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ABSTRACT

I consider the problem of finding the impulse response, or
Green’s function, from a measured response including
noise, given an estimate of the source time function. This
process is usually known as signature deconvolution.
Classical signature deconvolution provides no measure of
the quality of the result and does not separate signal from
noise. Recovery of the earth impulse response is here formu-
lated as the calculation of a Wiener filter in which the esti-
mated source signature is the input and the measured
response is the desired output. Convolution of this filter with
the estimated source signature is the part of the measured
response that is correlated with the estimated signature. Sub-
traction of the correlated part from the measured response
yields the estimated noise, or the uncorrelated part. The frac-
tion of energy not contained in this uncorrelated component
is defined as the quality of the filter. If the estimated source
signature contains errors, the estimated earth impulse re-
sponse is incomplete, and the estimated noise contains sig-
nal, recognizable as trace-to-trace correlation. The method
can be applied to many types of geophysical data, including
earthquake seismic data, exploration seismic data, and con-
trolled source electromagnetic data; it is illustrated here with
examples of marine seismic and marine transient electro-
magnetic data.

INTRODUCTION

In data from seismic, acoustic, and electromagnetic sources, the
measured response is a convolution of the source time function with
the Green’s function, or impulse response, plus noise. In analysis of
these data, it is often desired to obtain an accurate measure of the
Green’s function, or impulse response, given an estimate of the
source time function. In exploration geophysics, this is known as
signature deconvolution.

Classical signature deconvolution (Rice, 1962; Robinson, 1967;
Robinson and Treitel, 1967; Jovanovich et al., 1983) designs an
inverse filter for the estimated source signature and convolves the
filter with the measured data to obtain an estimate of the earth im-
pulse response. The filter is recalculated when the estimated source
signature changes. This basic concept has been used for decades in
exploration seismology. The quality of the deconvolved result is
uncertain.
The use of Wiener’s theory to tackle the problem has long been

associated with the predictive deconvolution approach of Peacock
and Treitel (1969), based on Robinson’s (1954) model of the seis-
mogram, in which the measured response is the convolution of a
basic wavelet with an uncorrelated series identified with the reflec-
tion coefficients of the layered earth. In one realization, the basic
wavelet might be a reverberating pulse train. At the heart of this
approach are the assumptions that the reflection response of the
earth is white and the basic wavelet is minimum phase, although
it was never claimed that these assumptions are necessarily correct.
They were made to make the problem tractable: the autocorrelation
of the wavelet is then the same as the autocorrelation of the seismo-
gram, apart from a scale factor, and the minimum-phase assumption
then uniquely determines the wavelet from its autocorrelation.
In the early days of onshore seismic exploration with dynamite,

the minimum-phase assumption was probably correct. With the
developments of the vibroseis method and marine seismic explora-
tion, the minimum-phase assumption has been found to be too
restrictive. It has also been shown that the reflection response of
the earth is not white (Fokkema and Ziolkowski, 1987) and, there-
fore, the autocorrelation of the seismogram is not the same as the
autocorrelation of the basic wavelet apart from a scale factor.
This paper uses Wiener’s (1949) theory to formulate recovery of

the earth impulse response as the calculation of the optimum filter
which, convolved with the estimated source signature, yields the
best least-squares estimate of the measured response. There is thus
a separate Wiener filter calculation for each data trace. Convolution
of this filter with the estimated source signature is the component of
the measured response that is correlated with the estimated signa-
ture. Subtraction of the correlated component from the measured
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data yields the uncorrelated component: the estimated noise. The
Wiener filter minimizes the energy of the estimated noise, by def-
inition. The quality of the filter is defined as “the fraction of energy
in the measured signal not contained in the estimated noise”. If the
estimated source signature contains errors, the estimated earth im-
pulse response is incomplete, and the estimated noise contains sig-
nal, which can be recognized as trace-to-trace correlations.
The convolutional model for the measured data and the classical

inverse-filter approach to signature deconvolution are reviewed
first. The design of the Wiener filter is reviewed next. This is
followed by a brief review of the application of Wiener filters to
predictive deconvolution, inverse filtering, and signature deconvo-
lution. Then, the application of the Wiener optimization approach to
the estimation of the Green’s function is presented; this is the novel
part of the paper. Finally, the method is applied to synthetic and real
marine seismic and marine transient electromagnetic data to show
how it works.

