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Summary: This paper reports on initial insights gained frarproject aimed

at the development of methods for context-aware emmant analysis. We
report on two case studies (animals and pedesfrigzhere we aimed to
relate basic derived movement properties (suchpagds turning angle,
sinuosity) to the geographic context embedding indvement. We present
our lessons learned with respect to data requiren{granularity, accuracy)
and pre-processing (segmenting, map matching).
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1. Introduction

GIScience has seen significant progress in angyséicond order effect&®’Sullivan and Unwin,
2010) in movement analysis, such as arrangemetdrpat(e.g. flocks or leadership patterns, Laube
et al, 2005, Anderssomrt al, 2007 or trajectory similarity and clustering (Buchet al, 2009,
Pelekiset al, 2007). Much less work has been done investigdiisgorder effectsassuming that
movement properties and patterns also emerge dtkee teariability of the embedding geographical
context — for example, a timid deer may speed upnwdrossing a forest clearing, but leave a sinuous
slow trace when foraging. This paper reports otialninsights gained from a project developing
methods for context-aware movement analysis. Wertem two case studies (trajectories of animals
and shoppers) where we related basic derived mavepreperties (such as speed, turning angle,
sinuosity) to the geographic context embedding itiniwvement. Here we present our lessons learned
with respect to data requirements and pre-proogssin

2. Problem Statement

On themovemenside, we use GPS localization that allows for gaastinuous tracking of moving
individuals in space-time (Van der Spek al, 2009). GPS trajectories allow derivation of fine
grained descriptive movement parameters, sucheedsginuosity, or turning angle (Figure 1). The
geographic contexeénabling and constraining movement is clearly iappbn dependent. For wild
animals, relevant context might be habitat typetesrain, for shoppers it might include spatio-
temporal properties of the urban transit networdl parsonal points of interest (home, work, gym,
Figure 1). Note, we do not want to identif§rat context factors are important for a given movement
process but rather quantify the movement-contetefri@lation when we assume we have access to
expertise capable of identifying relevant contéet habitat type for a foraging animal).
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Figure 1. Movement trajectory with derived movement paramse¢enbedded in geographic context.

In this paper we investigate minimal data requinet®i@nd crucial pre-processing steps for content-
aware movement analysis. In detail, we addrestotlmaving questions:

* What arecrucial data pre-processingteps, for movement and context data, enablingegon
aware movement analysis?

« Given movement trajectories and distributions ef hlabitat types (land use) with respect to their
constituting fixes: Are basiexploratory statisticselating computed movement properties (speed,
turning angle, sinuosity) to habitat types an ad#gumeans for context-aware movement
analysis?

« What areminimal requirementfor movement data and geographic context datdhierabove
analysis (with respect to granularity, accuracytadata)?

3. Data and Experiments

Case studies were selected from urbanism and bmiraliecology, featuring data with differing
properties in terms of temporal resolution and moset space (Table 1). First, we analysed the
movement properties of finely sampled trajectodepedestrians moving in the urban network space
of the city of Delft, NL. Here, people leaving arkiag deck in the centre of Delft were given a GPS
device and their trips through the city were reedtdWe used both raw GPS data as well as pre-
processed trip data where stationary phases wergialiy removed. Second, movement data of
chamois foraging in the Swiss National Park weetlus perform an experiment relating speed to the
underlying habitat type. This data set reflectsdgidata from monitoring studies in behavioural
ecology, where technical constraints may dictatieeracoarse sampling rates.

Table 1.Characteristics of case study data.

Pedestrians Delft Chamois Swiss National Park
Temporal resolution 2sec 10min
Space Network, OpenStreetMap Euclidean unconstrained
Moving Objects PedestriansHomo sapiens k. Chamois Rupicapra rupicapra
Context Shopping and leisure points of interest (points)  bikda types (polygons)
Data source TU Delft, Stefan van der Spek Swiss National Park
Date 18.11.2009 04.12.2002 — 31.05.2010
Number of points 2'300 29'100

3.1 Case study #1: Filtering and Map Matching

The first case study investigated effects of p@epssing movement data in an urban context. Speed
values provided by the GPS device were comparel different ways of computing speed from
location fixes, both for raw GPS data and manufillgred trip data (Figure 2). First, speed was
calculated from the distance moved within conseeuiixes (sampling rate of 2 seconds, few longer
intervals). Second, speed was computed after &maap matching (c.f. Bernstein and Kornhauser,
1996, Whiteet al, 2000) technique was applied. For the naive maghira, fixes were snapped to
the closest network edge, with a maximal snapgingshold of 15 meters (Figure 2).
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Figure 2. Example trajectory section for a pedestrian infiDalithout (green) and with naive map
matching (red), fix indices at sampling rate okE2ands.

