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1. Introduction

Geographically weighted regression (GWR) (Brunsdoral. 1996; Fotheringham et al. 2002) is a

useful technique for modelling local spatial redaships between variables. The essential idea of
GWR is that observations near to a model calibnapioint have more influence in the estimation of

regression coefficients than observations fartieayado. The standard GWR model employs a single
bandwidth to control the distance-decay in thiduirice. In practice however, such a uniform

bandwidth may not be sufficient in reflecting coeplspatial variations in relationships between

dependent and independent variables. In an attémptoduce a more realistic model, this paper
develops an extension to GWR, where flexible badthvgi are found providing coefficient surfaces

that vary at different spatial scales. Experimeméscarried out on simulated datasets to test teeem

2. Background

In GWR a series of local regressions are calibratethrget regression locations. Observations are
weighted according to their proximity to the regiea point so that data from near observations are
weighted more than data from far observations. Beisgraphical weighting is achieved through a
kernel function with a given bandwidth, which detares the rate at which the weights decay around
a regression point. The larger a bandwidth isntbee slowly the weights decay. When the bandwidth
tends to infinity, the model will tend to a glob&gression where the relationships are stable over
space.

Current approaches in GWR allow a bandwidth to élected by some optimizing criteria such as
cross-validation, Akaike Information Criterion (Al®r AICc (small sample bias corrected AIC)
(Fotheringham et al. 2002). All the relationshipgrmined in the model are assumed to follow this
uniform ‘one-size-fits-all’ bandwidth. However weasnwant to weight the observations differently,
by each independent variable, using different rategistance-decay to reflect a multivariate prsces
that varies across different spatial scales. Iohsaoircumstances, a flexible bandwidth GWR
(FBGWR) model can be specified.

3. Methodology



The form of FBGWR can be written as:
Yi = Bowa (U, V) Xy + Boa (U V) X+t & (1)

where y, is the dependent variable measured at observg®nt i; X,, X,, ... are the
independent variables (including an intercept ad)rat pointi; (u,,v;) stands for the location of
point i; &

. is the error term;S,,,(U,,V.), B,..U.,Vv.), ... are coefficients describing the
relationships betweeny, and different independent variables around looati@,,v,) . The

regression coefficients vary with locatiand for each independent variable, vary at a diffesgattial
scale. This property distinguishes FBGWR from staddsWR.

One approach to calibrate FBGWR is to use the litiof method (Hastie et al. 2001) which is
similarly used by Brunsdon et al. (1999) in calthireg semi-parametric GWR. The idea is to calibrate
each term in turn, assuming that all the other seane known. Partial residuals are regressed dm eac
individual variable in an iterative manner, wheeele step will give new calibrations for each term,
and eventually these should converge, provided semdarity conditions apply to all hat matriceas. |
this way, all the calibrations are solved simultzunsdy.

4. Experiment

To evaluate the performance of a FBGWR model, &adblised practice is to design experiments on
simulated datasets where properties of the dateluding size, distribution, variation and
heterogeneity can be controlled. Model evaluatisimgi simulated data avoids problems due to any
unwanted effect that is present in empirical daffiects that often compromise gaining a clear
understanding of the model.

4.1 Simulation data

In this experiment, three datasets are simulatbolWfimg the approach proposed by Farber and Paez
(2007); Wang et al.(2008); and used in Harris e(2010), for investigating GWR models. Here 625
observation points are located on a 25*25 grid,addta generating process is defined as

y, = B,(u;,v,)+B(u,v)x, +& fori=1,2, ..., 625, (2)

wherey; is the generated dependent variakleis a single independent variable randomly dravwmfr

a uniform distribution over interval (0, 1); ands an error term independently drawn from a normal
distribution with mean zero and deviation at a prtipn of 33.3% to the variance of the mean pracess
The two coefficientss, (for the intercept) ang; (for the single independent variable) are spettifie
functions of (i, v in the following three cases.

