
1  DEFINING DATA QUALITY

The meaning of ‘quality’ depends on the context in
which it is applied. The term is commonly used to
indicate the superiority of a manufactured good or
attest to a high degree of craftsmanship or artistry. In
manufacturing industries, quality is viewed as a
desirable goal to be achieved through management of
the production process. Statistical quality control has
a relatively long history in manufacturing, where it is
used to ensure conformity in products by predicting
the performance of manufacturing processes.

Quality is more difficult to define for data. Unlike
manufactured products, data do not have physical
characteristics that allow quality to be easily
assessed. Quality is thus a function of intangible
properties such as ‘completeness’ and ‘consistency’.
On further reflection, however, these differences are
perhaps not as great as they might initially seem.
After all, data are the result of a production process,
and the manner in which this process is performed
clearly affects data reliability. Data consumers can
therefore use the same diligence in selecting a
database that they might in purchasing an
automobile or a pair of shoes.

These comments also apply in the context of
geospatial data. Concern for geospatial data
quality has burgeoned in recent years for the
following reasons:

● Increased data production by the private sector.
Historically, mass production of geospatial data
was the domain of governmental agencies such as
the US Geological Survey (USGS) and the British
Ordnance Survey (Rhind, Chapter 56). Unlike
these agencies, private companies are not required
to conform to known quality standards
(Goodchild and Longley, Chapter 40).

● Increased use of GIS as a decision-support tool.
This trend has led to realisation of the potential
deleterious effects of using poor quality data,
including the possibility of litigation if minimum
standards of quality are not attained (Onsrud,
Chapter 46).

● Increased reliance on secondary data sources.
This has been fuelled by a reduction in
accessibility and cost constraints resulting from
network accessibility and the development of
standards for data exchange (Goodchild and
Longley, Chapter 40).

These trends have contributed to a reappraisal of the
responsibilities of data producers and consumers for
data quality. Until quite recently data quality was
the responsibility of the producer, and compliance
testing strategies were applied in order to sanctify
databases meeting official quality thresholds.
Compliance testing is a form of quality control that
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ways in which institutional values are embedded in geospatial databases and the ways that
data quality documentation can help to articulate these values.



seeks to eliminate error through management of the
database production process. However, compliance
tests are useful only in a limited range of applications
environments. For some applications a particular
compliance test may be too lax while for others it may
be too restrictive and hence impart unnecessary costs.

Responsibility for assessing whether a database
meets the needs of a particular application has
therefore shifted to the consumer who is in a
position to make such an assessment. This is referred
to as determining ‘fitness-for-use’. The producer’s
responsibilities have changed as well. Rather than
producing authoritative databases, the producer’s
role has shifted to data quality documentation or
‘truth-in-labelling’. The truth-in-labelling paradigm
views error as inevitable and casts the data quality
problem in terms of misuse arising from incomplete
knowledge of data limitations.

2  DATA QUALITY COMPONENTS

Geographical observations describe phenomena
with spatial, temporal, and thematic components
(Berry 1964; Sinton 1978). Space, which defines
geographical location, is the dominant member of
this troika. This dominance is problematic on several
levels. First, time is not given sufficient attention.
Although poorly accommodated in conventional
geospatial data models, time is critical to an
understanding of geographical phenomena, not as
entities that exist at some location, but as events that
appear and disappear in space and time (Peuquet,
Chapter 8; Raper, Chapter 5). A second problem is
that geographical phenomena are not really about
space, but about theme. We can view space (or more
precisely space-time) as a framework on which
theme is measured. It is true that without space there
is nothing geographical about the data, but on the
other hand without theme there is only geometry.

These comments set the stage for our discussion
of data quality components. Like geographical
phenomena, data quality can be differentiated in
space, time, and theme. For each of these
dimensions, several components of quality
(including accuracy, precision, consistency, and
completeness) can be identified.

2.1  Accuracy

A useful starting point for discussing accuracy is the
entity–attribute–value model, which serves as the
conceptual basis for most database implementations

of real-world phenomena. According to this model,
‘entities’ represent real-world phenomena (such as
streets, counties, or hazardous waste sites),
‘attributes’ specify the relevant properties of these
objects (such as width or number of lanes), and
‘values’ give the specific qualitative or quantitative
measurements pertaining to a particular attribute. In
this model, error is defined as the discrepancy
between the encoded and actual value of a particular
attribute for a given entity (see also Fisher, Chapter
13). Accuracy is the inverse of error. This model can
be used to define spatial, temporal, and thematic
error for a particular entity as, respectively, the
discrepancies in the encoded spatial, temporal, and
thematic attribute values.

