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Abstract: The main goal of these studies was to determine main climatic factors controlling the 
regrowth of vegetation cover (VC) along the corridor of BTC and SCP pipelines. Standard multiple, 
spatial and geographically weighted regression models were used to determine main climate factors 
controlling VC. Annual precipitation, evapotranspiration and land surface temperature were 
determined to be main controlling factors of Normalized Difference Vegetation Index (NDVI) over 
grasslands. Annual precipitation, evapotranspiration and minimum temperature were determined to be 
main factors controlling NDVI of croplands. Geographically weighted regression model revealed that 
the regression models are variable along the corridor of pipelines. 
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1. Introduction  
The construction activities of BTC and SCP resulted in the disturbance of grasslands and croplands in 
Azerbaijan. The 44 m wide and 442 km long oil and gas pipelines passing through Azerbaijan 
required careful planning of revegetation activities after the completion of construction. In this study, 
NDVI is used to assess VC because NDVI is a proxy for aboveground biomass and it is highly 
correlated to green-leaf density (Liu et al. 2010). Better understanding of the controlling climate 
factors of NDVI is essential for the economic planning and implementation of the revegetation 
activities.  
 
2. Study area 
The study area is 442 km long corridor of BTC and SCP pipelines routed parallel to each other within 
the 44 m wide Rights-of-Way (RoW) in Azerbaijan. Both of these pipelines are underground and the 
average depth of cover varies 1–30 m depending on the terrain characteristics (Fig. 1). 
 

 
Figure 1. Map of the corridor of BTC oil and SCP gas pipelines passing over Azerbaijan 

 



3. Materials and methods 
3.1 Data for statistical analysis 
MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI 16-day composite product from 
NASA with the spatial resolution of 250 m was used in this research to monitor VC along the corridor 
of pipelines. MODIS LST data for an 8day composite with the spatial resolution of 1 km was 
acquired for the same vegetation peak months. Digital Elevation Model (DEM) of 10 m spatial 
resolution was used. The TMIN, TMAX and annual PRECIP were acquired from the WorldClim – 
Global Climate Data. The MOD16 ET datasets used are estimated using ET algorithm described in 
Mu et al. (2007). SOLRAD was computed based on the methods from the hemispherical viewshed 
algorithm developed by Fu and Rich (2002). The IKONOS high resolution multispectral images 
acquired along RoW in 2007 were used to compute the NDVI with the spatial resolution of 4 m. 
100 m long and 44 m wide polygons were created by the division of the RoW corridor. As a result of 
this, 4410 total polygons were developed along RoW. In each polygon, the pixel values of MODIS 
and IKONOS NDVIs, precipitation (PRECIP), evapotranspiration (ET), land surface temperature 
(LST), minimum temperature (TMIN), maximum temperature (TMAX) and solar radiation 
(SOLRAD) were averaged using the method of zonal statistics. These data was used for running of 
statistical regression models.  
 
3.2 Standard multiples regression model 
A multiple linear regression analysis is performed for grasslands and croplands using the dependent 
variable NDVI and predictor variables as PRECIP, ET, Tmax, Tmin, LST and SOLRAD. The full 
linear regression model equation is expressed as follows in Equation 1 (Ji et al. 2004). 
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3.3 Maximum likelihood spatial error model 
Spatial regression model as simultaneous autoregressive (SAR) models considers spatial 
autocorrelation of residuals as an additional variable in the regression equation and adds the 
normalization effect in the estimation of the significance of independent variables (Ji et al. 2004). The 
parameters for the spatial regression models are estimated based on the maximum likelihood 
procedure. The SAR model, or the spatial error model, is formulated as follows in Equation 2 (Erener 
et al. 2010). 

aUyXcY ++= ρ  (2) 

Where a  Vector of errors with zero mean and constant variance 2σ , U Proximity matrix ρ  
Interaction parameter or spatial autoregressive coefficient, c is the parameter to be estimated due to 
relationship between the variables.  
 
3.4 Geographically weighted regression (GWR) 
Since the relationship between the dependent variable (NDVI) and predictor variables can vary over 
space, it was also necessary to consider a local modeling technique. GWR estimates parameters along 
RoW and contributes to the determination of local variations along pipelines. GWR is represented in 
Equation 3: 
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where y  is the dependent variable; 1j  to nj  are the independent variables; ),( νµ denotes the sample 

coordinate in space; and q  is the error term. 

The parameter R  is estimated from: 
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νµR  is the estimate from R , ),( νµW is the weighting matrix, ensuring that observations 
near the location have greater influence than those far away. 
 
 



4. Results and discussions 
4.1. Standard multiples regression model and ridge standardized regression procedure for 
grasslands and croplands 
Because of high correlation between the predictor variables, the presence of multi-collinearity was 
assumed for the regression models of both grasslands and croplands. Based on the ridge standardized 
regression procedure, the multi-collinearity was eliminated in the subset regression model. 
 