CONVOLUTIONAL MODEL AND CLASSICAL
SIGNATURE DECONVOLUTION

Consider a geophysical experiment to investigate the earth using
an active source and passive receivers. For example, this could be a
seismic experiment or a transient electromagnetic experiment. Seis-
mic wave propagation is a linear process because Hooke’s law is
obeyed, i.e., stress is proportional to strain. Electromagnetic propa-
gation is a linear process because Maxwell’s equations are linear
and Ohm’s law is obeyed, i.e., voltage is proportional to current.
In both cases, the earth can be treated as a linear time-invariant sys-
tem, because the medium parameters can be considered constant
over the duration of the experiment.
In the setup illustrated in Figure 1, and using the well-known

notation of Robinson and Treitel (1967), let the digital measurement
at a receiver be

Vt ¼ st � gt þ nt; (1)

where st is the source signature, gt is the earth impulse response, the
asterisk denotes convolution, and nt is the noise and is what would
be measured if there were no geophysical experiment; the subscript
t denotes the time sample. The impulse response gt is also known as
the Green’s function. It depends on the source position ðxs; ys; zsÞ
and the receiver position ðxr; yr; zrÞ, as well as time t. The posi-
tional dependencies are noted, but are not included in the following
equations, as they are not needed for the argument.
In this description, the source is assumed to be small compared

with a wavelength at all measured frequencies and the source time
function is then the same in all directions. In many situations, how-
ever, the source time function varies with direction. This occurs,
e.g., with electric dipole sources and with sources that are not small
compared with a wavelength at high frequencies, including vibrator
arrays onshore, air gun arrays offshore, and large earthquake
sources. This issue is not addressed directly in this paper, but there
is an indication in the air gun example presented later that directivity
effects are significant.
Normally the source signature is not known exactly. An estimate

ŝt of the signature is obtained by measurements, by modeling, or by
some other means (e.g., Ziolkowski, 1984; Osman and Robinson,
1996), such that there may be an error in every sample,

ŝt ¼ st − est; (2)

where est is the unknown error. It is possible that there is also a
convolutional error — for example, an instrument filter —
but that is ignored here. Classical signature deconvolution (e.g.,
Robinson and Treitel, 1967) finds an approximate inverse filter
ft of ŝt such that

ft � ŝt ¼ dt; (3)

where dt is a known band-limited impulse. Sig-
nature deconvolution is then the result of the con-
volution of this approximate inverse filter with
the measurement

ft �Vt ¼ ft � st � gtþ ft �nt
¼ ft � ðŝtþ estÞ � gtþ ft �nt
¼ dt � gtþ ft � est � gtþ ft �nt (4)

in which equations 2 and 3 have been used.
The first term on the right-hand side of equa-

tion 4 is the required result: It is the true, un-
known, earth impulse response convolved with
the known bandlimited impulse; the second term
is an error caused by uncertainty in the source
signature estimate; the third term is the convolu-
tion of the approximate inverse filter with the
noise. It is well known (e.g., Rice, 1962; Stoffa
and Ziolkowski, 1983) that this noise term is de-
pendent on the design of the bandlimited impulse
dt; for example, if dt ¼ δt, a perfect digital im-
pulse, the noise blows up at frequencies where
the estimated signature ŝt has little or no energy.

Figure 1. Source and receiver in the earth. The impulse response at the receiver, or
Green’s function, is a function of the source position ðxs; ys; zsÞ, the receiver position
ðxr; yr; zrÞ, and time t.
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It is not known how the second and third terms compare with the
desired first term. That is, we are not able to distinguish these terms
in the deconvolved data and we are unable to quantify the quality of
the deconvolution. Armed with the same information, the approach
proposed below also allows the signal and noise to be estimated as
well as separated, allowing the quality of the deconvolution to be
determined.