This definition is useful but somewhat limited.
What is missing is recognition of the
interdependence of space, time, and theme.
Geographical phenomena are not just thematic data
with space and time attached. They are instead
events unfolding over space and time. A change in
space or time implies a change in theme, and vice
versa. Thus while accuracy can be measured
separately for space, time, and theme, these
measurements are not necessarily independent.
Consider a database dated ‘1992’ that depicts a
two-lane road, but assume that in late 1991 the road
was converted to a four-lane highway. This is both a
thematic error (because in 1992 there were four
lanes, not two) and a temporal error (because when
the road contained only two lanes the year was at
most 1991). Similar types of dependencies exist
across space and theme. A classic example is the soil
mapping unit delineation problem, in which a
mislocated unit boundary is simultaneously a spatial
error and a thematic error, since boundary location
is defined by variations in thematic attribute value.

The definition of error given above assumes that
there is some objective, external reality against which
encoded values can be measured (Chrisman 1991).
This definition requires not only that ‘truth’ exists
but that it can be observed. Quite apart from any
philosophical problems that it raises, this definition
is problematic for several reasons. First, the truth
may simply be unobservable, as in the case of
historical data. Second, observation of the truth
may be impractical (because of data cost, for
example). Finally, it is possible that multiple truths
exist because the entities represented in the database
are abstractions rather than real-world phenomena.
Indeed many phenomena of interest belong to
perceived reality (sometimes referred to as terrain 
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nominal: Salgé 1995). Examples include entities that
are highly variable (e.g. shorelines) or subjective in
nature (e.g. land cover classes interpreted from air
photos). In these cases inexactness is a fundamental
property of the phenomena under observation
(Goodchild 1988b).

Fortunately, objective reality does not need to be
articulated in order to perform accuracy assessment.
This is because geospatial data are always acquired
with the aid of a model that specifies, implicitly or
explicitly, the required level of abstraction and
generalisation relative to real-world phenomena
(Figure 1; Martin, Chapter 6). This conceptual
model defines the database ‘specification’ and it is
against this reference that accuracy is assessed
(Brassel et al 1995). Accuracy is a relative measure
rather than an absolute one, since it depends on the
intended form and content of the database.
Different specifications can exist for the same
general types of geospatial data. To judge the
fitness-for-use of the data for some applications, one
must not only judge the data relative to the
specification, but also consider the limitations of the
specification itself (Comité Européen de
Normalisation (CEN) 1995).

2.1.1 Spatial accuracy
Spatial accuracy (or ‘positional accuracy’) refers to
the accuracy of the spatial component of a database.
Measurement of spatial accuracy depends on
dimensionality. Metrics are well defined for point
entities, but widely accepted metrics for lines and
areas have yet to be developed. For points, error is
usually defined as the discrepancy (normally
Euclidean distance) between the encoded location
and the location as defined in the specification. Error
can be measured in any one of, or in combinations
of, the three dimensions of space. The most common
measures are horizontal error (distance measured in
x and y simultaneously) and vertical error (distance
measured in z) (Figure 2).

Various metrics have been developed to summarise
spatial error for sets of points. One such metric is
mean error, which tends to zero when ‘bias’ is absent.
Bias refers to a systematic pattern of error (e.g. error
arising from map misregistration). When bias is
absent error is said to be random. Another common
metric is root mean squared error (RMSE), which is
computed as the square root of the mean of the
squared errors (see Beard and Buttenfield,
Chapter 15). RMSE is commonly used to document
vertical accuracy for digital elevation models (DEMs).
RMSE is a measure of the magnitude of error but it
does not incorporate bias since the squaring eliminates
the direction of the error.
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Fig 1.  The mediating role of the database specification in
assessing data quality.
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There is a close analogy between classical
approaches to error and error in the location of a
point. Horizontal error is a 2-dimensional extension
of the classical error model in which error in
position is defined in terms of a bell-shaped
probability surface (Goodchild 1991a). Thus it is
possible to perform statistical inference tests and
derive confidence limits for point locations
(American Society of Civil Engineers 1983;
American Society for Photogrammetry 1985). For
lines and areas the situation is more complex since
there is no simple statistical measure of error that
can be adopted from statistics. Errors in lines arise
from the errors in the points that define those lines.
However, as these points are not randomly selected
the errors present at points cannot be regarded as
somehow typical of errors present in the line
(Goodchild 1991b).

