include one or more spatial
weight matrices that describe the many spatial 
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associations in the data. The models include either a
single general stochastic autocorrelation parameter, a
series of autocorrelation parameters, one for each
independent variable conditioned by spatial effects
(dependency or heterogeneity), an error term
autocorrelation parameter, or some combination of
these. Parameter estimation procedures can be
complex. The usual approach is to use diagnostic
statistics to test for dependence and/or
heteroscedasticity among the spatially weighted
variables or the error term. Fortunately, SpaceStat,
designed for the exploration and testing of spatial
autoregressive models, is sufficiently user friendly to
allow for the development of final autoregressive
models (see Anselin, Chapter 17, for a general
discussion). In addition, the package has been linked
explicitly to several GIS, including ArcView (1995) and
Idrisi (Eastman 1993).

Several other approaches have been taken to
specify the influence of spatial effects in a regression
model environment. Casetti’s (1972) expansion
method is designed to increase the number of
variables in a regression model to take into account
secondary, but influential, spatial variables, such as
the x, y coordinates of georeferenced variables. This
approach uses the parameters of the expansion
variables as the indicators of the spatial effects.

In another development, Getis (1990, 1995) suggests
transforming the spatially autocorrelated model into
one without spatial autocorrelation embedded within
it. By filtering out the spatial autocorrelation, the
ordinary least squares model can be estimated and
evaluated using R2. By use of the Getis–Ord statistics
mentioned earlier, variables are transformed to become
relatively free of dependency effects. The filtered
spatial components are re-entered into the regression
equation as separate spatial variables.

The list of recent research themes, many of which
can be found in the volume edited by Anselin and
Florax (1995), can be divided into two parts: spatial
modelling and estimation. The spatial modelling
themes are:

• robust approaches to testing spatial models
(Anselin 1990b);

• mis-specification effects in spatial models (Florax
and Rey 1995; Hepple 1996);

• data problems in spatial econometric modelling
(Haining 1995);

• the general linear model and spatial
autoregressive models (Griffith 1995);

• multiprocess mixture (space-time) models
(LeSage 1995);

• adaptive filtering and dependence filtering for
spatial models (Foster and Gorr 1986; Getis 1995).

Parameter estimation is a subject central to model
development. For models having spatial parameters
or variables, a number of issues have arisen. The
robustness, consistency, and reliability of parameters
is a function of underlying theoretical distributions.
The assumption of asymptotic normality has been
called into question in some cases, and in others,
sample sizes must be large before normality
assumptions can be invoked. Bayesian approaches
have been introduced in order to bring more
information to bear on parameter estimation.
Maximum likelihood procedures are fundamental to
spatial model estimation, but data screening and
filtering have been suggested as ways to simplify
estimation. Current research includes:

• estimation of regression parameters in spatially
constructed regression equations (Florax and
Folmer 1992; Kelejian and Robinson 1993);

• estimating space-time probit models
(McMillen 1992);

• estimating logit models with spatial dependence
(Dubin 1995);

• spatial parametric instability (Casetti and
Poon 1995);

• small sample properties of tests for spatial
dependence (Anselin and Florax 1995a).

4 PROBLEMS, CHALLENGES, AND FUTURE
DIRECTIONS

At the heart of spatial science are the statistical and
mathematical techniques that allow for confirmatory
statements to be made about the relationship
between variables in a spatial setting. The thrust in
recent years has been to develop more and better
ways to describe data (see Anselin, Chapter 17).
The exploratory data analysis movement has given
researchers a bevy of fast ways to view data. Much
of this work has been created as a response to the
large and detailed datasets that are becoming
available. At the same time, relatively few new
methods have been offered to allow for the
confirmation of hypotheses, which is well behind in
the race for new understanding of spatial
phenomena (Anselin and Getis 1992).

A number of barriers hamper the modellers and
others seeking verification of their suppositions.
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Many of these obstacles derive from flawed data.
Problems include poor data quality, inadequate data
coverage, incompatible datasets, inappropriate data,
and the inability to handle large datasets (see the
contributions to Section 1(b) of this book). While
the main goal of spatial statistical analysis is to
assist in data interpretion, it cannot improve on
flawed data (Goodchild 1992). In addition, at least
three further obstacles stand in the way of
confirmatory analysis; these are described below.

4.1 Scale

Although much has been written about the nature of
the scale problem, there are few useful suggestions for
dealing with it. Perhaps the most often suggested
solution is to attempt to solve the scale problem at a
number of scales in the hope that a certain robustness
to the process will allow results to be generalised to a
number of spatial scales. In order to understand this
issue, however, more research is needed on the nature
of distributional parameters when data are
aggregated. A wider review of scale issues is provided
by Weibel and Dutton (Chapter 10).