THE WIENER FILTER

The Wiener filter has been used extensively in geophysical data
processing, following the pioneering work of Robinson (1954) and
Robinson and Treitel (1967). The notation of Robinson and Treitel
(1967) is adopted, and Figure 2, showing the general filter design
model, is redrawn from Figure 1 of their paper. The object is to
design a causal linear digital filter

ft ¼ f0; f1; f2 · · · ; fj; · · · ; fn;

which, convolved with the input signal xt, yields the best least-
squares estimate of the desired output signal zt. The actual output
signal is yt ¼ xt � ft. The error at sample t is ðzt − ytÞ, and the sum
of the squares of the errors is

I ¼
X
t

ðzt − ytÞ2 ¼
X
t

ðzt − xt � ftÞ2: (5)

The quantity I is minimized by setting

∂I
∂fj

¼ 0; j ¼ 0; 1; 2; · · · ; n: (6)

This leads to the so-called “normal” equations

Xn
τ¼0

fτϕxxðj − τÞ ¼ ϕzxðjÞ; for j ¼ 0; 1; 2; : : : ; n; (7)

where ϕxxðτÞ is the autocorrelation of the input signal xt, and ϕzxðτÞ
is the crosscorrelation of the desired output signal zt with the input
signal xt

ϕxxðτÞ ¼
X
t

xtxt−τ (8)

ϕzxðτÞ ¼
X
t

ztxt−τ: (9)

Levinson (1946) and Robinson and Treitel
(1967) show that a convenient expression for
the error energy can be found when the normal
equations are divided by the zero-lag coefficient
of the autocorrelation of the desired output
ϕzzð0Þ ¼

P
tz

2 and, using the property that the
autocorrelation of real signals is symmetric,
ϕxxðτÞ ¼ ϕxxð−τÞ, equations 7 may be written as

2
6664

a0 a1 · · · an
a1 a0 · · · an−1
..
. ..

.
· · · ..

.

an an−1 · · · a0

3
7775

2
6664

f0
f1
..
.

fn

3
7775 ¼

2
6664

b0
b1
..
.

bn

3
7775; (10)

with

aτ ¼
ϕxxðτÞ
ϕzzð0Þ

; (11)

bτ ¼
ϕzxðτÞ
ϕzzð0Þ

: (12)

Levinson (1946) develops a fast solution of these equations.
The error I is minimum, by definition. As shown by Levinson

(1946) and Robinson and Treitel (1967), the normalized mean
square error can be expressed as

ε ¼ IMIN

ϕzzð0Þ
¼ 1 −

Xn
τ¼ 0

fτbτ: (13)

As stated by Robinson and Treitel (1967): “Since ε is a sum of
squares it can never be negative. Moreover, ε can never be greater
than unity, because the value 1 for ε can always be obtained by
letting the filter fτ be identically zero. Hence, we have that

0 ≤ ε ≤ 1: (14)

As noted by Levinson (1946), the quality of the filter may be
defined as the complementary quantity

q ¼ 1 − ε ¼
Xn
τ¼ 0

fτbτ; (15)

with

0 ≤ q ≤ 1: (16)

The smaller the error, the higher the value of q. If q ¼ 1, the error is
zero and the filter is perfect.

Figure 2. The general filter design model (redrawn from Figure 1, Robinson and Treitel,
1967)
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THE WIENER FILTER IN DECONVOLUTION

This section briefly reviews predictive deconvolution, inverse
filtering, and signature deconvolution to establish the difference be-
tween the proposed application and earlier work. Each application
affects only the choice of input and desired output signals in the
design of the Wiener filter.

Predictive deconvolution and inverse filtering

In their landmark paper, Peacock and Treitel (1969) propose
predictive deconvolution for suppression of reverberations and in-
verse filtering of seismic data. The underlying model is that the
seismogram is the convolution of a basic wavelet with an uncor-
related (white) series that can be identified with the reflection co-
efficient series of a layered medium, as proposed by Robinson
(1954). The autocorrelation of the seismogram is then the same
as the autocorrelation of the basic wavelet, apart from a scale
factor. First, a prediction filter is defined. Convolution of the
prediction filter with the seismogram xt predicts the seismogram
xtþα at a later time tþ α using time samples up to time t, but not
later. In the design of the Wiener filter, the input signal is the seis-
mogram xt, and the desired output is the time-advanced version of
the seismogram xtþα. Because the seismogram has already been
recorded, these quantities are known and the “prediction” is based
on the autocorrelation of the recorded seismogram. Subtraction
of the predicted value x̂tþα, say, from the measured value xtþα

yields the reflection coefficient, apart from a scale factor.
Peacock and Treitel show how a prediction-error filter could
be constructed from the prediction filter to yield the reflection
coefficient series directly. The prediction parameter α determines
the compression of the wavelet: The smaller the value of α, the
sharper the events. Peacock and Treitel show that choosing
α ¼ 1 reduces the prediction-error filter to the inverse of the basic
wavelet, apart from a scale factor, provided the wavelet is mini-
mum phase.
For about twenty years, this approach to deconvolution and

multiple suppression was the workhorse of the industry. Gradually,
however, the whiteness assumption for the reflection coefficients
and the minimum-phase assumption for the wavelet were found
to be too restrictive.

