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Abstract: The main goal of these studies was to determinia miamatic factors controlling the
regrowth of vegetation cover (VC) along the corridd BTC and SCP pipelines. Standard multiple,
spatial and geographically weighted regression fisodere used to determine main climate factors
controlling VC. Annual precipitation, evapotranspion and land surface temperature were
determined to be main controlling factors of Noriaed Difference Vegetation Index (NDVI) over
grasslands. Annual precipitation, evapotranspinadiod minimum temperature were determined to be
main factors controlling NDVI of croplands. Geognagally weighted regression model revealed that
the regression models are variable along the aordtipipelines.
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1. Introduction

The construction activities of BTC and SCP resuitethe disturbance of grasslands and croplands in
Azerbaijan. The 44 m wide and 442 km long oil arab gipelines passing through Azerbaijan
required careful planning of revegetation actigtedter the completion of construction. In thisdstu
NDVI is used to assess VC because NDVI is a pratyaboveground biomass and it is highly
correlated to green-leaf density (Liu et al. 201B¢tter understanding of the controlling climate
factors of NDVI is essential for the economic plagnand implementation of the revegetation
activities.

2. Study area

The study area is 442 km long corridor of BTC a@PSipelines routed parallel to each other within
the 44 m wide Rights-of-Way (RoW) in Azerbaijan.tBof these pipelines are underground and the
average depth of cover varies 1-30 m dependinge@tetrain characteristics (Fig. 1).
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Figure 1. Map of the corrldor of BTC oil and SCP gas pipe$irpassing over Azerbaijan
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3. Materials and methods

3.1 Datafor statistical analysis

MODIS (Moderate Resolution Imaging SpectroradiomeidDVI 16-day composite product from
NASA with the spatial resolution of 250 m was ugethis research to monitor VC along the corridor
of pipelines. MODIS LST data for an 8day compositéh the spatial resolution of 1 km was
acquired for the same vegetation peak months. digitevation Model (DEM) of 10 m spatial
resolution was used. The TMIN, TMAX and annual PRE@ere acquired from the WorldClim —
Global Climate Data. The MOD16 ET datasets usedeatienated using ET algorithm described in
Mu et al. (2007). SOLRAD was computed based onntkéhods from the hemispherical viewshed
algorithm developed by Fu and Rich (2002). The K@ high resolution multispectral images
acquired along RoW in 2007 were used to comput®Iidl with the spatial resolution of 4 m.

100 m long and 44 m wide polygons were createchbydtvision of the RoW corridor. As a result of
this, 4410 total polygons were developed along R6Weach polygon, the pixel values of MODIS
and IKONOS NDVIs, precipitation (PRECIP), evapospination (ET), land surface temperature
(LST), minimum temperature (TMIN), maximum temperat (TMAX) and solar radiation
(SOLRAD) were averaged using the method of zoratlssics. These data was used for running of
statistical regression models.

3.2 Standard multiplesregression model
A multiple linear regression analysis is perfornfiedgrasslands and croplands using the dependent
variable NDVI and predictor variables as PRECIP, Emax, Tmin, LST and SOLRAD. The full
linear regression model equation is expressedli@svioin Equation 1 (Ji et al. 2004).

NDVI grass /crop ::80+:81(PRECIP )+:32(ET)+/33(TMAX )+ (1)

+ B, (TMIN ) + B (LST ) + B, (SOLRAD ) + ¢
3.3 Maximum likelihood spatial error model
Spatial regression model as simultaneous autorEgees(SAR) models considers spatial
autocorrelation of residuals as an additional ‘deiain the regression equation and adds the
normalization effect in the estimation of the sfgigince of independent variables (Ji et al. 2004
parameters for the spatial regression models atienaged based on the maximum likelihood
procedure. The SAR model, or the spatial error masiéormulated as follows in Equation 2 (Erener
et al. 2010).

Y =Xc+ pUy+a (2)

Where a Vector of errors with zero mean and constant vaeag”, U Proximity matrix o

Interaction parameter or spatial autoregressivdficmant, cis the parameter to be estimated due to
relationship between the variables.

3.4 Geographically weighted regression (GWR)

Since the relationship between the dependent Var{dDVI) and predictor variables can vary over
space, it was also necessary to consider a loca¢lng technique. GWR estimates parameters along
RoW and contributes to the determination of locaiations along pipelines. GWR is represented in
Equation 3:

y=RuV)+R (V) j+... * R(uV) i, +q  (3)
where y is the dependent variablg; to j, are the independent variablégs, V) denotes the sample
coordinate in space; arg is the error term.
The parameteR is estimated from:
R(u,v) = (XTW(,v) X)X W(u,v)y  (4)

A

where R(y,V) is the estimate fronR, W (u,V) is the weighting matrix, ensuring that observations
near the location have greater influence than tfersaway.