Error is usually defined for lines using some
variant of the epsilon band. The epsilon band is
defined as a zone of uncertainty around an encoded
line within which there is a certain probability of
observing the ‘actual’ line. As yet there is no
agreement as to the shape of the zone and the
distribution of error within it. Early models assumed
that the zone was a uniform ‘sausage’ within which
the distribution of error was uniform (Blakemore
1983; Chrisman 1982). More recent studies show
that both the distribution and the band itself might
be non-uniform in shape (Caspary and Scheuring
1993; Honeycutt 1986) (Figure 3).

2.1.2  Temporal accuracy
Temporal accuracy has not received much attention
in the literature, just as time itself is not dealt with
explicitly in conventional geospatial data models.
Temporal accuracy is often equated with
‘currentness’ (Thapa and Bossler 1992). In fact the
two concepts are quite distinct. Temporal accuracy
refers to the agreement between encoded and
‘actual’ temporal coordinates. Currentness is an
application-specific measure of temporal accuracy.
A value is current if it is correct in spite of any
possible time-related changes in value. Thus
currentness refers to the degree to which a database
is up to date (Redman 1992). To equate temporal
accuracy with currentness is to state, in effect, that to
be temporally accurate a database must be up to
date. Clearly this is not the case since a database can
achieve a high level of temporal accuracy without
being current. Indeed historical studies depend on
the availability of such data.

Assessment of temporal accuracy depends on the
ability to measure time objectively using a standard
temporal coordinate system. However, standards are
not universally accepted (Parkes and Thrift 1980).
Another impediment to the measurement of temporal
accuracy is that time is often not dealt with explicitly
in geospatial databases. Temporal information is
often omitted, except in databases designed for
explicitly historical purposes. This assumes that
observations are somehow ‘timeless’ or temporally
invariant. The implications of this omission are
potentially quite significant, especially for features
with a high frequency of change over time.
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Fig 3. (a) Early models of the epsilon band show a uniform
‘sausage’ of width epsilon, f, surrounding the encoded line;
(b) more recent studies suggest that the band may be non-
uniform in width; and (c) four of the many possible distributions
of error around the encoded line.

(a)

(b)

(c)



2.1.3  Thematic accuracy
Metrics of thematic accuracy (or ‘attribute accuracy’)
vary with measurement scale. For quantitative
attributes, metrics are similar to those used to measure
spatial accuracy for point features (e.g. RMSE).
Quantitative attributes can be conceived as statistical
surfaces for which accuracy can be measured in much
the same way as for elevation. For categorical data
most of the research into data quality has come from
the field of classification accuracy assessment in
remote sensing. This work was carried out initially to
devise methods to assess the accuracy of classification
procedures. Accuracy assessment is based on the
selection of a sample of point locations, and a
comparison of the land cover classes assigned to these
locations by the classification procedure with the
classes observed at these locations on a reference
source (usually ‘ground truth’). A cross tabulation of
the results (the ‘classification error matrix’) permits
accuracy assessment (Aronoff 1985; Genderen and
Lock 1977).

Various metrics summarising the information in
the error matrix have been developed (proportion
correctly classified, kappa, user’s and producer’s
accuracies, etc.). These metrics are useful for
assessing overall thematic accuracy. The
classification error matrix contains additional
information on the frequency of various types of
misclassification, e.g. which pairs of classes tend
most often to be confused. In addition, the matrix
permits assessment of errors of omission (omission
of a location from its ‘actual’ class) and errors of
commission (assignment of a location to an
incorrect class).

2.2  Precision or resolution

Precision refers to the amount of detail that can be
discerned. It is also known as granularity or resolution.
The latter term is commonly used in GIS and related
fields, and is adopted here to avoid confusion with the
statistical concept of precision as observational
variance. All data are of limited resolution because no
measurement system is infinitely precise. Resolution is
also limited because geospatial databases are
intentionally generalised. Generalisation includes
elimination and merging of entities, reduction in detail,
smoothing, thinning, and aggregation of classes.
Generalisation is inevitable because, at best, geospatial
databases can encompass only a fraction of the
attributes and their relationships that exist in the real
world (Weibel and Dutton, Chapter 10).

Resolution affects the degree to which a database is
suitable for a specific application. The resolution of
the database must match the level of detail required in
the application. Low resolution does not have the
same negative connotation as low accuracy. Low
resolution may be desirable in certain situations, such
as when one wishes to formulate general models or
examine spatial patterns at a regional level.