Signature deconvolution

Robinson and Treitel (1967) show very clearly how the Wiener
filter approach can be used to shape a wavelet, ŝt say, into a shorter,
sharper wavelet, dt say. In this case, the input signal for the Wiener
filter design is ŝt, and the desired output signal is dt. In the limit, dt
can be the Kroneker delta δt. As mentioned above, there is no mea-
sure of the quality of the result.

WIENER ESTIMATION OF THE GREEN’S
FUNCTION

To use the Wiener filter to estimate the Green’s function directly,
the estimated source time function is the input signal xt ¼ ŝt, and
the measured response at the receiver is the desired output signal
zt ¼ Vt. The resulting normal equations are then

2
6664

A0 A1 · · · An

A1 A0 · · · An−1

..

. ..
.

· · · ..
.

An An−1 · · · A0

3
7775

2
6664

ĝ0
ĝ1
..
.

ĝn

3
7775 ¼

2
6664

B0

B1

..

.

Bn

3
7775; (17)

where the Wiener filter ĝt is the estimate of the Green’s function gt,
Aτ is the normalised autocorrelation of ŝt,

Aτ ¼
P

tŝtŝt−τP
t
V2
t

; (18)

and Bτ is the normalized crosscorrelation of Vt with ŝt,

Bτ ¼
P

tVtŝt−τP
t
V2
t

: (19)

Convolution of ŝt with ĝt gives the best least-squares match to the
data, by definition, and is

yt ¼ ŝt � ĝt
¼ ðst − estÞ � ðgt − egtÞ
¼ st � gt − st � egt − est � gt − est � egt: (20)

Subtracting equation 20 from equation 1 yields an estimate of the
noise, which is

Vt − yt ¼ n̂t ¼ nt þ st � egt þ est � gt þ est � egt: (21)

The terms on the right-hand side of equation 21 are all unknown.
The first term is the true noise; the second term is caused by
the error in the estimated Green’s function, caused, in turn, by
the original error in the estimated source signature; the third
term is caused by the systematic error in the source signature esti-
mate and looks like signal; the fourth term is a second-order error
caused by the source signature error and the error in the Green’s
function.
Following the definition in equation 15, the quality factor of the

estimated Green’s function may be defined as

q ¼
Xn
τ¼ 0

ĝτBτ: (22)

This is a number between zero and unity; the closer it is to
unity, the better is the result. Clearly, the quality of the result
increases with the quality of the estimate of the source time
function.
In the solution of equations 17 it is well known that it may be

necessary to increase the value of A0 by a small amount, typically
of the order of 1%. This is known as “adding white noise” (e.g.,
Ziolkowski [1984], Chapter 5). The best value is found by trial
and error: It is the smallest value that gives a stable response.
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APPLICATION TO SYNTHETIC DATA

Wedge model, PRBS signature, and air gun signature

A simple wedge model and two signatures are used to illustrate
the method. The model has been chosen for its simplicity and to
illustrate resolution of events down to a single sample. A real de-
ghosted air gun signature has been chosen to show what is possible
with today’s marine seismic technology. One period of a pseudor-
andom binary sequence (PRBS) is used to illustrate what is possible
with a realizable source with almost ideal spectral characteristics.
The use of PRBS is well established in electromagnetic applica-
tions; it was first used in exploration applications by Duncan et al.
(1980). A PRBS is ideal for electromagnetic applications because
the power is constant while the source is on, and switching the
polarity of the current can be achieved in the order of a microsec-
ond. It also has great appeal for the seismic vibroseis method, but
the inertia of the baseplate and reaction masses pose formidable
problems for the rapid reversal of the applied force.