4. Results and discussions

4.1. Standard multiples regression model and ridge standardized regression procedure for
grassands and croplands

Because of high correlation between the predictorables, the presence of multi-collinearity was
assumed for the regression models of both grassiand croplands. Based on the ridge standardized
regression procedure, the multi-collinearity wamidated in the subset regression model.

4.2. Global spatial regression model

The spatial regression procedure based on the roaxilikelihood procedure showed the predictor
variables which were no longer significant at the 0.05 levelValues> 0.05areconsidered to be
non-significant in Table 1. The spatial regression grasslands determined thatif is not
significant (Table 1). For croplands LST was nginfficant in the regression model (Table 1). The
model was rerun for both grasslands and croplantt®ut Tmin in case of grasslands and LST in
case of croplands. The results wefe=R0.70 for grasslands and R 0.47 for croplands. Equation 5
is the resulting regression model for grasslandd, Bquation 6 is for croplands. It can clearly be
observed in Table 1 that LST, PRECIP and ET arertbst important factors in controlling of NDVI
of grasslands. In case of croplands, these faater®RECIP, ET andniin.

Table 1 Coefficient estimates of the spatial regressionehéat grasslands and croplands' (and 2% run)

VARIABLE HEE Landuse Coef_f|C|ent Std. Error t value Sig.
run estimate
Grasslands 100.35 1.86 53.95 0.00
s Croplands 127.60 0.10 127.64 0.00
I nter cept
2 Grasslands 100.34 1.85 54.26 0.00
Croplands 127.19 0.97 130.69 0.00
1 Grasslands -3.19 0.72 -4.45 0.00
LsT Croplands 0.72 0.45 1.59 0.11
2 Grasslands -3.19 0.72 -4.44 0.00
Croplands N/A N/A N/A N/A
1 Grasslands 19.50 1.99 9.78 0.00
PRECIP Croplands 7.07 1.06 6.64 0.00
2 Grasslands 19.22 1.96 9.81 0.00
Croplands 6.72 1.05 6.43 0.00
1 Grasslands -2.75 0.76 -3.61 0.00
ET Croplands 1.57 0.37 4.29 0.00
2 Grasslands -2.77 0.76 -3.64 0.00
Croplands 1.56 0.37 4.26 0.00
1 Grasslands 1.26 1.38 0.91 0.36
TMIN Croplands 7.67 1.09 7.06 0.00
2 Grasslands N/A N/A N/A N/A
Croplands 7.91 1.08 7.33 0.00

NDVI grass= 100.34 - 3.19 (LST) + 19.22 (PRECIP) - 2.77 ()
NDVI gop = 127.19+ 1.56 (ET) + 7.91 (TMIN) + 6.72 (PREC(B)

4.3 Geographically weighted regression (GWR)

The GWR analyses, compared to the global regressmuits, clearly revealed spatial non-stationary
between NDVI of grasslands and croplands and teeligtor variables (Table 2). With GWR/ R
increased markedly to 0.82 and 0.75 for grasslandscroplands, respectively.

Table 2 Local and global regression estimates and diagmsoftr grasslands and croplands

GSRM parameter estimate GWR parameter estimates

Predictor variables

78

Grasslands Croplands Grasslands Croplands
LST -3.19 N/A -432.43 t0 75.37 N/A|
PRECIP 19.22 6.72 -1370.71 to 548.94 -239.88 to 209,
ET -2.77 1.56 -75.84 to 89.41 -37.44 to 33.24




TMIN N/A 7.91 N/A -110.76 to 148.24
INTERCEPT 100.34 127.19 -35.61 to 743.92 -370.95 to 31762
Diagnostics
Adjusted R? 0.70 0.47 0.82 0.75
AlCc 8815.03 17156.1 1219.98 7054.83

5. Conclusions

Standard multiple regression model was not optifoalrevealing of the main predictor variables
controlling NDVI of grasslands and croplands alddg\W. Based on the global spatial regression
model, PRECIP, LST and ET were determined as thia riamate factors controlling NDVI of
grasslands along RoW. In case of croplands, PREETPand TMIN were determined as the main
factors controlling NDVI of croplands. The regressimodels predicting NDVI for grasslands and
croplands were formulated as follows:

NDVI grass= 100.34 - 3.19 (LST) + 19.22 (PRECIP) - 2.77 (ET)
NDVl grop = 127.19+ 1.56 (ET) + 7.91 (TMIN) + 6.72 (PRECIP)

The GWR analyses in comparison with the globalesgjon models results clearly revealed that the
relationship between NDVI of grasslands and crafdeend the predictor variables was spatially non-
stationary along RoW.

Quantitative assessment of climate and groundrf&ctntrolling VC may provide the possibilities of
better planning for the revegetation and erosiarirobactivities along the corridor of pipelineshi¥
may also reduce the investments for the high-réisolaerial and satellite imagery required by the
environmental monitoring of restoration activiteeng the narrow and long-range RoW of pipelines.
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