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1. Introduction 
 

Geographically weighted regression (GWR) (Brunsdon et al. 1996; Fotheringham et al. 2002) is a 

useful technique for modelling local spatial relationships between variables. The essential idea of 

GWR is that observations near to a model calibration point have more influence in the estimation of 

regression coefficients than observations farther away do. The standard GWR model employs a single 

bandwidth to control the distance-decay in this influence. In practice however, such a uniform 

bandwidth may not be sufficient in reflecting complex spatial variations in relationships between 

dependent and independent variables. In an attempt to produce a more realistic model, this paper 

develops an extension to GWR, where flexible bandwidths are found providing coefficient surfaces 

that vary at different spatial scales. Experiments are carried out on simulated datasets to test the model. 

 

2. Background 
 

In GWR a series of local regressions are calibrated at target regression locations. Observations are 

weighted according to their proximity to the regression point so that data from near observations are 

weighted more than data from far observations. This geographical weighting is achieved through a 

kernel function with a given bandwidth, which determines the rate at which the weights decay around 

a regression point. The larger a bandwidth is, the more slowly the weights decay. When the bandwidth 

tends to infinity, the model will tend to a global regression where the relationships are stable over 

space. 

Current approaches in GWR allow a bandwidth to be selected by some optimizing criteria such as 

cross-validation, Akaike Information Criterion (AIC) or AICc (small sample bias corrected AIC) 

(Fotheringham et al. 2002). All the relationships examined in the model are assumed to follow this 

uniform ‘one-size-fits-all’ bandwidth. However we may want to weight the observations differently, 

by each independent variable, using different rates of distance-decay to reflect a multivariate process 

that varies across different spatial scales.  In such circumstances, a flexible bandwidth GWR 

(FBGWR) model can be specified. 

 

3. Methodology 



 

 

The form of FBGWR can be written as: 

 iiiibwiiibwi xvuxvuy εββ +++= ...),(),( 2211  (1) 

where iy  is the dependent variable measured at observation point i ; 1ix , 2ix , … are the 

independent variables (including an intercept of ones) at point i ; ),( ii vu  stands for the location of 

point i ; iε  is the error term; ),(1 iibw vuβ , ),(2 iibw vuβ , … are coefficients describing the 

relationships between iy  and different independent variables around location ),( ii vu . The 

regression coefficients vary with location and for each independent variable, vary at a different spatial 
scale. This property distinguishes FBGWR from standard GWR.  
One approach to calibrate FBGWR is to use the backfitting method (Hastie et al. 2001) which is 

similarly used by Brunsdon et al. (1999) in calibratring semi-parametric GWR. The idea is to calibrate 

each term in turn, assuming that all the other terms are known. Partial residuals are regressed on each 

individual variable in an iterative manner, where each step will give new calibrations for each term, 

and eventually these should converge, provided some regularity conditions apply to all hat matrices. In 

this way, all the calibrations are solved simultaneously. 

 

4. Experiment 
 

To evaluate the performance of a FBGWR model, a well-advised practice is to design experiments on 

simulated datasets where properties of the data, including size, distribution, variation and 

heterogeneity can be controlled. Model evaluation using simulated data avoids problems due to any 

unwanted effect that is present in empirical data; effects that often compromise gaining a clear 

understanding of the model.  

 

4.1 Simulation data 
 

In this experiment, three datasets are simulated following the approach proposed by Farber and Páez 

(2007); Wang et al.(2008); and used in Harris et al. (2010), for investigating GWR models. Here 625 

observation points are located on a 25*25 grid, and a data generating process is defined as 

 iiiiiii xvuvuy εββ ++= 110 ),(),(   for i = 1, 2, …, 625, (2) 

where yi is the generated dependent variable; x1i is a single independent variable randomly drawn from 

a uniform distribution over interval (0, 1); and εi is an error term independently drawn from a normal 

distribution with mean zero and deviation at a proportion of 33.3% to the variance of the mean process. 

