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ABSTRACT:  Population censuses at fine levels of spatial detail provide potential demand 
information for effective health care planning and policy formulation. Previous studies have used 
different methods of areal interpolation to disaggregate population data to small areas. This study 
demonstrates the utility of combining dasymetric mapping with pycnophylactic interpolation to 
estimate population in small areas. The results were evaluated by comparing them with actual census 
data and measured using Root Mean Square Error (RMSE) and adjusted Root Mean Square Error 
(Adj-RMSE). The results show that the interpolated populations are reliable and suitable for use with 
location-allocation analyses of health facilities.  
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1. Introduction 

Population estimates for small areas contribute significantly in analyses of spatial data. In analysing 
accessibility to public facilities (e.g. health centres), policy makers and planners need to have detailed 
information on population size to be capable of estimating facility demand. Geographic Information of 
an area at finer scale provides specific information based on local population characteristics which 
assist in coordinating, monitoring and evaluating service delivery (Curtis and Taket, 1989). This must 
be organised for effective planning and evaluation of health services (World Health Organisation, 
1987). Population data from census in small areas is essential for the analysis of access in relation to 
demand and for supply for health service resources.  
 
Population census data in some countries (e.g. Nigeria) are published only as spatially aggregate data 
for States and Local Government Areas. Health plans are made based on these larger estimates of the 
population and not use more detailed population data relating to small areas. There is a need for such 
data to be disaggregated to small areas to facilitate more robust spatial analysis. Areal interpolation is 
the process of estimating population distributions from aggregated census level to small areas within 
the aggregated boundary (Mennis, 2003). In order to overcome this problem, previous studies have 
used different techniques for areal interpolation to estimate population census data based on different 
assumptions about the original allocation of the known data and its dimensions (Hawley and 
Moellering, 2005). The two classes of techniques are: dasymetric techniques that use ancillary data 
(e.g. remote sensing, road network data) and those that do not use ancillary data. Regardless of 
approach, the major difficulty in applying interpolation techniques is that the estimation of data over 
small areas changes the aggregated boundary and effects the results of spatial analysis (Openshaw, 
1984).  
 



 
 

This study addresses the problem of estimating aggregated population census data to small areas by 
combining dasymetric mapping and pycnophylactic interpolation. The objective is to disaggregate 
population census data to small areas within the study area. 

 

2. Areal interpolation 

Areal interpolation is the transformation of aggregated population census data to where data is needed. 

2.1 Areal interpolation methods using ancillary data 

Two well-known techniques using ancillary data are dasymetric methods using remote sensing data 
and the road network method using road data. The dasymetric technique is volume preserving and 
residential land use types are represented using a two-dimensional zone system. The technique makes 
it easier to mask out known non-residential areas and gives better information about the distribution of 
population (Cai et al., 2006). This technique was used by Wright (1936) to produce a density map and 
also estimates population distribution of Cape Cod using topographic sheet as ancillary data. Eicher 
and Brewer (2001) enhanced their analysis of socio-economic variables using urban land use data. 
 
The road network technique estimates original values using one-dimensional street networks as 
ancillary data (Reibel and Bufalino, 2005). The technique assumes distribution of housing units, which 
identify areas of high population density, correlates with road networks (Brinegar and Popick, 2010). 
This is important where population is the variable of interest because most residential homes are 
located on road network. Xie (1995) used road network as ancillary data and developed three 
algorithms based around road classification, road length and internal node counts. Reibel and Bufalino 
(2005) interpolate 2000 census data in Los Angeles from 1990 census data using network length 
method with street network data (TIGER files from the U.S. census). 
 

2.2 Areal interpolation methods that do not use ancillary data 

Two common interpolation techniques are pycnophylactic and areal weighting methods. The 
pycnophylactic approach (Tobler, 1979) predicts target zone estimates as volumes within each zone. It 
preserves the total volume and generates a 2 ½ dimensional continuously smooth surface (Cai et al., 
2006). This technique has been widely applied in different research areas. Some of the applications 
include triangulated Irregular Networks, TIN (Rase, 2001), point in polygon (Okabe and Sadahiro, 
1997) geostatistical method of kriging (Kyriakidis, 2004) and modelling malaria in Kenya (Hay et al., 
2005). Comber et al. (2008) used it to spatially disaggregate UK agricultural census data. 
 
The areal weighting technique is a two-dimensional polygon overlay method that maintains volume 
and assume population is uniformly spread within the source zones (Lam, 1983). The disadvantage of 
this technique is the assumption of uniform distribution of population (Kim and Yao, 2010). Cromley 
et al. (2009) used areal weighting technique to correct changes in boundaries that occur between 
censuses in China. The result shows the methodology is applicable to areas with repeated change in 
unit boundaries. 
 