3.2 Case study #2: Relating Speed and Habitat Type

The second case study aimed to relate speed tmttexlying habitat type embedding the movement
of eleven GPS-tracked chamois in the Swiss Nati®aak (Figure 3). A dataset with a temporal
resolution of 10 minutes was chosen to investigabether movement data with such a coarse
temporal granularity could be used to relate movenaad context. Again, speed was calculated
assuming constant speed between two consecutigs. fitere, raw GPS data was segmented into
stops (removed) and moves, using a simple algoithpproach (Laube and Purves, 2011). Raw and
filtered movement data was then related (pointehygon) to three habitat types aggregated from a
detailed habitat data set (www.habitalp.de).

[T grass, shrubs meadows
Craw soils, extreme sites
Bl waters

0 50 100 200 meters
| IS S Y S S S S |

Figure 3. Example trajectory of chamois with habitat context
Stationary fixes (white), moves in various colotirsie of day (hh:mm:ss).

4. Results

For both case studies, speed values were binne@auidbin resulted in an item on the ordinate of
the box whisker plots (Figure 4). The box whisketpshow medians (horizontal bar),"2&nd 7%’



percentiles enclosing the middle 50% of the datxé€b, also interquartile range, IQR), minimum and
maximum values (whiskers), and outliers (data [gonore than 1.5 times the IQR from either end of
the box). Figure 4a shows results for the Delft gstdans. The first two items describe speed
measurements calculated by the GPS device itself,for raw (r) and second for filtered data (f).
Then follow computed speeds for raw (r), filterfd &nd both filtered and map matched data (f,mm).
Figure 4b illustrates variable speed values ovexetldifferent habitat types (grass, raw soils,dgre
Here, for every habitat type raw GPS trajectorrescmmpared to segmented and filtered data (stops
removed).
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Figure 4. (a) Case study #1, speed for pedestrians; GR®~puted; raw data (r), filtered (f) and
map matched (mm). (b) Case study #2, speed vaahédyi chamois; raw data (r) vs. filtered (f).

5. Discussion

Figure 4a first illustrates that separating mowesnf stops has an important influence on computed
speeds (median ~1km/h vs. ~5km/h). Second, theamed all three filtered speed categories (GPS,
filtered, filtered & map matched) is in the sam&ar of magnitude. Third, the median for map
matched is slightly below the uncorrected signaé 8vgue that for this result two effects must be
considered (Figure 2): (i) Map matching introdueer at intersections, where unrealistically large
speed values result from the distorted geometxregf236 to 237 or 313 to 314). (i) Shadow effects
in a 3D urban setting result in positive speedfacts due to positional inaccuracy of the GPS signa
at building transitions (e.g. fixes 228 to 229)r-aror removed through map matching. We argue
that in our case, the latter effect (building titioss) outnumbers the first (intersections), hetiw
lower median for (f,mm).

Figure 4b shows no significant difference in spdegending on the embedding habitat types. For
grass and raw soils filtering out stops resultsiraga higher speeds. The signal for forest is more
complex, with a lower median but a larger rangereAson for this mixed signal could be that in

forest, animals move more slowly in general. Howgageraged values of speed over time intervals
of 10 minutes are in general very low. We argud thech low, averaged speed values do not
represent actual instantaneous speed of movingadsimor instance, in Figure 3 the first segment
between 04:10:15 and 07:00:18 shows several tramsibetween habitat types where the granularity
of the trajectory hardly allows for a conclusivekiibetween speed and habitat type.

6. Conclusions and Outlook

From these initial experiments linking movementgpaeters to the embedding geographic context,



we conclude with the following list of lessons leed:

* Removing (filtering) stops is a paramount pre-pssagg step, as pseudo-movement introduced
by inaccurate GPS fixes of stationary objects sveaamy signal.

* For network bound movement, we argue that thereansunavoidable catch-22 between
computing derived movement parameters from unmdtéixes (which may not lie on network
edges and are hence erroneous) or from map mdigkedwhich must have an altered geometry
and hence can't represent the ‘true’ movement).

* When the temporal granularity of movement dataoiscearse that the interval between two
consecutive fixes could include several stops angles, computing instantaneous speed is not
suitable, and hence establishing a link betweem slerived speed properties and movement
context is not suitable either.

From these lessons learned we shape our next Stepmtend to continue with the Delft pedestrian
data, but will apply more sophisticated map matghiechniques that correct for the error sources
identified above. Furthermore we started using ahinacking data with a finer temporal granularity.
One promising data source is avian navigation rebewith ample data sampled at sub-second
sampling rates.
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