4.2 Spatial weights effects

Identifying and describing spatial association is the
goal of much research. The intrinsic stationarity of the
variogram represents an empirically derived theory of
spatial effects. In essence, it is the spatial weights
matrix of the autoregressive models and the spatial
association statistics. Thus, the spatial weights matrix is
the manifestation of our understanding of spatial
association. Too often, the contiguity spatial weights
matrix is chosen simply because no further
understanding of distance, or interaction, or
association is assumed. The spatial association
statistics, such as I, c, and G, could be put to good use
as indicators of the appropriateness of particular
spatial weights matrices. To understand better issues
such as dependence and spillover, generalisation
between global and local scales, and data heterogeneity
and homogeneity, appropriate mathematical constructs
– such as eigenvectors – must be related to the form
and structure of our data. In addition, types of
variable – economic, social, physical – must be related
to the geometry of their spatial representation.

4.3 Boundary effects

Related to the above two problem areas is the issue of
boundary effects. In spatial studies, the delineation of

boundaries bear heavily upon results. Although
many truncated probability distributions have been
derived, they have not been used to good effect to
account for spatial boundary conditions. A number
of statistical procedures, such as refined nearest
neighbour analysis and K-function analysis, take into
consideration the effect of boundaries, but spatial
scientists have yet to consider boundary effects
systematically. Stochastic approaches to modelling
take into account impervious, reflecting, and other
types of boundary conditions, but this work has not
yet entered the mainstream of spatial science.

The problems discussed above describe at most
half of the challenge. Increasingly, the temporal
dimension is becoming a part of formerly static
models of spatial human and physical processes.
Deeper understanding usually comes from the study
of differences in space as well as time. Bringing these
two fundamental dimensions into a modelling
framework where parameters can be estimated is a
considerable challenge.

5 GIS AND SPATIAL STATISTICS

With regard to GIS, this volume makes clear how
well suited these systems are for the exploration and
manipulation of spatial data. Initially, the
contributions to GIS were in the form of commands
that allowed for the rectification of inconsistencies
between a number of coverages (spatial variables) of
the same geographical region. Much was made of
the fundamental data model, that is, raster or vector.
The main purpose was to link georeferenced datasets
that are either in pixel or polygonal spatial form so
that various combinations of variables could be
mapped. As sophistication increased, functions were
developed that allowed for new data to be derived
from the various coverages, and for back and forth
movement between data models.

For the most part, however, testing of hypotheses
using statistical methodology was left for non-GIS
statistical packages. It was quite enough to develop
the technology and the functions that allow for data
manipulation. Naturally, exploratory analytical
functions were developed. A great deal of progress
has been made in this regard, mainly from the
standpoint of graphical summaries of data
distributions together with simple summary measures
like means and standard deviations. The need for
more sophisticated analyses, voiced by many
academics, is now getting a hearing in GIS literature
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(Longley and Batty 1996a). Analysts are now
beginning to take advantage of the data processing
and data manipulation qualities of GIS to help create
and test models using statistical methodology. A
number of packages have been developed that enable
researchers to interface with GIS-formatted datasets.
Some of these are: S+Gislink links S+SpatialStats
with ARC/INFO (1996), SpaceStat links with
ArcView (Anselin 1997), Bailey and Gatrell’s
Interactive Spatial Data Analysis (1995), and Regard
(Haslett et al 1990). Other packages, such as GS+,
can be adapted to GIS requirements.

The effect of the new technology on spatial
statistical analysis has led to a broadening of the
process of hypothesis testing (Getis 1993). Heretofore,
the hypothesis-testing process was straightforward,
with little opportunity to recast hypotheses while in
the testing process. Now, the approach is much more
flexible. Note that in Figure 1 a step has been added
to the traditional approach of hypothesis guided
inquiry, and most steps have been expanded to
include more opportunities to assess data from
different vantage points. The added step, data
manipulation, presents researchers with opportunities
to use larger samples, view data over a series of map
scales, and generally be in a stronger position to carry
out statistical tests by means of simulations,
sensitivity analyses, and bootstrap methods. Note,
however, that each of these aproaches broadly
adheres to what Goodchild and Longley (Chapter 40)
term the ‘linear project design’.

The flurry of activity in recent years has led to the
publication of a number of edited volumes and
special journal issues that provide examples of the
various themes that are designed to wed spatial
statistical analysis with GIS. Included among these
are books edited by Fotheringham and Rogerson
(1994), Frank and Campari (1993), Fischer and
Nijkamp (1993), Fischer et al (1996), Longley and
Batty (1996b), and Fischer and Getis (1997). Given
the attention paid to this subject, in the next years
we might expect a full-fledged statistical package, in
the SPSS sense, integrated with the most
comprehensive GIS.
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Fig 1.  Traditional and GIS approaches to spatial statistics analysis.
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