Case 1. 63=3, £,=3

Case 2: Bo(u,v) =1+ (1/6) g +V), B1(u,v)=1+u/3

Case 3: Bo(u, V) =1 + 4 sin [(1/12x u], B1(u,Vv) =1+ (1/324) [36 - (6 )7 [36 - (6 -V)]

Each case represents a different heterogeneityl, levith zero heterogeneity in case 1, low
heterogeneity in case 2 and high heterogeneitase 8. Thus three simulated data sets are buih, ea
with different properties in data relationships e@wient surfaces for the latter two cases ardaieg

in Figure 1.
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Figure 1. Simulated coefficient surfaces for case 2 (thestipgnd case 3 (the lower).
4.2 Modd calibration and results

As a first step, the performance of FBGWR is coragdédp standard GWR in prediction accuracy and
ability to reproduce the coefficient surfaces. Bothdels are calibrated using an adaptive bi-square
kernel function and AlCc to select an optimal baruitia

Table 1compares theesults from the two models for each case. Accgrdinthe residual sum of
squares (RSS) for the predicted and agpddta, FBGWR performs better than GWR in cases Band
In each case, FBGWR has tuned clearly differenidbadths for the two coefficients, suggesting
different scales of relationship nonstationaritjeTbandwidth of 1 is considered to probably reflect
the existence of a stationary coefficient.



Table 1. Results from GWR and FBGWR on simulated data sets

Case/data 1 Case/data 2 Case/data 3
(zero heterogeneity) | (low heterogeneity) | (high heterogeneity)
GWR FBGWR GWR FBGWR GWR FBGWR
Bandwith | Intercept 0.12 0.17 0.05
Pi(Fo) 0.36 0.20 0.20———
X1(51) (appr.)1 0.28 0.19
RSS 153.69 147.07 596.56 599.59| 841.54| 826.53
Regression coefficient i : zero heterogeneity Regression coefficient i, : zero heterogeneity
o I I = [ Fas 1 S
10 - 310 10 4 L
I3z
F3.05
8 = B =
F3.00 ka1
= b = = B o —
b 295
]
4 - 4 - -
F 290
27 N boms 27 B [
U T T T T T T r o 280 0 T T T T T T T r s
0 2 4 5 8 1 i 2 4 6 8 1 12
L(J'.;WR (;WR
Regression coefficient i : zero heterogeneity Regression coefficient b, : zero heterogeneity
19 1 1 1 1 1 1 1 u N 19 1 1 1 1 1 n —_—
o | L2, o | r 3.078
F3.074
N r k30 87 B
Fa.072
= b = N =
23
F3.070
4 - 4 -
28 F 3.068
2 = 2 -
F 3.065
F27
U T T T T T T T r o U T T T T T T T r o
0 2 4 6 8 10 12 0 2 4 5 8 10 12
FBUGWR FUBGWR

Figure 2. Estimated coefficient surfaces for case 1

The estimated coefficients are mapped for each, ¢gasEigures 2 to 4, to be compared with real
surfaces given in Figure 1. In case 1, the estithatefficients from GWR show some vague
patterning but tend to hover around 3 as expe€ted FBGWR, the interceptd, tends to random,

whilst £, is a little over-estimated. In case 2, FBGWR penf® better than GWR in estimating both



coefficients. In case 3, FBGWR also reproduceswloecoefficient surfaces quite well, while standard

GWR hardly represents the real patterns at ale@ajly £, the more complex surface.
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Figure 3. Estimated coefficient surfaces for case 2
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Figure 4. Estimated coefficient surfaces for case 3
5. Discussion

FBGWR enables an investigation of data relatiorshifat may vary at different spatial scales, by
allowing a different bandwidth to be selected facle coefficient. In doing so, FBGWR acts as a
generalisation to simpler models — global linegression, standard GWR and semi-parametric GWR.
These preliminary simulation experiments suggeat FEBGWR can provide an improvement over
standard GWR, when the spatial variation of cogffits is complex. A more complete set of
simulation experiments currently underway will istigate FBGWR with: (i) more independent
variables; (ii) simulated data sets derived froraftoients with more complex levels of heterogeyeit
and (iif) multiple simulations to test various hypeses. With respect to (ii), if the same surfaves
used for all the coefficients, FBGWR should reprathe results of a standard GWR. Alternatively,
if the coefficient surfaces reflect two very diget levels of heterogeneity, zero and high
heterogeneity, FBGWR should work equally to a sparametric GWR. The efficiency of backfitting



algorithm needs to be tested on more complex mashelgechniques to accelerate the algorithm are
under investigation.
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