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Summary: : The following paper outlines the methodology and preliminary results for an experiment 
designed to understand the accuracy of visibility models when used in the field by a mobile media 
consumption app called Zapp. Levels of accuracy are determined in relation to points of interest that 
can be seen from random sites within the University of Nottingham’s University Park campus, the 
study area of this experiment. Testing was carried out on three different surface models derived from 
0.5m LiDAR data by visiting physical sites on each surface model with 14 random POI masks being 
viewed from between 10 and 16 different locations, totalling 190 data points. Each site was ground 
truthed by determining whether a given POI could be seen by the user be and also be identified by the 
mobile device. 
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1. Introduction and purpose 

In this paper we examine the effectiveness of using different digital surface models to underpin 
mobile geospatial applications. Our experiments show that choice of surface model has important 
consequences on the efficacy of visibility-based geospatial software. The test-bed for the experiments 
undertaken was Zapp, a mobile geospatial application that allows users to query, from a distance, 
points of interest (POIs) via use of the device’s on-board sensors, Meek and Priestnall, (2011).  

Zapp functions by allowing users to aim a crosshair (overlaid on the device’s camera preview) at 
some point within the visible landscape. The application dynamically ascertains the area that the user 
is targeting via a line-of-sight algorithm, combining device sensor information with height data from 
an underlying surface model in order to calculate the exact grid cell being selected. Finally the 
application cross-checks that grid selection with a POI database, and returns corresponding 
information if a match is found.  

Our in-the-field experiments harnessed three implementations of the application; each compiled using 
a different surface model, and assessed against physical ground truth readings. Base data for these 
models originated from 0.5m LiDAR (Light Detection And Ranging) of the canopy digital surface 
model (DSM), a digital terrain model (a version of the DSM with all surface features such as trees and 



buildings removed) and a POI database. This study makes preliminary investigations into which 
underlying surface data models best correspond to what can be seen on the ground, and therefore 
would be most effective in underpinning future iterations of visibility-based mobile applications.  

2. Related work 
The application used in our experiments is built on a previous iteration of the Zapp software, which 
was designed to allow for POI capture rather than selection. In this latest version, the software again 
uses the device’s on board sensors in combination with Fisher’s line-of-sight algorithm Fisher,(1996), 
to calculate what the app is “looking” at. However, instead of data collection in the field, the 
application now allows identification of POIs in order to enable relevant media consumption. In this 
sense Zapp has commonalities with software such as MediaScape Stenton, Hull et al. (2007), both 
being centred around the concept of location-triggered media. The main difference is that, whereas in 
MediaScapes the media is activated when devices enter a pre-defined trigger area, Zapp activates 
media when the user points the device at an object in the landscape which has media associated with 
it.  

There are several different methods of interacting with the landscape from a mobile device, but one 
technology that has strong links with Zapp’s "point-to-discover" strategy is the Geowand, which 
describes a device that the user physically points at a point of interest in order to select it. Studies 
have examined different methods of reporting back to the user from a geowand: Robinson, 
Eslambolchilar et al. (2009) investigated haptic feedback which gave the user an idea of the amount 
of data available to them through the level of vibration; Lei and Coulton (2009) explored a map 
interface where the user had opportunity to take contextually relevant photos; and Wilson and Pham 
(2003)  tested Geowand control of devices within in a smart home setting.  

Zapp differs from prior applications in that, although it also requires the user to physically align the 
device with a POI, it employs a surface model to determine intervisibility rather than querying a 
spatial database and feeds back to the user with a light AR interface. 

3. Experimental Methodology 
The aim of our experiments was to test the effectiveness of three different surface models within a 
visibility-based mobile application. The models were loaded onto multiple devices to allow 
simultaneous testing (thus minimizing GPS signal variation), each models being generated from 
various alterations to the LiDAR data captured at 0.5m resolution in summer 2009 (re-sampled to 2m 
due to memory pressures on the mobile devices being utilized). The models tested were as follows: 

1. DSM: Full LiDAR surface model  
2. DSM-Trees: The LiDAR surface model with trees removed 
3. DSM+Extrusions: The Full LiDAR surface model (including the buildings and foliage), with 

POIs additionally extruded 100m above the surface. 

The three different models that are illustrated diagrammatically in figure 1 below: 



 

Figure 1. The DSM includes buildings and foliage (green). DSM + POI augments this by 
extruding the points of interest (red), while DSM – Trees removes foliage (blue). 

Surface models were converted into respective rasters for use in line of site algorithms, with the DSM 
raster (which corresponds to the original LiDAR data) acting as a first attempt at modelling the real 
world as well as a control surface model (see Figure 3a). This also represents the theoretical 
maximum level of obstruction to visibility as vegetation is modelled as a solid canopy.  

The rationale behind the second surface model, the DSM–Trees raster (illustrated in Figure 3b), was 
that lines of trees are semi-permeable and the LiDAR only contains a model of the canopy thus 
creating barriers to visibility within the model, by removing these barriers we are removing artificial 
assumptions within the underlying data which were created in the data collection process. The DSM + 
Extrusions raster created was to ameliorate the problem of foliage walls by extruding the POI 
buildings above the tree line. Thus, foliage would be maintained but give the sensors on the devices a 
better chance to “hit” the POI. 