Figure 3 shows the simple time-domain wedge model, sampled at
0.002 s, consisting of a horizontal event at 0.078 s, shown on 20
traces, and an event dipping from left to right at one sample per
trace. The plotting is by conventional variable area display. Each
event consists of a single sample of amplitude 1, with zeros before
and after; that is, an event at time τ is a Kroneker delta δt−τ. On trace 1,
the two events are coincident, so the amplitude is 2 at 0.078 s.
Figure 4a shows the first signature, an order 7 PRBS signature pt.

A PRBS is a signal that switches between two levels at pseudoran-
dom times. The signal is generated in a computer using principles
that were established in the 1950s (Golomb, 1955, 1982; Zierler,
1959). In this case, the two levels are þ1 A and −1 A, and the
switch times are pseudorandom multiples of the sampling interval
Δt ¼ 0.002 s. A PRBS normally is periodic. Here, a single period is
used. The length of one period of a PRBS is N ¼ 2n − 1 samples,
with n the order of the sequence; in this case, n ¼ 7 and N ¼ 127.
Figure 4b shows the amplitude spectrum of Figure 4a; that is,
Figure 4b shows jPkj, for k ¼ 0; 1; · · · ; ðN − 1Þ∕2, and Pk is the
discrete Fourier transform of pt,

Pk ¼ Δt
XN−1

t¼ 0

pt expf2πitk∕Ng: (23)

It can be seen that the amplitude spectrum is flat, except at DC, or
0 Hz, where it has a value 0.002 because the difference between the
number of positive and negative values is modulus 1.
Figure 5a shows an estimated far-field signature sat from a com-

pact air gun array, which is used later in the filtering of real seismic
data. It is employed here to show its properties in contrast to the
PRBS. The signature has a very sharp initial peak, followed by sub-
sequent bubble oscillations. The sea surface reflection, or “source
ghost” has been removed. This broadens the spectrum and enhances
the bubble oscillations, but better represents the signal of a monop-
ole source. Notice the signature has a delay relative to t ¼ 0.

Figure 5b shows the amplitude spectrum of the signature SAk plot-
ted on a logarithmic scale versus linear frequency, to show the effect
of the antialias filter.

Figure 3. Wedge model with horizontal reflector at 0.078 s, with
event below, dipping at one sample per trace.

Figure 4. (a) Individual samples of order 7 PRBS, with amplitude in current [A], 2 ms sample interval; (b) its amplitude spectrum.
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Convolution and deconvolution with PRBS signature
and air gun signature

Figure 6a shows the result of convolving the traces of the wedge
model with the PRBS signature of Figure 4a and the result appears
to be very confused; it is very difficult to see the two events.
Figure 6b shows the result of convolving the traces of the wedge
model with the air gun signature. The two events can clearly be
seen, followed by the subsequent bubble oscillations.
The proposed Wiener filter is designed to recover the impulse

response of the earth, or Green’s function. Application to the syn-
thetic data of Figure 6a using the PRBS signature of Figure 4a as
input gives the excellent result of Figure 7a. The quality factor for
all traces is 1; that is, it is perfect. This is to be expected because the
PRBS has no zeros in its amplitude spectrum and no white noise
stabilization is necessary. Application to the synthetic data of

Figure 6b using the air gun signature of Figure 5a as input is shown
in Figure 7b. It is an excellent result, with the airgun bubble
oscillations suppressed and with a quality factor in the range
0.9990–0.9994 on all traces, but it is not as good as the PRBS result
because a small amount (0.1%) of white noise stabilization was re-
quired to stabilize the results at frequencies above 240 Hz, where
the signature amplitudes are very small.
Figure 8a shows the estimated noise on Trace 1 of Figure 7b. This

is the uncorrelated part of the trace and is introduced by the white
noise stabilization. Its spectrum is shown in Figure 8b and is close to
a scaled version of 1∕jSAkj, where jSAkj is shown in Figure 5b.
The stabilization is required because the amplitude spectrum of the
signature is close to zero at certain frequencies, especially at the
Nyquist frequency and just below.
In summary, perfect retrieval of the Green’s function is possible

if (1) there is no noise, (2) the source signature is known exactly,

Figure 5. (a) Air gun signature, 2-ms samples; (b) its amplitude spectrum.

