Optimising terrestrial LIDAR field deployment
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Summary: Terrestrial laser scanners use near-infrared pitsacquire detailed 3D measurements of
their surroundings. Acquiring datasets in dynamigged, non-urban environments is a complex task
presenting significant project planning challend¢sre, we introduce a methodological approach that
has been used to develop a set of survey projaanpig tools designed to optimise scanner field
deployment. These tools use geospatial processisgpbon viewshed analysis to estimate the optimal
scanner deployment configuration and calculateiredscan parameters
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1. Introduction

Terrestrial laser scanners (TLS) are tripod-mouirtsttuments that use near-infrared laser pulses to
acquire 3D measurements of their surroundings. Databe acquired at ranges of up to several
kilometres providing significant capacity to obtdmigh spatial density topographic datasets of
hazardous and difficult terrain (Sturzenegger ateh@ 2009; Welkner et al., 2010; Du and Teng,
2007). Here, we focus on TLS use in non-urban enwients, where data are collected for a wide
range of applications including landslide and sleability assessment (Dunning et al., 2009; Viero
et al.,, 2010; Teza et al., 2008), glaciology (Sdbeaet al., 2008; Avian et al., 2009), and
volcanology (James et al., 2009; Pesci et al., 2008

However, the availability of tools to efficienthigm and manage scanning projects lags behind the
current developmental state of scanner hardwar&. Measurements require line-of-sight visibility
between the scanner and the target and, as supliring datasets in dynamic, rugged terrain typical
of many field sites can be a complex task presgrdignificant project planning challenges. In most
cases, scan data need to be acquired from mulbigéions in order to capture the full geometry of
the target. Identifying site locations that maxientarget coverage whilst minimising the number of
times the scanner needs to be relocated is critigaider to increase efficiency in the field amdlple
rapid measurement of regions of interest. LimitddsTportability and accessibility restrictions to
potential deployment locations also add to the deritpes involved in scanner project management.

This paper introduces a methodological approadhhsbeen used to develop a set of survey project
planning tools to optimise TLS data capture in fledd. These tools use pre-existing but low-
resolution digital elevation models to estimate diptimal scanner deployment configuration and to
calculate scanning parameters required.

2. Planning tool methodology

The TLS project planning tools have been developethe open source GIS software package
Quantum GIS. Using geospatial processing basedi@mskied analysis, it is possible to derive
predictive maps that enable the identification ofemtial deployment sites that would maximise
scanner coverage of the target.

A viewshed represents the region visible to an mfesdrom a given location. Viewshed derivation is
undertaken by calculating the line-of-sight vigtljibetween cells on a raster Digital Elevation Mbd



(DEM) and relies on the same fundamental prinagblentervisibility between an observer and target
that is also critical in TLS data capture. Consedtjyie viewshed analysis provides a technique that
allows the prediction of the visible extent of swds from given scanner locations. Viewshed
analysis is computationally intensive, thus thejgmb planning methodology developed aims to
minimise the processing overheads to enable flexaoid rapid re-calculation of parameters in the
field.

The calculation of optimised deployment parameatedefined by three fundamental steps:

1. Ste characterisation: The scanner target is defined and intervisibitityoss the field site is
calculated. A distribution of good TLS locationsif§gect to practical and access constraints)
is determined.

2. Optimisation of scan locations: The minimum set of TLS locations that allow maxmifull
coverage of the target is estimated.

3. Calculation of scan parameters: The geometric parameters required to automatansca
control at each location are derived.

2.1 Site characterisation

In order to start the analysis, the target aredefined as a vector polygon representing the region
required to be scanned. The initial step then asasmulative viewshed approach to characterise the
surrounding area in terms of its visibility frometkarget. For each raster cell in the defined taage
viewshed is calculated (using the pre-existing Imgolution DEM) representing the estimated
visibility across the field site from that cell ¢Fil1). All the calculated viewsheds are then sumtoed
produce a cumulative map illustrating the numbetiroés each cell in the DEM can be seen from
across the target.
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Figure 1. Cumulative viewshed analysis.