Resolution is also important because it plays a
role in interpreting accuracy. For example, two
databases may have approximately equal spatial
accuracy levels, but if their spatial resolutions are
significantly different then the accuracy levels do not
denote the same level of quality. One would generally
expect accuracy and resolution to be inversely
related, such that a higher level of accuracy will be
achieved when the specification is less demanding.

2.2.1 Spatial resolution
The concept of spatial resolution is well developed in
the field of remote sensing, where it is defined in terms
of the ground dimensions of the picture elements, or
pixels, making up a digital image (Figure 4). This
defines the minimum size of objects on the ground that
can be discerned. The concept is applicable without
modification to raster databases. For vector data, the
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Fig 4.  (a) A portion of a video image (Akron, Ohio) with spatial
resolution of 1 metre, temporal resolution of 1/30 of a second,
and thematic resolution of 8 bits (255 unique values); (b) the
same image as in (a) but with spatial resolution degraded to
10 metres; (c) the same image as in (a) but with temporal
resolution degraded, thus showing the effects of along-track
movement of the sensing platform; and (d) the same image as in
(a) but with thematic resolution degraded to four unique values.

(a) (b)

(c) (d)



smallest feature that can be discerned is usually defined
in terms of rules for minimum mapping unit size which
depend on map scale.

Spatial resolution is related to, but distinct from, the
concept of the spatial sampling rate. Resolution refers
to the fineness of detail that can be observed while the
sampling rate defines the ability to resolve patterns
over space. For remotely sensed images, resolution
refers to the pixel size (ground area resolved) and
sampling rate to the spaces between pixels. Thus in
theory one could mix high spatial resolution with low
sampling rate (small pixels with large gaps between
them) or low spatial resolution with high sampling rate
(large pixels that overlap). Normally, resolution and
sampling rate are approximately equal.

2.2.2  Temporal resolution
Temporal resolution refers to the minimum duration
of an event that is discernible. It is affected by the
interaction between the duration of the recording
interval and the rate of change in the event. Events
with a lifetime less than the sampling interval are
generally not resolvable. At best they leave a
‘smudge’ like pedestrians on nineteenth-century
daguerreotypes. This has been referred to as the
‘synopticity’ problem (Stearns 1968). A shorter
recording interval implies higher temporal
resolution, just as faster film has given us the ability
to photograph quickly moving objects (Figure 4).

For geospatial data, the situation is more
complicated because interactions between spatial
and thematic resolution must also be considered. In
general one cannot resolve any event which, during
the time interval required for data collection,
changes location in space by an amount greater than
the spatial resolution level. Likewise, one cannot
resolve any event for which theme changes to a
degree that would be discernible given the thematic
resolution level (Veregin and Hargitai 1995).

There is a clear distinction between resolution
and sampling rate in the temporal domain. Sampling
rate refers to the frequency of repeat coverage while
resolution refers to the time collection interval for
each measurement. For example, motion pictures
have a resolution of perhaps a thousandth of a
second (one frame) but a sampling rate of 24 frames
per second. Geosynchronous satellites are capable of
much higher sampling rates than sun-synchronous
satellites (repeat coverage several times per minute vs
several times per month). Resolution, however, is a
function of the time required to obtain spectral
reflectance data for one pixel.

2.2.3  Thematic resolution
In the thematic domain, the meaning of resolution
depends on measurement scale. For quantitative
data, resolution is determined by the precision of the
measurement device (Figure 4). For categorical data,
resolution is defined in terms of the fineness of
category definitions. Land cover classification
systems used in remote sensing are useful models to
illustrate resolution. These systems define the level of
detail in taxonomic definitions in terms of the
spatial resolving power of the remote sensing
system. This illustrates the interdependence between
space and theme when extracting spatial information
(land cover class boundaries) from thematic
information (spectral reflectance data).

2.3  Consistency

Consistency refers to the absence of apparent
contradictions in a database. For geospatial data the
term is used primarily to specify conformance with
certain topological rules (Kainz 1995). These rules
vary with dimensionality; for example, only one
point may exist at a given location, lines must
intersect at nodes, polygons are bounded by lines,
etc. Elimination of topological inconsistencies is
usually a prerequisite for GIS processing (Dowman,
Chapter 31), such that most databases are
topologically ‘cleaned’ before being released.

