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Summary

Various distance metrics have been used for healthemergency service facility location planning.
These metrichave impact on location-allocation decisions. Tpdgper introduces ‘3D travel time
distance’ a new distance metric to optimise locattd Emergency Medical Services (EMS), a case
study of EMS location planning in South Yorkshiveth an example of selecting 12 optimal sites
from 3038 simulated candidate locations is presenfais problem was translated into a P-median
model and was solved using Group Genetic Algorif@®A). Outcomes from this analysis showed
that each distance type identified different sdt€bBIS optimal locations for night and day time
population.

KEYWORDS: 3D travel time distance, Location-allocation, Nigimtd Day time population, P-
median and Optimisation.

1 I ntroduction

Location-allocation models are mathematical forrtiates used to optimise public facilities to ensure
improved accessibility and efficient utilisation s#rvices. Optimisation of public health or emeyen
services often involves minimisation or maximisataf distance metrics of some sort. Distance is an
important component of location models, and it bassiderable influence on the accuracy and
solution quality of location problems (Krarup andigan, 1980). The accuracy of the outcomes from
locations models depend on how distance betwedlityfdocation and demand is formulated. A
review of the literature shows that previous woalply three types of distance metrics to address
location problems. These include 2D distance meetsiecch as Network distance (with and without
travel time) and Euclidean distance. Consider,eiample Schuurman et al., (2006), used Network
distance with travel time to model rural hospitatohments areas in British Columbia. In another
study, Sinuany-Stern et al (1995) applied an AmzdytHierarchical Process and P-median model
formulated using Euclidean distance norm to idgrdifitable location for Hospital in Negev, Israel.
Some studies have also combined two metrics toumedybrid location models. For example,
Moller-Jansen and Kofie (1998) proposed a modellsoimg network and Euclidean distance model
to identify suitable areas for the location of hiealkervices in GA district of Ghana.

Traditional 2D metrics ignore the effect of elewation distance, this could have an effect location
decisions As a result, this paper introduces a new distane&ien“3D travel time distance” and
explores its impact on EMS location planning usiight and daytime population as case studies. 3D
distance approach recognises the effect of roadd®m and travel time on optimal site selectiogy. B
accounting for travel impedances due to eleva8@hdistance is a more robust approach to calibrate
the length between demand and potential facilitalions.



2 Modelling 3D Distance

In this study, 3D travel time was derived by exiragtelevation (z values) of road nodes and arcs
from a digital elevation model of the study areeavEl time values were estimated from speed limits
of roads types and length of road arcs, weighted ¥glues from elevation data. For example, the 3D
travel time distance between two points,\¥xz:) and (%,¥.,2,),connected by a straight-line can be
estimated as:

Distance = \/(XZ = %)% + (2= y1)? + (22— 71)? 1)

Where z and z represent the minimum and maximum height valuesfart and end nodes of the line.
Elevation values for road nodes and edges werepitged from a mosaicked raster image of the
study area. The resultant network was used toys@mdhe shortest distance between set of potential
EMS sites (supply points) and demand locations.

3 Data Processing

The study area is South Yorkshire. South Yorkshas a plethora of hilly terrain. The landscape of
the area provides a veritable surface, to demdesdtna effect of 3D travel time distance on the EMS
location allocation. This study used night and tme population as proxy to EMS demand. Night
time population is the net population of each LoBeper Output Area (LSOA) in the study area.
Daytime population was derived from travel-to-watéta (http://cider.census.ac.uk/cider/wicfdy
each LSOA, with equation (2).

Day Time Population = Total Population — Outcommuters + Incommuters 2)

Night and day time population were based on 200ku® data. Demand points are from centroid of
LSOAs and candidate locations for EMS were derimggimulating 3038 points from a 500m square
grid of the study area.

4 Problem Formulation and Algorithm

The Location model used in this study was the Pramechodel. P-median selects a subset of facilities
known as ‘P facilities from a given set of cand@tdcilities that minimises the aggregate travekti

or distance between demand and nearest faciligtitots (Fotheringham, et al., 1995). In this study,
the classical P- median model first espoused bydRe\and Swain (1970) was modified to account
for 3D distance by adding a z dimension to dematestthe effect of elevation as shown in

equation(3).

n m
minimise ZEait * dij(Z) * Xjj 3)

i=1 j=1

P = Number of Optimal EMS site to locate (12 locash

I...m = set of demand locations (845 centroids poimigkted by night and day time population)
j...n = set of candidate EMS locations (3038 EMS potéldeations)

an - Demand weights ( night and day time population)

dj~= This denotes the shortest distance between pamtj , based on various distance types
(Euclidean, Network distance (with and without gltime), 3D distance (with Z values)).

Xi; = Decision variable with values [0, 1] to show wlhsites where selected.



In the context of this study, optimal sites areesd locations that minimises the weighted distanc
between demand (LSOAs) and supply points (EMS).ically, location-allocation problem involves
selecting optimum location choices from a pool afididate location and allocating demands to these
points. The pool of candidate location consists3088 simulated points in the study area, with a
choice of selecting 12 optimal EMS locations tmedite to day and night time populations in 845
LSOAs. Finding solution for this type of problemdsmputationally difficult. For example, choosing
a subset of 12 locations from a set of 3038 lonaticequires a solution search space of 3038!
/121*(3038-12)! Due to this intractability, The Pealian problem was solved using a modified Group
Genetic Algorithm (GGA). This was based on a stogpiriterion of 10000 iterations. The GGA was
developed by Comber et al. (2011) to handle sulbsation problems; GGA has been successfully
tested on location-allocation problems (e.g., Sasta&l., 2010 and Comber et al., 2009).