Figure 6. (a) Trace-by-trace convolution of PRBS with wedge model; (b) trace-by-trace convolution of air gun signature with wedge model.
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(3) the amplitude spectrum of the source signature has energy in
all frequencies, and (4) the response Vt is a complete convolu-
tion. In the examples presented above, this last condition is satisfied.
In real data, it is normally not satisfied, especially in the seismic
case, because the impulse response is always longer than the
recorded data due to infinitely long trains of multiples, or
reverberations.

EFFECT OF NOISE

Figure 9 shows the effect of noise on synthetic data using the
PRBS source signature. Figure 9a shows the result of convolution
of the wedge model with the PRBS signature, after which uncorre-
lated noise is added. The noise is generated independently for each
trace as a sequence of normally distributed pseudorandom numbers.
The added noise is shown separately in Figure 9f. The deconvolu-

tion result is shown in Figure 9b; white noise stabilization was not
required. This result compares well with the original model, shown
on the same amplitude scale in Figure 9d. The correlated part of the
signal is shown in Figure 9c and the uncorrelated part, or estimated
noise, is shown in Figure 9e. The estimated noise and the added
noise are similar and do not appear to be correlated with the source
signature or the model. There are differences, however, and these
differences arise as follows. The added noise is in the desired output
Vt, according to equation 1, and is therefore in the right-hand side
crosscorrelation coefficients Bτ of the normal equations 17 for every
trace. This causes errors in every sample of the estimated Green’s
function ĝt, on every trace, as shown in Figure 9b, even though the
source signature is known perfectly in this example. Convolution of
the estimated Green’s function with the source signature yields the
result shown in 9c. Comparing 9c and 9a, there is a clear reduction

Figure 7. (a) Deconvolution of data in Figure 6a with PRBS signature of Figure 4a, no white noise stabilization; (b) deconvolution of data in
Figure 6b with airgun signature of Figure 5a, with 0.1% white noise stabilization.

Figure 8. (a) Estimated noise on Trace 1 of Figure 6b: This is the uncorrelated part and is introduced by the white noise stabilization;
(b) amplitude spectrum of (a).

Wiener Green’s function estimation W37

D
ow

nl
oa

de
d 

08
/2

8/
13

 to
 1

29
.2

15
.6

.1
62

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



in the noise level. The trace-by-trace difference in 9a–9c is shown in
9e and is not identical with the added noise component of 9a,
shown in 9f.
The Wiener filtering operation does a good job at separating the

signal and noise. The quality factors for the filters ranged from
0.956 on trace 20 to 0.976 on trace 1.
What is a good quality factor? If the signature is known perfectly,

as in this case, the quality factor is limited only by the added noise,

nt in equation 1. Applying equation 15 to the normal equations 17
yields

q ¼
Xn
τ¼ 0

ĝτBτ.

There is a clear gain in signal-to-noise ratio (S/N). The compres-
sion of a PRBS ofN samples to an impulse of 1 sample concentrates

Figure 9. (a) Convolution of wedge model with PRBS, plus noise; (b) deconvolution of (a) with PRBS signature shown in Figure 4a; (c)
correlated part of (a): the result of convolving PRBS of Figure 4a with result (b); (d) true wedge model on same plot scale as (b); (e) estimated
noise: result of subtracting (c) from (a); (f) noise added in (a).
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the energy of the N-length signal into a single sample, giving a gain
in signal amplitude of

ffiffiffiffi
N

p
. Because the amplitude spectrum of the

impulse and the PRBS are almost identical, except at DC, the effect
is confined to the phase spectrum. If the noise is white and random
with zero mean, and uncorrelated with the PRBS, its amplitude
would be unaffected by this process. We would therefore expect
the S/N to increase by

ffiffiffiffi
N

p
in this case. For N ¼ 127, this would

be a gain of 11.27, or 21 dB. For noise with other characteristics, the
gain in S/N would be different.

EFFECT OF SIGNATURE ERRORS

Figure 10 shows the PRBS signature st in black, an error signal
est in red, and the difference signal ŝt ¼ st − est in blue. The error
signal consists of normally distributed pseudorandom numbers
generated in a computer. Using ŝt as the “estimated source signa-
ture” for deconvolution of the noise-free wedge model data gives
the result shown in Figure 11b, in which no white noise stabilization
was required and quality numbers in the range 0.956–0.970 were
obtained. That is, approximately 96% of the energy is correlated
with the estimated signature and approximately 4% is uncorrelated.
Figure 11a shows the synthetic noise-free data, Figure 11c shows
the part of the data that is correlated with the estimated source sig-
nature, and Figure 11d shows the difference between Figure 11a and
11c: the estimated noise.
Notice that the noise is strongly correlated from trace to trace.