Topological consistency is one aspect of
consistency in the spatial domain. Spatial
inconsistencies can also be identified through
redundancies in spatial attributes. For example, an
entity might have the value ‘Delaware’ for the
attribute ‘state’ but the value ‘Lincoln’ for the
attribute ‘county’. This is inconsistent since there is
no Lincoln county in Delaware. In this case
redundancy is partial: the state ‘Delaware’ eliminates
the possibility of the county ‘Lincoln’, but the
county ‘Lincoln’ does not necessarily imply the state
‘Maine’ since Maine is only one of 24 states
containing a Lincoln County. On the other hand,
redundancy may be complete (e.g. state is implied
completely by the Federal Information Processing
Standard (FIPS) state code), since there is a unique
state code for each state. Non-redundancy implies
that there is independence between two attributes
such that meaningful consistency constraints do not
exist (Redman 1992).

Little work has been done on consistency in the
temporal domain, although a framework for
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temporal topology has been developed (Langran
1992). For example, since at a given location only
one event can occur at one time, an inconsistency
exists if a different entity appears at the same
location on two maps of the same date. Since events
have a duration, this idea can be extended to identify
events that exhibit temporal overlap.

In the thematic domain, the ability to identify
inconsistencies requires a level of redundancy in
thematic attributes – for example, the three
sociodemographic variables ‘population’, ‘mean
household size’, and ‘total number of households’.
Of course, the identification of an inconsistency
does not necessarily imply that it can be corrected or
that it is possible to identify which attribute is in
error. Note also that the absence of inconsistencies
does not imply that the data are accurate. Thus
consistency is appropriately viewed as a measure of
internal validity. Despite the potential to exploit
redundancies in attributes, tests for thematic
consistency are almost never carried out.

2.4  Completeness

Completeness refers to the relationship between the
objects in the database and the ‘abstract universe’ of
all such objects. Selection criteria, definitions, and
other mapping rules used to create the database are
important determinants of completeness. This
definition requires a precise description of the
abstract universe since the relationship between the
database and the abstract universe cannot be
ascertained if the objects in the universe cannot be
described. The abstract universe can be defined in
terms of a desired degree of abstraction and
generalisation (i.e. a concrete description or
specification for the database). This leads to the
realisation that there are in fact two different types
of completeness. ‘Data completeness’ is a
measurable error of omission observed between the
database and the specification. Data completeness is
used to assess data quality, which is application-
independent. Even highly generalised databases can
be complete if they contain all of the objects
described in the specification. ‘Model completeness’
refers to the agreement between the database
specification and the abstract universe that is
required for a particular database application
(Brassel et al 1995). Model completeness is
application-dependent and therefore an aspect of
fitness-for-use. It is also a component of ‘semantic
accuracy’ (Salgé 1995).

Additional distinctions are required. The
definitions of completeness given above are
examples of ‘feature or entity completeness’. In
addition we can identify ‘attribute completeness’ as
the degree to which all relevant attributes of a
feature have been encoded. A final type of
completeness is ‘value completeness’ which refers to
the degree to which values are present for all
attributes (Brassel et al 1995).

Feature completeness can be defined over space,
time, or theme. Consider a database depicting the
locations of buildings in the state of Minnesota that
were placed on the National Register of Historic
Places as of 1995. This database would be
incomplete if it included only buildings in Hennepin
County (incompleteness in space, since Hennepin
County covers only a portion of Minnesota), or only
buildings placed on the Register by June 30
(incompleteness in time, since buildings may have
been added after June 30), or only residential
buildings (incompleteness in theme, due to the
omission of non-residential buildings).

As this example shows, completeness is typically
defined in terms of errors of omission. However,
completeness may also include errors of
commission (CEN 1995). Following on the
previous example, errors of commission would
occur if the database contained buildings in
Wisconsin, buildings added to the Register in 1996,
or historic districts as well as buildings.

3  DATA QUALITY STANDARDS

A concern for data quality issues is clearly expressed
in the development of data transfer and metadata
standards. Such standards have been developed at
both national and international levels in support of
mandates for data acquisition and dissemination.
Data quality documentation plays a key role in
many standards due to the realisation that an
understanding of quality is essential to the effective
use of geospatial data (see also Salgé, Chapter 50).

US readers will be most familiar with SDTS (the
Spatial Data Transfer Standard) and the Content
Standards for Digital Geospatial Metadata
developed by the FGDC (Federal Geographic Data
Committee). SDTS is a data transfer standard
designed to facilitate dissemination and sharing of
data. It provides standard definitions of data
elements, a standardised format for data transfer,
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and descriptive metadata about database contents.
In 1992 SDTS was adopted by the National Institute
of Standards and Technology as a Federal
Information Processing Standard (FIPS-173)
(Fegeas et al 1992).