3. Method 

The methodology describes the use of a combination of dasymetric mapping and pycnophylactic 
interpolation to disaggregate population census data to small areas. The data used include:  

• Land Cover/ Land use map of Leicester, UK 
• 2001 population census of Leicester at Lower Super Output Areas (LSOAs) as the source 

zones. 
 

• 2001 population census of Leicester at Output Areas(OAs) as the target zones 
 



 
 

The methodology was carried out in two stages: 

Stage 1: Binary dasymetric mapping 

Binary dasymetric was chosen because previous research has shown no improvement in the accuracy 
by selecting multi-class (Langford, 2007). The technique was used to assign population density values 
over all the pixels in the study area with no values assigned to known large parks (green space areas), 
thereby creating a new polygon of the study area with the total population at LSOAs. A flow chart is 
shown in Figure 1 below.  
 
Stage 2: Pycnophylactic interpolation 

The pycnophylactic interpolation smoothes values assigned to each residential pixel. A ‘Pycno’ 
function written in R using a 30m grid was applied to the polygon created in Stage 1. The total 
population at LSOAs were disaggregated within the study area with the total source volume preserved 
as in Figure 1. The output, population density surface was converted to a points’ file for further 
analysis. Allocation of census data from LSOAs to OAs in Leicester, UK was used to illustrate the 
method. 
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Figure 1. Flowchart combining dasymetric mapping with pycnophylactic interpolation 
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4. Results 

The population of LSOAs as in Figure 2 shows LSOAs with low population in red and those with high 
population in yellow. The legend shows range of values in three (3) classes with colour changing from 
red to yellow as the population increases. The predicted density surface from a combination of 
dasymetric mapping with pycnophylactic interpolation as in Figure 3 shows the population density 
values as a continuous surface ranging from low population density (shown in red) to high population 
density (shown in yellow). The map of OAs with population density (Figure 4) shows OAs with low 
populations in red and those with high population in yellow. The residuals, the difference between 
predicted and actual population in each OA are shown in Figure 5. This is important in visualising 
errors spatially. The red colour indicates a negative residual while yellow colour indicates positive 
residual. Although the actual population of OAs at the city centre have high population, the technique 
predicts high population values in and around the city centre. 
 

 

                                    Figure 2 Map of LSOAs with population density 

            
 
      Figure 3. Predicted density map                        Figure 4. Map of OAs with population density 



 
 

 

Figure 5. Map of residuals 

 

 
 
The scatterplot of predicted densities versus OAs as in Figure 6 presents a general description of the 
data structure. It shows a strong clustering of points with relatively little scatter. This indicates positive 
relationship between predicted densities and actual population at OAs. 
 
 

 

Figure 6. Scatterplot with regression line of Leicester population: Predicted density values vs. OAs 

 
 
 
 



 
 

The histogram of residual values shows a visual presentation of value of residuals and their frequency 
of occurrence as in Figure 7. The spacing and number of bins were selected based on size and the 
distribution of the data, this could sometimes construct a misleading histogram (Simonoff, 1996).   
 

 

Figure 7. Histogram of residual values 

 
 
A smoothed version of the histogram, the Kernel density estimates, as in Figure 8, shows a bell-shaped 
distribution for the residual values centred around zero which signifies positive relationship. 
 

 
Figure 8. Kernel density of the residuals at default bandwidth 

 
 



 
 

The residual values were sorted to check for serial correlation. This is useful as it shows the 
distribution of all data points and possible outliers. The sorted data was plotted against its index as in 
Figure 9.   
 

 
Figure 9. Index plot of sorted residual values 

 
 

 
The results were measured for accuracy derived from Root Mean Square Error (RMSE) and adjusted 
Root Mean Square Error (Adj-RMSE) (Gregory, 2000). The RMSE uses absolute values of the 
difference between actual population and the predicted population within each of the target zones. A 
RMSE value of 1.442174 was obtained. The equation is represented as; 
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The Adj-RMSE is a measure of percentage error that normalises RMSE by the actual population 
within each target zone. Adj-RMSE value of 0.004607584 was obtained. The equation is represented 
as; 
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Where; �� is the actual population of zone i  �� is the predicted population of zone i 
n is the number of zones 



 
 

5 Conclusion 

In this study, a combination of dasymetric mapping and pycnophylactic interpolation methods were 
used to estimate population of Leicester from LSOAs to OAs. 
 
The results from this study has shown that the aggregated population censuses can be disaggregated to 
fine levels of spatial detail providing necessary information about the volume of demand in a 
geographic region. This must be obtained to adequately allocate demand to facilities within the region 
and to effectively evaluate accessibility to facilities. This can best be done when demand at output area 
level is analysed using origin and destination matrix. 
 
Finally, an Adj-RMSE value of 0.004607584 means the technique has very little errors related to it. 
This shows the accuracy of the technique for population density estimation. This is important in 
addressing the problem of using larger estimates of the population in health care planning objectives 
and policy formulation, especially in areas where detailed census data (for example at the level of 
Output Areas) may not be available. 
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