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Summary: : The following paper outlines the methodology angliptinary results for an experiment
designed to understand the accuracy of visibiligdeis when used in the field by a mobile media
consumption app calledapp Levels of accuracy are determined in relatiopdamts of interest that
can be seen from random sites within the UniversitiNottingham’s University Park campus, the
study area of this experiment. Testing was camigidon three different surface models derived from
0.5m LIiDAR data by visiting physical sites on eatifface model with 14 random POI masks being
viewed from between 10 and 16 different locatidosalling 190 data points. Each site was ground
truthed by determining whether a given POI couldgéen by the user be and also be identified by the
mobile device.
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1. Introduction and purpose

In this paper we examine the effectiveness of usiiffgrent digital surface models to underpin
mobile geospatial applications. Our experimentsashizat choice of surface model has important
conseqguences on the efficacy of visibility-basedsgatial software. The test-bed for the experiments
undertaken waZapp a mobile geospatial application that allows ugersgjuery, from a distance,
points of interest (POIs) via use of the deviceisoard sensors, Meek and Priestnall, (2011).

Zapp functions by allowing users to aim a crosskawerlaid on the device’s camera preview) at
some point within the visible landscape. The agpionn dynamically ascertains the area that the user
is targeting via a line-of-sight algorithm, combigidevice sensor information with height data from
an underlying surface model in order to calculdte éxact grid cell being selected. Finally the
application cross-checks that grid selection withP®I| database, and returns corresponding
information if a match is found.

Our in-the-field experiments harnessed three implgations of the application; each compiled using
a different surface model, and assessed againsigalyground truth readings. Base data for these
models originated from 0.5m LiDAR (Light Detectidnd Ranging) of the canopy digital surface

model (DSM), a digital terrain model (a versiorttod DSM with all surface features such as trees and



buildings removed) and a POI database. This studies preliminary investigations into which
underlying surface data models best correspondhat wan be seen on the ground, and therefore
would be most effective in underpinning futureatiéns of visibility-based mobile applications.

2. Related work

The application used in our experiments is builtaoprevious iteration of the Zapp software, which
was designed to allow for P@apturerather than selection. In this latest version,dbftware again
uses the device’s on board sensors in combinatitnRisher’s line-of-sight algorithm Fisher,(1996),
to calculate what the app is “looking” at. Howeverstead of data collection in the field, the
application now allows identification of POls inder to enable relevant media consumption. In this
sense Zapp has commonalities with software sudeiaScapeStenton, Hullet al. (2007), both
being centred around the concept of location-trigdanedia. The main difference is that, whereas in
MediaScapes the media is activated when devices enpre-defined trigger area, Zapp activates
media when the user points the device at an objetie landscape which has media associated with
it.

There are several different methods of interactiityy the landscape from a mobile device, but one
technology that has strong links with Zapp’s "pdindiscover” strategy is th&eowand,which
describes a device that the user physically pahts point of interest in order to select it. Sasdi
have examined different methods of reporting bagkthte user from a geowand: Robinson,
Eslambolchilaret al. (2009) investigated haptic feedback which gaveuer an idea of the amount
of data available to them through the level of atlum; Lei and Coulton (2009) explored a map
interface where the user had opportunity to takeedually relevant photos; and Wilson and Pham
(2003) tested Geowand control of devices withia Bmart home setting.

Zapp differs from prior applications in that, altlgh it also requires the user to physically alige t
device with a POI, it employs a surface model teedrine intervisibility rather than querying a
spatial database and feeds back to the user WihtaAR interface.

3. Experimental Methodology

The aim of our experiments was to test the effea@ss of three different surface models within a
visibility-based mobile application. The models welbaded onto multiple devices to allow
simultaneous testing (thus minimizing GPS signaiat®n), each models being generated from
various alterations to the LIiDAR data captured.&thOresolution in summer 2009 (re-sampled to 2m
due to memory pressures on the mobile devices hailied). The models tested were as follows:

1. DSM: Full LIDAR surface model

2. DSM-Trees: The LIDAR surface model with trees removed

3. DSM+Extrusions. The Full LIDAR surface model (including the builds and foliage), with
POls additionally extruded 100m above the surface.

The three different models that are illustratedydianmatically in figure 1 below:
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Figure 1. The DSM includes buildings and foliage (green). DEROI augments this by
extruding the points of interest (red), while DSMrees removes foliage (blue).

Surface models were converted into respectivensafite use in line of site algorithms, with tB&M
raster (which corresponds to the original LIDAR data)iagtas a first attempt at modelling the real
world as well as a control surface model (see [EigBa). This also represents the theoretical
maximum level of obstruction to visibility as veggon is modelled as a solid canopy.

The rationale behind the second surface modelD®lg—Treegaster (illustrated in Figure 3b), was
that lines of trees are semi-permeable and the RDAly contains a model of the canopy thus
creating barriers to visibility within the modely bemoving these barriers we are removing artificia
assumptions within the underlying data which weeated in the data collection process. The DSM +
Extrusions raster created was to ameliorate thdlgmo of foliage walls by extruding the POI
buildings above the tree line. Thus, foliage wdnddmaintained but give the sensors on the devices a
better chance to “hit” the POI.