The effect of the errors in the estimated signature is to leave some
of the data undeconvolved. The ratio of the deconvolved energy to
undeconvolved energy is about 0.96∕0.04 or 27 dB.
There are situations in which noise is correlated from trace to

trace in common source gathers. In controlled-source electromag-
netic data, for example, magnetotelluric noise is correlated across

Figure 10. PRBS signature (black); error signal (red); PRBS minus
error (blue).

Figure 11. Result of deconvolution with errors in estimated signature. (a) Wedge model convolved with PRBS; (b) deconvolution of (a) using
estimated signature of Figure 10; (c) correlated part of (a); (d) uncorrelated part of (a) — estimated noise.
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traces acquired simultaneously and this knowledge can be used to
attenuate the noise (Ziolkowski et al., 2010). To distinguish this
kind of noise from noise that is caused by errors in the source sig-
nature estimate, it would be better to use common midpoint gathers,
in which every trace is obtained at a different time from a different
source and different receiver.

APPLICATION TO MARINE SEISMIC DATA

Figure 12a shows part of a shot record from a marine seismic
survey in which the receiver ghost has been removed; that is,
the data show the upward-traveling pressure wave at the receiver.
The wave reflected from the sea surface has been removed.
Figure 12b shows a magnification of part of Figure 12a. For Wiener
estimation of the impulse responses in these data, the estimated
source signature shown in Figure 5a was used, after removing
the first 28 samples. Figure 12c shows the result, which was ob-
tained with 0.1% added white noise. The operation improves the
resolution of the data, as expected. This may be seen more clearly
in the magnification, Figure 12d. As already demonstrated above on
synthetic data, this source signature has excellent resolution. The
purpose of the present test is to determine how well this estimated
signature represents the true signature.

Figure 13 shows the variation in quality factor for this shot rec-
ord. The quality is excellent: greater than 0.996 for all traces, and
greater than 0.9995 for most of traces. (The quality factor drops to
0.996 on Trace 9, which represents a very small additional amount

Figure 12. (a) Part of shot record, showing every eighth trace of raw data; (b) a smaller piece of (a); (c) the result of Wiener signature
deconvolution of (a); (d) a smaller piece of (c) corresponding to (b).

Figure 13. Quality factor as a function of trace number.
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of noise. It is too small to see on the raw data.) These numbers in-
dicate that the source signature is a very accurate estimate of the true
signature, because less than 0.4% of the energy on all traces is
unaccounted for by the correlated part of the data, and on most

traces this number is below 0.05%. The general form of Figure 13
is as expected. The source signature is estimated for the vertical
direction. Because the inline dimensions of the source array (about
20 m) are not small compared with a wavelength at the higher

Figure 14. (a) Raw data: trace 100, Shot 1, 0–6 s; (b) estimated impulse response; (c) component correlated with the estimated source signature
of Figure 5b; (d) component of (a) not correlated with the estimated source signature; (e) magnification of part of (a); (f) magnification of
corresponding part of (b)
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frequencies, the source is directional in the inline vertical plane, and
the estimated vertical signature becomes increasingly in error as the
angle of incidence increases. We therefore expect the quality factor
to decrease gradually as the offset, and hence the angle of incidence,
increases. This is exactly what we see in Figure 13, particularly for
the highest offsets.
Figure 14 shows the result of impulse response estimation on a

typical trace, Trace 100, of the shot record. Figure 14a shows the
raw trace; Figure 14b shows the estimated earth impulse response,
which has higher resolution than the original trace; Figure 14c is the
component of (a) that is correlated with the estimated source sig-
nature, and Figure 14d is the difference between the raw trace and
the correlated part. This part is uncorrelated with the estimated
source signature and is therefore an estimate of the noise. Because
the quality factor on Trace 100 is 0.9995, the ratio of correlated to
uncorrelated energy is 9995:5 or 33 dB. Figure 14e shows a mag-
nification of part of 14a, and Figure 14f shows a magnification of
the corresponding part of 14b. Comparison of Figure 14e and 14f
shows significant differences as the smoothing effect of the airgun
signature is removed.
Figure 15 shows a display of the component of the shot gather