The FGDC was established to promote
coordinated development and dissemination of
geospatial data. Its membership includes numerous
US federal government departments and
independent agencies. The FGDC has been involved
in several activities related to geospatial data quality,
including the development of the metadata content
standards. Metadata describe the contents of a
database. The FGDC standards provide a common
set of terminology and a common structure for
geospatial metadata (FGDC 1994). The FGDC
standards were approved in 1994, and use of these
standards is one of the minimum requirements for
serving as a node in the National Geospatial Data
Clearinghouse of the National Spatial Data
Infrastructure (NSDI) (Morain and Budge 1996).

The FGDC standards follow SDTS in terms of
recommendations for data quality information to be
reported and tests to be performed. The five
components of data quality in SDTS are listed in
Table 1. Text-based documentation is the norm,
although other formats are also permitted including
numerical measures and even interactive graphics
through online resources.

Many organisations have also created internal
standards that contain data quality information. For
example, the USGS DEM standard includes
descriptors of horizontal and vertical accuracy.
Standards have been adopted or are in development
at national and international levels as well. Examples
include the National Transfer Format (NTF)
developed by the Association for Geographic
Information (AGI) and adopted as the official British
standard (BS7666) in 1992; the Digital Geographic
Information Exchange Standard (DIGEST)
developed by military service agencies from a number
of NATO countries; the International Hydrographic
Organisation (IHO) standard for nautical charts; and
the draft standard of the CEN. Interested readers
should consult Salgé (Chapter 50), Cassettari (1993),
and Moellering (1991) for more details.

A major limitation of data quality standards is
that they do not necessarily lend themselves to
specific software implementations (see Guptill,
Chapter 49). Standards provide models for data
documentation but not a mechanism whereby users
of disparate GIS packages can implement these
models for database documentation. A related
problem is that standards treat data quality as
essentially static. While some accommodation is
made for changes in quality as a result of data
transformations, there is no mechanism to
automatically update quality components as data are
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Table 1  Data quality components in SDTS.

Component Description

Lineage Refers to source materials, methods of derivation and transformations applied to a database.
● Includes temporal information (date that the information refers to on the ground).
● Intended to be precise enough to identify the sources of individual objects (i.e. if a database was derived

from different source, lineage information is to be assigned as an additional attribute of objects or as a
spatial overlay).

Positional accuracy Refers to the accuracy of the spatial component.
● Subdivided into horizontal and vertical accuracy elements.
● Assessment methods are based on comparison to source, comparison to a standard of higher accuracy,

deductive estimates or internal evidence.
● Variations in accuracy can be reported as quality overlays or additional attributes.

Attribute accuracy Refers to the accuracy of the thematic component.
● Specific tests vary as a function of measurement scale.
● Assessment methods are based on deductive estimates, sampling or map overlay.

Logical consistency Refers to the fidelity of the relationships encoded in the database.
● Includes tests of valid values for attributes, and identification of topological inconsistencies based on

graphical or specific topological tests.

Completeness Refers to the relationship between database objects and the abstract universe of all such objects.
● Includes selection criteria, definitions and other mapping rules used to create the database.



passed through GIS processing steps. While source
data may be adequately documented, derived data
frequently are not. Finally, because standards such
as SDTS provide such a rich collection of
information about data quality, users may find it
difficult to ascertain fitness-for-use. Likewise the
unstructured nature of text-based descriptions
means that data quality documentation is difficult to
update automatically in a GIS environment.

Data quality standards also fall short of
providing the kinds of assurances demanded by
agencies that need to limit liability risks (Goodchild
1995). For example, SDTS follows the ‘truth-in-
labelling’ paradigm in which the data quality report
makes no a priori assumptions about quality
requirements. While SDTS documentation might
contain statements that the data meet some
minimum accuracy standard, SDTS itself does not
provide for the definition of data quality objectives
necessary in the development of quality
assurance/quality control (QA/QC) programs.

Efforts are underway to establish QA/QC
programs within agencies that produce geospatial
data. Such programs are based on the development
of standard operating procedures that allow specific
data quality objectives to be realised (Stone et al
1990). To some extent such QA/QC programs mirror
the way in which traditional map accuracy standards
such as National Map Accuracy Standards (NMAS)
are implemented. The NMAS guarantee of a minimal
level of positional accuracy is achieved through
standard operating procedures that are known to yield
the required accuracy levels, coupled with a limited
amount of actual compliance testing. Such approaches
focus on managing the production process rather than
on statistical measurement of quality.