3.1 POI sdection

A set of 79 possible POIls was created, spread athesUniversity of Nottingham’s main campus
(see Figure 2). Although our experimental conclasiare necessarily limited to topographies similar
to this study area, in order to ensure our resmige not biased to a specific set of buildings and
features, we generated 14 random subsets of Pi@ilsg g4 distinct experimental runs from which to
test our results.

While the same DSM and DSM-Trees raster could bed wumcross all experiments, a separate
DSM+Extrusionsraster was also to be generated for each expewimem. The generation of this
third model type is dependent on the particularsstibf POIls being used in a given run. This meant
that unlike rasters 1 and 2 (figure 2), a sepavatsion of raster 3 had to be created for each
corresponding POI mask (figure 3).
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Figure 2. All possible Points of Interest (POISs)

Figure 3a. The DSM Raster - unaltered Figure 3b. The DSM - Trees — LIDAR data
LiDAR data. with trees removed



Figure 3c. An examp|e POl mask from one Figure3d. A DSM+Extrusions raster that
of the 14 experimental runs. extrudes upwards the LIiDAR data

corresponding to the POIs masked in Figure

3.2 Viewpoint selection

20 distinct viewpoint sites were randomly seledi@deach experimental run (all viewpoints were
constrained to being physically accessible toifedlde of campus, to avoid any issues with private
land surrounding the campus and for convenience).

For each of the 14 experimental runs, a team ofgeaple physically visited each of the viewpoint

sites with three devices (installed with DSM, DSkéd&s and DSM+EXxtrusions rasters respectively)
attached to a pole. The researcher in control ef davices then generated a ground truth, by
conferring with person responsible for the recaydiri devices as to which POls (if any) could be

seen from that point and therefore what the devitesuld be able to “see”. This resulted in a

theoretical collection of 280 multivariate datargsito be collected for each of the 3 surface nwodel

At each viewpoint the devices themselves were pdiimt the direction of possible POls and response
results recorded. For each POI in the mask, there Wour possible outcomes from the field results:

True negative — the POI cannot be physically seen and nor canl¢lvice see it
False negative — the POI can be physically seen but the devioeatsee it
True positive — the POI can be seen physically and by the device

False positive — the POI cannot be seen physically but the desacesee it

PwnNPE

To determine whether the POI could be seen fronpttet of view of the user, we employed a rule
which said that a POl was deemed visible if it atinguishable from the landscape, trees or other
buildings around it. In other words the POI hadidentifiable as a separate entity in order to be
considered as “seen”.

The number of sites visited using each POI setbeafound intable 1and the locations of the sites
found in figure 4. At each site the three devicdth whe different rasters implemented were test by



attaching the devices to a pole and attemptingitk put the POls
particular set which was being tested at the time.

Table 1. No. sites visited per POl mask

POl Mask | No. Sites Visited
1 15
2 16
3 10
4 14
5 13
6 10
7 16
8 14
9 15
10 10
11 14
12 14
13 14
14 15

Total 190

4. Experimental Results
After carrying out the field testing, the identditon of POls in the field is summarised in Table 2

Table 2. Experimental Results

Figure4. Visited site locations

which were included in the

Result Result DSM DSM-Trees DSM+Extrusions
0 True Negative 6589 6508 6559
1 False Negative 126 59 108
2 False Positive 11 91 40
3 True Positive 93 161 112

The table shows that ti2SM-Treegaster, with no vegetation, produces by far tighést instances

of true positives, but at the cost of also prodgdime most false positives. Without the influenée o
the tree line, there are fewer barriers to Zapfingitits target. The rawDSM Raster is far too
conservative as it suffers with the problems asdedi with the tree line. When designing the
DSM+EXxtrusionsraster, it was thought that increasing the bugdfOl size would help account for
more salient features by increasing the target mi@portional to the footprint of the building, alb
only in the vertical direction. This was a succaekapproach in a few situations, most notably where
the top of the building would poke over the topadfree line, however these situations proved to be
few and far between to make a significant diffeeefar this raster’s ability to model the real world



5. Conclusion

These preliminary results show that none of theeragrovide a perfect fit with the real world + al
contain both false positives and false negativdse DSM-Treesraster seems to allow for the
identification of POls far more easily than eittadrthe others. The raldDSM Raster is far too
conservative and using this raster in visibilitysed software likely to cause frustration for therus
with the applications rarely responding to whabésng pointed at. ThBSM+Extrusionsraster does
have differences to tHeSM-Treegaster. It provides a more forgiving user expeareehut at the cost
of a lot of false negatives, which is likely to udsin even greater frustration for the user. Tleatn
steps for our work are to attempt to account fenthgaries of sensor errors on the devices aneab d
probabilistically with non-POI barriers such attimes in a way which reflects reality on the grdu
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