Site characterisation is further extended by cngadi set of vector features defining real-worltg-si
specific constraints that influence scanner depkntmUsing freely available online aerial imagery,
features such as forests, lakes and difficult tess locations are identified, digitised, and can b
excluded from the analysis (exclusion zones). Raaudfootpaths are also digitised and can be used
as constraints limiting the analysis to linear fiees that may represent the most accessible losatio
Other areas of easy access (inclusion zones) sanbal defined. The site is then divided into an
‘observation’ grid at a user-defined grid intervebr each observation grid cell, by combining the



deployment constraints and cumulative visibility pnahe accessible location with the maximum
target visibility can be determined (Fig. 2).
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Figure 2. Field site characterisation. Spatially distributdagh-visibility points are identified by selectirie
cell in each grid box with the highest cumulativisibility that also meets the requirements of thedirted
deployment constraints.

2.2 Optimisation of scan locations

The scan locations identified in the site charasadion give practical areas of good target vigibil

but the minimum set of sites required for full (maximum) target coverage is not yet defined.
Consequently, the next optimisation is to identifip best of these locations to maximise spatial
coverage of the target whilst minimising the numioérscanner deployment sites. The initial
cumulative visibility map records the number ofgetrcells that can be seen from selected locations
across the field site, but does not record whidls aethe target these are. By calculating a sd®t

of viewsheds that use the high-visibility pointsested in the characterisation stage as the observe
locations, the actual spatial extent of targetbiisy from each point is derived (Fig. 3). By tes
combinations of these viewsheds, it is possiblddtermine the optimal locations from which data
should be collected (Fig. 4).
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Figure 3. Secondary viewshed calculation. Cells in the taayet coded as visible or not visible from each
observer location in turn providing spatial coveragaps of the target from all the selected higlibity
points

2.3 Calculation of scan parameters
With the optimum TLS locations determined, the figgge is to calculate the scan parameters for

each site that control data collection from thdrimeent. The horizontal and vertical rotation of th
scanner is controlled by selecting start and stogles that define a rectangular scan window.



Calculation of these angles can be automated hygugie geometric relationship between the
selected scan locations and the defined targdghdnvertical plane, the angle between the observer
location and the height of each DEM cell boundedhgytarget region is calculated and the minimum
and maximum angles are used to define the scatarélaad stop angles. The target vertices are used
in the horizontal plane to derive the observeraigét angular relationship with the minimum and
maximum angles calculated also being used to défiestart and stop angl@hese values are used
to directly control the TLS in the field and comstr scanner coverage to just the surface of irtteres
This enables minimisation of the time required aptare the target by optimising the angular extent
of data collection at each location.
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Figure 4. Optimisation of scan locations. The viewshed with greatest coverage of the target is selected as
the initial input to the optimisation routine. Alther viewsheds are then sequentially added tinghg and a
uniqueness index is maintained that counts the euamibnew cells visible in the output that were wigible in

the input. The combination with the highest unicgemnvalue is then fed back to the input of thenoigtition
routine and the process is repeated until the tasdgfelly covered or a user-defined maximum numbfescan
locations have been determined.

3. Discussion and futurewor k

The methodology outlined uses viewsheds calculatedow resolution DEMs to optimise TLS
deployment locations. Analysis of the influence EM resolution on the functionality of the
optimised scanner configuration is critical in arde determine the practical limitations of the
technique. Calculation of scanner control paramsdgealso derived from the DEM and as such, DEM
vertical error will be strongly reflected in thelaalated angles. Uncertainty in these angles could
directly impact the completeness of data captunethé field and as such, a practical strategy that
minimises the influence of vertical errors needbdéodeveloped. Future research will concentrate on
addressing these issues by conducting comprehefisice tests aimed at determining practical
operational constraints and quantifying the timdrggs available in TLS deployments.
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