4  METADATA SYSTEMS

Like data quality standards, metadata systems are
concerned with documentation of data quality
components. The essential difference is that
metadata systems emphasise the operational
component rather than conceptual issues. Most
commercial GIS packages perform a certain amount
of metadata documentation. Some metadata is
essential in order that data are processed correctly.
For example, raster systems need to record the
number of rows and columns of cells in each layer,
while vector systems need to record the spatial

coordinate system. Often these metadata are
propagated forward as new layers are derived
(see also Church, Chapter 20).

Only a few commercial GIS packages offer the
capability to document data quality. An example is
Idrisi version 4.1 which allows users to store
information on the five components of data
quality defined in SDTS. These data are stored
along with other metadata in the documentation
file that accompanies each raster layer and are
propagated forward to derived layers. The software
also performs rudimentary error propagation
modelling by transforming metadata for certain
data quality components.

For the majority of systems, however, tracking of
data quality is the responsibility of the user. This has
led to the independent development of software
packages that document layers with metadata,
update the lineage of layers automatically and
perform propagation of data quality components
(Veregin 1991). Some systems are quite advanced.
Geolineus is an intelligent system that intercepts
GIS commands and dynamically builds a graphical
representation of the data processing flow and
derived layers (Lanter 1991). This allows the user to
visualise the flow of data processing steps and the
linkages between source and derived data. At the
same time Geolineus automatically propagates
metadata, including data quality elements. This
replaces the traditional approach in which updating
of metadata is the sole responsibility of the user,
such that it is often not performed at all (Goodchild
1995). Geolineus also stores information about data
dependencies to facilitate metadata analysis.
Examples of metadata analysis include assessment
of processing complexity, analysis of the adequacy
of data sources, propagation of error, and the
identification of optimal strategies for enhancing
derived data quality (Lanter and Surbey 1994;
Lanter and Veregin 1992; Veregin and Lanter 1995).

5  CARTOGRAPHIC BIAS

The ability to produce a geospatial database
presupposes a model that defines rules for
simplifying real-world complexity. Despite their
apparent sophistication, geospatial databases reflect
many of the same biases as analogue cartographic
data. This is true not only because geospatial
databases are often produced by digitising paper
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maps, but because the models embedded in GIS are
essentially digital translations of analogue models
(Burrough and Frank 1995). Thus in the vector data
model geographical phenomena are differentiated
according to their dimensionality. Only points, lines,
and areas are permitted and these three classes are
assumed to be mutually exclusive even though the
dimensionality of many entities is known to be
scale-dependent (Hutchinson and Gallant,
Chapter 9). Dimensionality, originally applied in
cartography as a heuristic for representation and
symbolisation, has been reified in GIS as a
fundamental property of geographical phenomena.

The finite limits to cartographic fidelity imply that
maps must represent the real world selectively – that
is, they can represent only a subset of all possible
entities in the real world and must portray these
entities in a generalised way as a function of map
scale and purpose. The model is a highly abstract
one that assumes that entities exist unambiguously
in the real world. In some cases this is true, as with
roads, counties, and other anthropogenic
phenomena. However, in many cases the phenomena
of interest have imprecise geographical expression.
These phenomena belong to the perceived world
rather than the real world and are inherently inexact
and imprecise (Burrough 1986). Such phenomena
are accommodated only clumsily in the cartographic
model, through the introduction of concepts such as
mapping unit ‘purity’ and ‘minimum mapping unit
size’ which acknowledge that the real world is more
complex than cartographic data would allow.

In theory geospatial data are not constrained to
the same degree as paper maps. Many authors argue
that geospatial technology is liberating as it facilitates
new modes of representation and offers freedom from
the constraints of scale imposed by pen-and-ink
technology. An example is the raster model, which
evolved in such fields as television and remote
sensing, and represents a significant break from the
traditional object-based cartographic model
(Goodchild 1988a). It is perhaps not surprising then
that many alternate models of geospatial data, such
as the field-based model, probabilistic surfaces, and
models based on fuzzy set theory, are raster based.
These models are able to accommodate imprecision
and uncertainty more easily than conventional
cartographic models, and are thus more appropriate
for many geographical phenomena.

Technology has also loosened the restriction that
maps serve the dual purposes of storage and

communication. For paper maps, content depends
on the communication goal. The desire to
communicate a particular message leads to selective
enhancement and exaggeration of certain features
and elimination or displacement of others. In
geospatial databases the storage and communication
roles can be more easily separated. This means that
data can be collected in as raw a form as possible,
and representations can be created to achieve any
particular communication objective without altering
the contents of the database. An additional
advantage is that it is easier to quantify accuracy for
raw data than for abstract cartographic
representations (Goodchild 1988c).