uncorrelated with the estimated signature. This is the estimated
noise. It looks like seismic data and is clearly correlated with
the seismic response. As demonstrated with synthetic data above,
it is caused by errors in the estimate of the source signature.
These errors are very small, as shown above: about 30 dB less
than the estimated signature. What is apparent in Figure 15, how-
ever, is that most of the uncorrelated component is in fact corre-
lated with the seismic response. Any uncorrelated noise must be
very small compared with this correlated noise. The quality of the
signature deconvolution for these data is not limited by the noise in
the data: it is limited by errors in the estimate of the source
signature.

APPLICATION TO MARINE CSEM DATA

We now briefly consider the application of the method to fully
towed marine transient controlled source electromagnetic data in
which the source is an electric current dipole, the signature is
one period of a PRBS, and the single receiver is an inline voltage

dipole (Ziolkowski et al., 2011). Figure 16 shows a sequence of four
records of (a) the measured source current and (b) the response at
one receiver. The time between successive cycles is 120 s. Figure 17
shows the result of impulse response estimation for one trace.
Figure 17 shows (a) the measured source current; (b) the measured
electric field at the receiver; (c) the estimated earth impulse re-
sponse; (d) the components of the measured response that are (blue)
correlated with the source signature, and (red) uncorrelated with the
source signature. No white noise stabilization was required. The
quality factor for this example is 0.946.
The estimated noise in Figure 17d is rather low frequency. One

candidate for this is magnetotelluric noise which increases dramati-
cally at low frequencies (e.g., Ziolkowski and Wright, 2012). An-
other possibility, because this is a towed system, is noise generated
at the receiver electrodes. A study of the electromagnetic noise is
beyond the scope of this paper.
The estimated noise for the 48 traces in the line is displayed in

Figure 18. There is no obvious correlation of the noise from trace to
trace, indicating that the source signature estimate is excellent, as
one would expect from the direct measurement of the source cur-
rent. The limitation to the recovery of the earth impulse response is
the noise. Errors in the source signature estimate, if any, are neg-
ligible in comparison.

Figure 15. Part of shot record, showing every eighth trace of the
component of the data uncorrelated with the estimated source
signature.

Figure 16. A portion of the towed streamer transient controlled
source electromagnetic data: (a) measured source current (amps);
(b) measured receiver response 2145 m behind source (V∕m).
The repetition time is 120 s.
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CONCLUSIONS

Classical signature deconvolution yields the earth impulse re-
sponse, or Green’s function, plus noise, provided the source signa-
ture is known precisely. Systematic errors in the estimate of the
source signature lead to an additional noise term that is indistin-
guishable from signal and is unquantifiable.

By reformulating deconvolution as the problem of finding the
optimum estimated earth impulse response, given the estimated
source signature and measured output signal, we have separated
out the portion of the signal that is correlated with the esti-
mated source signature and have also obtained an estimate of
the noise, which may contain remains of undeconvolved data. If
this is the case, the errors in the signature estimate show up in

Figure 17. Deconvolution of one trace. (a) Measured source current (amps); (b) measured electric field at receiver (V∕m); (c) estimated earth
impulse response; (c) correlated and uncorrelated components of (b): blue curve is the correlated component, the convolution of (a) and (c); red
curve is response (b) minus the correlated component.

Figure 18. Display of the estimated noise on the
receiver channel for the 48 successive records.

Wiener Green’s function estimation W43

D
ow

nl
oa

de
d 

08
/2

8/
13

 to
 1

29
.2

15
.6

.1
62

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



the estimated noise as signal that is correlated with the earth impulse
response.
We have demonstrated the method on marine seismic data, and

on marine transient electromagnetic data. For the marine seismic
data example, the errors in source signature estimation were the lim-
iting factor in recovery of the earth impulse response. For the
marine transient electromagnetic data, the ambient noise was the
limiting factor.
The method can be used to evaluate the quality of source signa-

ture estimates in signature deconvolution, as demonstrated here, and
may be applied to other types of data including land vibroseis data
and classical earthquake seismic data.
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