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Summary 
 

Various distance metrics have been used for health and emergency service facility location planning. 
These metrics have impact on location-allocation decisions. This paper introduces ‘3D travel time 
distance’ a new distance metric to optimise location of Emergency Medical Services (EMS), a case 
study of EMS location planning in South Yorkshire, with an example of selecting 12 optimal sites 
from 3038 simulated candidate locations is presented. This problem was translated into a P-median 
model and was solved using Group Genetic Algorithm (GGA). Outcomes from this analysis showed 
that each distance type identified different sets of EMS optimal locations for night and day time 
population. 
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1 Introduction 
 
Location-allocation models are mathematical formulations used to optimise public facilities to ensure 
improved accessibility and efficient utilisation of services. Optimisation of public health or emergency 
services often involves minimisation or maximisation of distance metrics of some sort. Distance is an 
important component of location models, and it has considerable influence on the accuracy and 
solution quality of location problems (Krarup and Pruzan, 1980). The accuracy of the outcomes from 
locations models depend on how distance between facility location and demand is formulated. A 
review of the literature shows that previous works apply three types of distance metrics to address 
location problems. These include 2D distance metrics such as Network distance (with and without 
travel time) and Euclidean distance. Consider, for example Schuurman et al., (2006), used Network 
distance with travel time to model rural hospital catchments areas in British Columbia. In another 
study, Sinuany-Stern et al (1995) applied an Analytical Hierarchical Process and P-median model 
formulated using Euclidean distance norm to identify suitable location for Hospital in Negev, Israel. 
Some studies have also combined two metrics to produce hybrid location models. For example, 
Moller-Jansen and Kofie (1998) proposed a model combining network and Euclidean distance model 
to identify suitable areas for the location of health services in GA district of Ghana. 
 
Traditional 2D metrics ignore the effect of elevation on distance, this could have an effect location 
decisions. As a result, this paper introduces a new distance metric “3D travel time distance” and 
explores its impact on EMS location planning using night and daytime population as case studies. 3D 
distance approach recognises the effect of road elevation and travel time on optimal site selection. By 
accounting for travel impedances due to elevation, 3D distance is a more robust approach to calibrate 
the length between demand and potential facility locations. 
 
 
 



2  Modelling 3D Distance  
 

In this study, 3D travel time was derived by extracting elevation (z values) of road nodes and arcs 
from a digital elevation model of the study area. Travel time values were estimated from speed limits 
of roads types and length of road arcs, weighted by z values from elevation data. For example, the 3D 
travel time distance between two points (x1,y1,z1) and (x2,y2,z2),connected by a straight-line can be 
estimated as: 
 

				Distance = ��x� −	x��� 	+ 	�y� −	y��� +	�z� −		z��	�										 															�1	� 
 
Where z1 and z2 represent the minimum and maximum height value for start and end nodes of the line. 
Elevation values for road nodes and edges were interpolated from a mosaicked raster image of the 
study area.  The resultant network was used to analyse the shortest distance between set of potential 
EMS sites (supply points) and demand locations. 
 
3 Data Processing 
 
The study area is South Yorkshire. South Yorkshire has a plethora of hilly terrain. The landscape of 
the area provides a veritable surface, to demonstrate the effect of 3D travel time distance on the EMS 
location allocation. This study used night and day time population as proxy to EMS demand. Night 
time population is the net population of each Lower Super Output Area (LSOA) in the study area. 
Daytime population was derived from travel-to-work data (http://cider.census.ac.uk/cider/wicid) for 
each LSOA, with equation (2). 
 

Day	Time		Population = Total	Population − Outcommuters + Incommuters								�2�								 
 
Night and day time population were based on 2001 census data. Demand points are from centroid of 
LSOAs and candidate locations for EMS were derived by simulating 3038 points from a 500m square 
grid of the study area. 
 
 
4 Problem Formulation and Algorithm 
The Location model used in this study was the P-median model. P-median selects a subset of facilities 
known as ‘P facilities from a given set of candidate facilities that minimises the aggregate travel time 
or distance between demand and nearest facility locations (Fotheringham, et al., 1995). In this study, 
the classical P- median model first espoused by ReVelle and Swain (1970) was modified to account 
for 3D distance by adding a z dimension to demonstrate the effect of elevation as shown in 
equation(3). 
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 P = Number of Optimal EMS site to locate (12 locations). 
I...m = set of demand locations (845 centroids points weighted by night and day time population) 
j...n = set of candidate EMS locations (3038 EMS potential locations) 
atn =  Demand weights ( night and day time population) 
dijz= This denotes the shortest distance between point i and j , based on various distance types 
(Euclidean, Network distance (with and without travel time), 3D distance (with Z values)). 
X ij = Decision variable with values [0, 1] to show which sites where selected. 
 
 
 



In the context of this study, optimal sites are selected locations that minimises the weighted distance 
between demand (LSOAs) and supply points (EMS). Typically, location-allocation problem involves 
selecting optimum location choices from a pool of candidate location and allocating demands to these 
points. The pool of candidate location consists of 3038 simulated points in the study area, with a 
choice of selecting 12 optimal EMS locations to allocate to day and night time populations in 845 
LSOAs. Finding solution for this type of problem is computationally difficult. For example, choosing 
a subset of 12 locations from a set of 3038 locations requires a solution search space of 3038! 
/12!*(3038-12)! Due to this intractability, The P-median problem was solved using a modified Group 
Genetic Algorithm (GGA). This was based on a stopping criterion of 10000 iterations. The GGA was 
developed by Comber et al. (2011) to handle subset location problems; GGA has been successfully 
tested on location-allocation problems (e.g., Sasaki et al., 2010 and Comber et al., 2009). 
 