These problems would not come to the fore if GIS
were used only as an electronic map drawer. However,
GIS has enormously extended the uses of geospatial
data. Once data make their way into GIS they
typically begin a process of metamorphosis in which
they are transformed and merged with other data in
support of queries, analyses, and decision-making
models. Unfortunately there is no guarantee that the
data are suitable for such applications. This problem
is sometimes referred to as ‘use error’ (Beard 1989).
Despite the advances we have made in understanding
components of data quality, we have made almost no
progress in the development of rules and heuristics to
assess fitness-for-use and prevent use error (see Beard
and Buttenfield, Chapter 15).

6  GIS, SOCIETY, AND DATA QUALITY

What is the essence of a geospatial database? Is it a
faithful image of reality or a rhetorical device
designed to convey a particular message? Is it an
impartial representation of objective truth or a
manifesto for a set of beliefs about the world? This is
a central issue in the burgeoning ‘GIS and society’
debate in which research on data quality has many
important implications (Pickles, Chapter 14).

According to some critics, technologies such as
GIS have led to the ascendance of a new geospatial
science focused on the goal of producing ultimately
truthful and objective representations of reality. This
goal is seen as a byproduct of the new technological
means with its appeals to neo-positivism,
reductionism, instrumentalist thinking, and naive
empiricism in which ‘reality’ is uncontested and
objectively measurable (e.g. Harley 1991; Wood 1992).
According to this view, producers of geospatial
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databases make no allowance for the possibility that
these databases embed specific social and institutional
values. As such, GIS promulgates the myth of an
objective science which always produces the best
delineations of reality (Harley 1989).

While there is some foundation to this critique, it
would be unfair to suggest that producers of
geospatial data are unaware of the limitations of
these data. Like their manually-produced map
counterparts, geospatial data are not intended to be
miniature replicas of ‘reality’. Rather they emphasise
some aspects of the environment and suppress others
in an effort to convey a particular message (Martin,
Chapter 6; Raper, Chapter 5). What is contained in a
database is a function not only of the nature of the
external environment but also the values of the
society and institution within which the database was
constructed (Turnbull 1989). Values are embedded at
the modelling stage, where they impact on database
content, and at the representation stage where they
affect database form.

Values are not always embedded deliberately. Broad
social values are often taken for granted and may not
be consciously recognised. Hence databases often
unintentionally reflect and legitimate the social order
(Harley 1989). Broad social values form the backdrop
for more specific values that reflect institutional
characteristics. Perhaps the most significant of these is
institutional mandate, which defines institutional
mission for data collection and dissemination. For
specific databases, mandate is formalised as a set of
design guidelines that outline the rules for data
collection, encoding, and representation.

Unlike broad social values, values deriving from
institutional mandate can be articulated,
documented, and communicated to database
consumers through the medium of metadata. This
communication process is important since it affects
the consumer’s understanding of the limitations of a
database and facilitates its appropriate use.
Especially useful in this context is the concept of the
‘specification’ describing the intended contents of
the database. The specification is the reference
standard against which the database is compared in
order to assess completeness and other data quality
components. The specification concept explicitly
recognises that each database has a particular set of
objectives and that embedded in these objectives is
the formal expression of the values associated with
institutional factors.

What are the implications for the debate over
values? First, geospatial databases are not intended
to be accurate mirrors of reality. Rather, they are
designed to conform to a database specification
which could just as easily be a description of
perceived reality. Second, geospatial data producers
are generally aware of the significance of values. The
database specification is in fact a formal statement of
the values that are embedded in a given database.
Third, values can be communicated to database
consumers who can then use this information to
assess the appropriateness of the database for a
particular task. Knowledgeable map users have of
course always been aware of data limitations.

These are important conclusions since the
alternatives are not particularly attractive. For
example, some critics have claimed that given the
dependence on social values it is not possible to
distinguish between competing representations of the
same geographical space. Thus it has been argued
that the distinction between propaganda and truth is
artificial and must be dismantled, as must the
arbitrary dualism between art and science (Harley
1989). According to this view, all representations are
equally valid since they are all expressions of one’s
personal values, or the values of one’s culture, or the
values of one’s institution, any one of which has no
more claim to legitimacy than any other. This
anarchistic epistemology implies that we have no
agreed standard of reference and no basis for
communicating biases and assumptions. On the other
hand, if databases are to be more than just personal
artistic diversions and are to convey information
rather than simply express the values and viewpoints
of their creator, then they must be able to convey
their meaning to a broad spectrum of users.
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