The two coefficients, β0 (for the intercept) and β1 (for the single independent variable) are specified as 

functions of (ui, vi) in the following three cases. 

Case 1: β0 = 3, β1 = 3 

Case 2: β0 (u, v) = 1 + (1/6) (u + v), β1 (u, v) = 1 + u/3 

Case 3: β0 (u, v) = 1 + 4 sin [(1/12) π u], β1 (u, v) = 1 + (1/324) [36 - (6 - u)2] [36 - (6 - v)2] 

Each case represents a different heterogeneity level, with zero heterogeneity in case 1, low 

heterogeneity in case 2 and high heterogeneity in case 3. Thus three simulated data sets are built, each 

with different properties in data relationships. Coefficient surfaces for the latter two cases are depicted 

in Figure 1. 



 

 

 

Figure 1. Simulated coefficient surfaces for case 2 (the upper) and case 3 (the lower). 

 
4.2 Model calibration and results  

 
As a first step, the performance of FBGWR is compared to standard GWR in prediction accuracy and  

ability to reproduce the coefficient surfaces. Both models are calibrated using an adaptive bi-square 

kernel function and AICc to select an optimal bandwidth. 

Table 1 compares the results from the two models for each case. According to the residual sum of 

squares (RSS) for the predicted and actual yi data, FBGWR performs better than GWR in cases 1 and 3. 

In each case, FBGWR has tuned clearly different bandwidths for the two coefficients, suggesting 

different scales of relationship nonstationarity. The bandwidth of 1 is considered to probably reflect 

the existence of a stationary coefficient. 
 
 
 



 

 Table 1. Results from GWR and FBGWR on simulated data sets 
 

 
Case/data 1 

(zero heterogeneity) 
Case/data 2 

(low heterogeneity) 
Case/data 3 

(high heterogeneity) 

 GWR FBGWR GWR FBGWR GWR FBGWR 

Bandwith Intercept(β0) 0.36 
0.12 

0.20 
0.17 

0.20 
0.05 

X1(β1) (appr.)1 0.28 0.19 

RSS  153.69 147.07 596.56 599.59 841.54 826.53 

 

 

Figure 2. Estimated coefficient surfaces for case 1 

 

The estimated coefficients are mapped for each case, in Figures 2 to 4, to be compared with real 

surfaces given in Figure 1. In case 1, the estimated coefficients from GWR show some vague 

patterning but tend to hover around 3 as expected. For FBGWR, the intercept β0  tends to random, 

whilst β1 is a little over-estimated. In case 2, FBGWR performs better than GWR in estimating both 



 

coefficients. In case 3, FBGWR also reproduces the two coefficient surfaces quite well, while standard 

GWR hardly represents the real patterns at all, especially β1  the more complex surface. 

 

 

 

Figure 3. Estimated coefficient surfaces for case 2 



 

 

 
Figure 4. Estimated coefficient surfaces for case 3 

 
5. Discussion 
 

FBGWR enables an investigation of data relationships that may vary at different spatial scales, by 

allowing a different bandwidth to be selected for each coefficient. In doing so, FBGWR acts as a 

generalisation to simpler models – global linear regression, standard GWR and semi-parametric GWR. 

These preliminary simulation experiments suggest that FBGWR can provide an improvement over 

standard GWR, when the spatial variation of coefficients is complex. A more complete set of 

simulation experiments currently underway will investigate FBGWR with: (i) more independent 

variables; (ii) simulated data sets derived from coefficients with more complex levels of heterogeneity  

and (iii) multiple simulations to test various hypotheses.  With respect to (ii), if the same surfaces are 

used for all the coefficients, FBGWR should reproduce the results of a standard GWR. Alternatively, 

if the coefficient surfaces reflect two very different levels of heterogeneity, zero and high 

heterogeneity, FBGWR should work equally to a semi-parametric GWR. The efficiency of backfitting 



 

algorithm needs to be tested on more complex models and techniques to accelerate the algorithm are 

under investigation. 
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