5 Discussions and Initial Results 
Outcomes from application of P-median model (3) indicate that distance metrics have impact on 
optimal EMS location decisions. Table 1a and b shows optimal sites (p) and percentage of demand 
allocated to each site using various metrics of distance. 
 
Table 1a. Optimal Locations and allocations for night time population using different metrics of 
distance. 

3D Travel Time 
Network Distance 
(with travel time) 

Network Distance 
(without travel time) 

Euclidean 
Distance 

P Allocation P Allocation P Allocation P Allocation 
21 225952(17.84%) 2007 183062(14.45%) 402 196884(15.54%) 366 224435(17.72%) 

419 134754(10.64%) 402 166809(13.17%) 2007 148459(11.72%) 243 149874(11.83%) 

2933 134067(10.58%) 225 149663(11.81%) 2428 137480(10.85%) 925 147676(11.66%) 

1948 127315(10.05%) 2411 129800(10.24%) 773 137406(10.85%) 1834 125551(9.91%) 

873 110932(8.75%) 1803 113853(8.99%) 208 131894(10.41%) 2472 122034(9.63%) 

1525 105304(8.31%) 1024 108026(8.53%) 1729 113654(8.97%) 975 112878(8.91%) 

2322 86625(6.84%) 756 88004(6.94%) 971 113581(8.96%) 1677 91026(7.18%) 

756 84768(6.69%) 772 82476(6.51%) 1492 68633(5.41%) 653 72850(5.75%) 

772 78073(6.16%) 1521 76356(6.02%) 903 63203(4.99%) 2331 67333(5.31%) 

1521 64561(5.09%) 914 60864(4.80%) 2808 56550(4.46%) 1877 61674(4.87%) 

387 61005(4.81%) 2615 54902(4.33%) 279 51217(4.04%) 2688 56130(4.43%) 

2418 52992(4.18%) 278 52533(4.14%) 1576 47387(3.74%) 1608 34887(2.75%) 

 

Table 1b. Optimal Locations and allocations for Day time population using different metrics of 
distance. 

3D Travel Time 
Network Distance 
(with travel time) 

Network Distance 
(without travel time) 

Euclidean 
Distance 

P Allocation P Allocation P Allocation P Allocation 
21 198122(15.64%) 419 201865(15.94%) 402 225533(17.80%) 466 200147(15.80%) 

419 177837(14.04%) 2007 191279(15.10%) 2007 175108(13.82%) 1970 165808(13.09%) 

1948 137437(10.85%) 2322 146971(11.60%) 2411 139000(10.97%) 2411 159899(12.62%) 

2933 123669(9.76%) 1003 122048(9.63%) 973 130318(10.29%) 893 131063(10.34%) 

737 120067(9.48%) 225 113941(8.99%) 209 108689(8.58%) 1004 121769(9.61%) 

971 103476(8.17%) 737 111272(8.78%) 1803 105775(8.35%) 259 106156(8.38%) 

2322 88484(6.98%) 1733 86824(6.85%) 737 102970(8.13%) 1733 101407(8.00%) 

754 77898(6.15%) 754 80266(6.33%) 754 78996(6.23%) 175 99142(7.82%) 

1677 74492(5.88%) 1521 63012(4.97%) 705 64737(5.11%) 704 66330(5.23%) 

1613 58140(4.59%) 914 56923(4.49%) 1492 56584(4.46%) 2662 52733(4.16%) 

902 57689(4.55%) 2615 48814(3.85%) 2873 40195(3.17%) 2684 31857(2.51%) 

2418 49037(3.87%) 279 43133(3.40%) 1576 38443(3.03%) 1608 30037(2.37%) 



 
The implication of this outcome is that different demand with distance metric influences EMS location 
planning decisions. However, it is important to note that 3D travel time distance is a more realistic 
approach to quantify distance between potential facility locations and demand. 
 
Figure 1a Distribution of optimal EMS locations for night time population using different metrics of 
distance 

 
 

 
Figure 1b Distribution of optimal EMS locations for Day time population using different metrics of 
distance. 

 
 

 



 

Figure 1a and b, shows the spatial distribution of selected optimal sites based on different metrics of 
distance. This shows a better spatial arrangement to site EMS facilities such as ambulance or 
paramedic units to reduce response time prior to an emergency. Optimal sites are represented as 
points; each optimal site has a proportion of demand allocated to it (see Table 1a and b). The 
distributions of selected locations also show that different set of locations were identified for night and 
daytime population. This suggests that location decisions are affected by distance metrics. 
 
 
6 Conclusion 
 
Evidence from an initial analysis shows that all distance types have varied effects on location 
decisions. This is because different sets of locations were selected using various metrics of distance. 
The implication of this outcome on system performance is that response time to emergency will be 
overestimated or under-estimated. This can lead to missed targets. 3D Network travel time offers a 
more realistic calibration of distance between facility and demand as compared to planar based or 2D 
metrics such as Euclidean and network distance formulations. The outcomes from this analysis show 
that location decision for EMS is sensitive to the metrics of distance used to analyse a location 
problem. Many studies on location-allocation to date have only applied 2D distance metrics to location 
problems. This study introduced a new distance metric for location models. 
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