5 Discussions and Initial Results

Outcomes from application of P-median model (3)idatk that distance metrics have impact on
optimal EMS location decisions. Table 1a and b shoptimal sites (p) and percentage of demand
allocated to each site using various metrics dhdise.

Table 1a. Optimal Locations and allocations for night tim@gpplation using different metrics of
distance.

3D Travel Time Ne_twork Dist_ance N_etwork Distance Eu_clidean
(with travel time) (without travel time) Distance
P Allocation P Allocation P Allocation P Allocation
21| 225952(17.84%) | 2007 | 183062(14.45% 402 | 196884(15.54% 366 | 224435(17.72%)

) ) )
419 | 134754(10.64%) | 402 | 166809(13.17%) | 2007 | 148459(11.72%) | 243 | 149874(11.83%)
2933 | 134067(10.58%) | 225 | 149663(11.81%) | 2428 | 137480(10.85%) | 925 | 147676(11.66%)
1948 | 127315(10.05%) | 2411 | 129800(10.24%) | 773 | 137406(10.85%) | 1834 | 125551(9.91%)
873 | 110932(8.75%) | 1803 | 113853(8.99%) | 208 | 131894(10.41%) | 2472 | 122034(9.63%)
1525 | 105304(8.31%) | 1024 | 108026(8.53%) | 1729 | 113654(8.97%) | 975 | 112878(8.91%)
2322 | 86625(6.84%) 756 | 88004(6.94%) 971 | 113581(8.96%) | 1677 | 91026(7.18%)
756 | 84768(6.69%) 772 | 82476(6.51%) | 1492 | 68633(5.41%) 653 | 72850(5.75%)
772 | 78073(6.16%) | 1521 | 76356(6.02%) 903 | 63203(4.99%) | 2331 | 67333(5.31%)
1521 | 64561(5.09%) 914 | 60864(4.80%) | 2808 | 56550(4.46%) | 1877 | 61674(4.87%)
387 | 61005(4.81%) | 2615 | 54902(4.33%) 279 | 51217(4.04%) | 2688 | 56130(4.43%)
2418 | 52992(4.18%) 278 | 52533(4.14%) | 1576 | 47387(3.74%) | 1608 | 34887(2.75%)

Table 1b. Optimal Locations and allocations for Day timgplation using different metrics of
distance.

3D Travel Time Network Distance Network Distance Euclidean
(with travel time) (without travel time) Distance
P Allocation P Allocation P Allocation P Allocation

21 | 198122(15.64%) | 419 | 201865(15.94%) | 402 | 225533(17.80%) | 466 | 200147(15.80%

419 | 177837(14.04%) | 2007 | 191279(15.10%) | 2007 | 175108(13.82%) | 1970 | 165808(13.09%

1948 | 137437(10.85%) | 2322 | 146971(11.60%) | 2411 | 139000(10.97%) | 2411 | 159899(12.62%

— | — | — [—

2933 | 123669(9.76%) | 1003 | 122048(9.63%) | 973 | 130318(10.29%) | 893 | 131063(10.34%

737 | 120067(9.48%) | 225 | 113941(8.99%) | 209 | 108689(8.58%) | 1004 | 121769(9.61%

)
971 | 103476(8.17%) | 737 | 111272(8.78%) | 1803 | 105775(8.35%) | 259 | 106156(8.38%)
2322 | 88484(6.98%) | 1733 | 86824(6.85%) 737 | 102970(8.13%) | 1733 | 101407(8.00%)

754 | 77898(6.15%) | 754 | 80266(6.33%) | 754 | 78996(6.23%) | 175 | 99142(7.82%)
1677 | 74492(5.88%) | 1521 | 63012(4.97%) | 705 | 64737(5.11%) | 704 | 66330(5.23%)
1613 | 58140(4.59%) | 914 | 56923(4.49%) | 1492 | 56584(4.46%) | 2662 | 52733(4.16%)
902 | 57689(4.55%) | 2615 | 48814(3.85%) | 2873 | 40195(3.17%) | 2684 | 31857(2.51%)
2418 | 49037(3.87%) | 279 | 43133(3.40%) | 1576 | 38443(3.03%) | 1608 | 30037(2.37%)




The implication of this outcome is that differemnoiand with distance metric influences EMS location
planning decisions. However, it is important toentitat 3D travel time distance is a more realistic
approach to quantify distance between potentiditiatocations and demand.

Figure 1a Distribution of optimal EMS locations faight time population using different metrics of

distance
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Figure 1b Distribution of optimal EMS locations fday time population using different metrics of

distance.
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Figure 1a and b, shows the spatial distributiosedécted optimal sites based on different metrics o
distance. This shows a better spatial arrangemergite EMS facilities such as ambulance or
paramedic units to reduce response time prior teraergency. Optimal sites are represented as
points; each optimal site has a proportion of demahocated to it (see Table 1la and b). The
distributions of selected locations also show tiffierent set of locations were identified for nigind
daytime population. This suggests that locationsilets are affected by distance metrics.

6 Conclusion

Evidence from an initial analysis shows that alétaince types have varied effects on location

decisions. This is because different sets of looatiwere selected using various metrics of distance
The implication of this outcome on system perforogais that response time to emergency will be

overestimated or under-estimated. This can leauissed targets. 3D Network travel time offers a

more realistic calibration of distance betweenlitgcand demand as compared to planar based or 2D
metrics such as Euclidean and network distanceuiations. The outcomes from this analysis show

that location decision for EMS is sensitive to tetrics of distance used to analyse a location
problem. Many studies on location-allocation tocedadéve only applied 2D distance metrics to location

problems. This study introduced a new distance imetfor location models.
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