3.1    POI selection 

A set of 79 possible POIs was created, spread across the University of Nottingham’s main campus 
(see Figure 2). Although our experimental conclusions are necessarily limited to topographies similar 
to this study area, in order to ensure our results were not biased to a specific set of buildings and 
features, we generated 14 random subsets of POIs, giving 14 distinct experimental runs from which to 
test our results. 

While the same DSM and DSM-Trees raster could be used across all experiments, a separate 
DSM+Extrusions raster was also to be generated for each experimental run. The generation of this 
third model type is dependent on the particular subset of POIs being used in a given run. This meant 
that unlike rasters 1 and 2 (figure 2), a separate version of raster 3 had to be created for each 
corresponding POI mask (figure 3). 
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Figure 2. All possible Points of Interest (POIs) 

 

Figure 3b. The DSM - Trees – LiDAR data 
with trees removed 

 

Figure 3a. The DSM Raster - unaltered 
LiDAR data. 



 

3.2   Viewpoint selection 

20 distinct viewpoint sites were randomly selected for each experimental run (all viewpoints were 
constrained to being physically accessible to fall inside of campus, to avoid any issues with private 
land surrounding the campus and for convenience).  

For each of the 14 experimental runs, a team of two people physically visited each of the viewpoint 
sites with three devices (installed with DSM, DSM-Trees and DSM+Extrusions rasters respectively) 
attached to a pole. The researcher in control of the devices then generated a ground truth, by 
conferring with person responsible for the recording of devices as to which POIs (if any) could be 
seen from that point and therefore what the devices should be able to “see”. This resulted in a 
theoretical collection of 280 multivariate data points to be collected for each of the 3 surface models. 

At each viewpoint the devices themselves were pointed in the direction of possible POIs and response 
results recorded. For each POI in the mask, there were four possible outcomes from the field results: 

1. True negative – the POI cannot be physically seen and nor can the device see it 
2. False negative – the POI can be physically seen but the device cannot see it 
3. True positive – the POI can be seen physically and by the device 
4. False positive – the POI cannot be seen physically but the device can see it 

To determine whether the POI could be seen from the point of view of the user, we employed a rule 
which said that a POI was deemed visible if it was distinguishable from the landscape, trees or other 
buildings around it. In other words the POI had to be identifiable as a separate entity in order to be 
considered as “seen”. 

The number of sites visited using each POI set can be found in table 1 and the locations of the sites 
found in figure 4. At each site the three devices with the different rasters implemented were test by 

 

Figure 3d. A DSM+Extrusions raster that 
extrudes upwards the LiDAR data 

corresponding to the POIs masked in Figure 
3c. 

 

Figure 3c. An example POI mask from one 
of the 14 experimental runs. 



attaching the devices to a pole and attempting to pick out the POIs which were included in the 
particular set which was being tested at the time. 

 

 

Figure 4. Visited site locations 

4. Experimental Results 
After carrying out the field testing, the identification of POIs in the field is summarised in Table 2. 

Table 2. Experimental Results 

Result Result DSM DSM-Trees DSM+Extrusions  

0 True Negative 6589 6508 6559 
1 False Negative 126 59 108 
2 False Positive 11 91 40 

3 True Positive 93 161 112 
 

The table shows that the DSM-Trees raster, with no vegetation, produces by far the highest instances 
of true positives, but at the cost of also producing the most false positives. Without the influence of 
the tree line, there are fewer barriers to Zapp hitting its target. The raw DSM Raster is far too 
conservative as it suffers with the problems associated with the tree line. When designing the 
DSM+Extrusions raster, it was thought that increasing the building POI size would help account for 
more salient features by increasing the target size proportional to the footprint of the building, albeit 
only in the vertical direction. This was a successful approach in a few situations, most notably where 
the top of the building would poke over the top of a tree line, however these situations proved to be 
few and far between to make a significant difference for this raster’s ability to model the real world. 

Table 1. No. sites visited per POI mask 

POI Mask No. Sites Visited 
1 15 
2 16 
3 10 
4 14 
5 13 
6 10 
7 16 
8 14 
9 15 
10 10 
11 14 
12 14 
13 14 
14 15 

Total 190 
 



5. Conclusion 
These preliminary results show that none of the rasters provide a perfect fit with the real world – all 
contain both false positives and false negatives. The DSM-Trees raster seems to allow for the 
identification of POIs far more easily than either of the others. The raw DSM Raster is far too 
conservative and using this raster in visibility-based software likely to cause frustration for the user, 
with the applications rarely responding to what is being pointed at. The DSM+Extrusions raster does 
have differences to the DSM-Trees raster. It provides a more forgiving user experience but at the cost 
of a lot of false negatives, which is likely to result in even greater frustration for the user. The next 
steps for our work are to attempt to account for the vagaries of sensor errors on the devices and to deal 
probabilistically with non-POI barriers such as tree lines in a way which reflects reality on the ground.  
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