4.2. Global spatial regression model 

The spatial regression procedure based on the maximum likelihood procedure showed the predictor 
variables which were no longer significant at the α = 0.05 level. Values > 0.05 are considered to be 
non-significant in Table 1. The spatial regression for grasslands determined that Tmin is not 
significant (Table 1). For croplands LST was not significant in the regression model (Table 1). The 
model was rerun for both grasslands and croplands without Tmin in case of grasslands and LST in 
case of croplands. The results were R2 = 0.70 for grasslands and R2 = 0.47 for croplands. Equation 5 
is the resulting regression model for grasslands, and Equation 6 is for croplands. It can clearly be 
observed in Table 1 that LST, PRECIP and ET are the most important factors in controlling of NDVI 
of grasslands. In case of croplands, these factors are PRECIP, ET and Tmin. 

 

Table 1 Coefficient estimates of the spatial regression model for grasslands and croplands (1st  and 2nd run) 

VARIABLE Model 
run 

Landuse Coefficient 
estimate 

Std. Error t value Sig. 

Intercept 
1 

Grasslands 100.35 1.86 53.95 0.00 

Croplands 127.60 0.10 127.64 0.00 

2 
Grasslands 100.34 1.85 54.26 0.00 
Croplands 127.19 0.97 130.69 0.00 

LST 
1 

Grasslands -3.19 0.72 -4.45 0.00 
Croplands 0.72 0.45 1.59 0.11 

2 
Grasslands -3.19 0.72 -4.44 0.00 
Croplands N/A N/A N/A N/A 

PRECIP 
1 

Grasslands 19.50 1.99 9.78 0.00 
Croplands 7.07 1.06 6.64 0.00 

2 
Grasslands 19.22 1.96 9.81 0.00 
Croplands 6.72 1.05 6.43 0.00 

ET 
1 

Grasslands -2.75 0.76 -3.61 0.00 
Croplands 1.57 0.37 4.29 0.00 

2 
Grasslands -2.77 0.76 -3.64 0.00 
Croplands 1.56 0.37 4.26 0.00 

TMIN 
1 

Grasslands 1.26 1.38 0.91 0.36 
Croplands 7.67 1.09 7.06 0.00 

2 
Grasslands N/A N/A N/A N/A 
Croplands 7.91 1.08 7.33 0.00 

 

NDVI grass = 100.34 - 3.19 (LST) + 19.22 (PRECIP) - 2.77 (ET) (5) 

 NDVIcrop = 127.19+ 1.56 (ET) + 7.91 (TMIN) + 6.72 (PRECIP) (6) 

 

4.3 Geographically weighted regression (GWR) 
The GWR analyses, compared to the global regression results, clearly revealed spatial non-stationary 
between NDVI of grasslands and croplands and the predictor variables (Table 2). With GWR, R2 
increased markedly to 0.82 and 0.75 for grasslands and croplands, respectively. 

Table 2 Local and global regression estimates and diagnostics for grasslands and croplands 

Predictor variables 
GSRM parameter estimate GWR parameter estimates 
Grasslands Croplands Grasslands Croplands 

LST -3.19 N/A -432.43 to 75.37 N/A 

PRECIP 19.22 6.72 -1370.71 to  548.94 -239.88 to 209.78 

ET -2.77 1.56  -75.84 to 89.41  -37.44 to 33.24 



TMIN N/A 7.91 N/A -110.76 to 148.24 

INTERCEPT 100.34 127.19 -35.61 to 743.92  -370.95  to 317.62 

Diagnostics     

Adjusted R2 0.70  0.47 0.82 0.75 

AICc 8815.03  17156.1 1219.93 7054.33 

 
5. Conclusions 

Standard multiple regression model was not optimal for revealing of the main predictor variables 
controlling NDVI of grasslands and croplands along RoW. Based on the global spatial regression 
model, PRECIP, LST and ET were determined as the main climate factors controlling NDVI of 
grasslands along RoW. In case of croplands, PRECIP, ET and TMIN were determined as the main 
factors controlling NDVI of croplands. The regression models predicting NDVI for grasslands and 
croplands were formulated as follows: 

NDVIgrass = 100.34 - 3.19 (LST) + 19.22 (PRECIP) - 2.77 (ET) 

NDVIcrop = 127.19+ 1.56 (ET) + 7.91 (TMIN) + 6.72 (PRECIP) 

The GWR analyses in comparison with the global regression models results clearly revealed that the 
relationship between NDVI of grasslands and croplands and the predictor variables was spatially non-
stationary along RoW.  

Quantitative assessment of climate and ground factors controlling VC may provide the possibilities of 
better planning for the revegetation and erosion control activities along the corridor of pipelines. This 
may also reduce the investments for the high-resolution aerial and satellite imagery required by the 
environmental monitoring of restoration activities along the narrow and long-range RoW of pipelines. 
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