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ABSTRACT

We developed a methodology to estimate resistivities
from seismic velocities. We applied known methods, includ-
ing rock physics, depth trends, structural information, and
uncertainty analysis. The result is the range of background
resistivity models that is consistent with the known seismic
velocities. We successfully tested the methodology with real
data from the North Sea. These 2D or 3D background resis-
tivity models yield a detailed insight into the background
resistivity, and they are a powerful tool for feasibility stud-
ies. They could also serve as starting models or constraints in
(iterative) forward modeling of electromagnetic data for the
determination of subsurface resistivities.

INTRODUCTION

Seismic and electromagnetic (EM) data yield complementary in-
formation about the subsurface. Seismic data yield a velocity model
of the underlying structure. EM data provide insight into how the
formations behave if an electric current is applied, which can be
used to determine whether the pore fluids are conductive, for in-
stance, brine, or resistive, for instance, hydrocarbons. Geophysicists
process seismic data to get seismic velocities. Seismic velocities are
derived from the data: they are the result of aligning seismic arrivals.
This process of deriving a geophysical property directly from the
data is not available to controlled-source EM (CSEM) data, as Ziol-
kowski and Wright (2012) discuss. There is no theory for the direct
extraction of resistivities from CSEM data. Instead, resistivities are
determined using the process of iterative forward modeling, which
is often termed “inversion.” In this process, synthetic data are gen-
erated from an initial model (a guess) of the subsurface resistivities,
often a uniform half-space. The misfit between the synthetic and
the measured data is minimized by adjusting this starting model.
A range of schemes exists for how the model should be varied;

Occam’s razor of the simplest solution that matches the data is often
applied in EM (Constable et al., 1987). We do not alter the mea-
sured EM data in this process, only the model. That is, the resis-
tivities are derived from modeling, and they are not derived
directly from the data.
It is therefore desirable to consult seismic velocities, if available,

to gain a better understanding of the subsurface resistivities. How-
ever, getting from velocities to resistivities is not a trivial task be-
cause the underlying theories of seismic wave propagation and EM
wave propagation share no physical property; see Table 1 and Ziol-
kowski and Engelmark (2009). The theory of seismic surveying is
based on the wave equation and with it Hooke’s law and Newton’s
second law of mechanics. These depend on the density and the elas-
tic moduli of the rock, which define the P-wave and S-wave veloc-
ities. The theory of EM surveying, on the other hand, is based on
Maxwell’s equations, which depend on the magnetic permeability,
electrical resistivity, and electrical permittivity of the rock. Unlike
gravity data and seismic data, EM data and seismic data share no
common parameter.
The most obvious way to combine these two data is to extract

the structures from the interpreted seismic data and use them in
(iterative) EM forward modeling (e.g., Harris et al., 2009). Another
structural constraint is the cross-gradient method (e.g., Gallardo and
Meju, 2007; Hu et al., 2009), in which it is assumed that the resis-
tivity changes if the velocity changes. A different approach is to
replace the missing link with rock physics, usually, but not always,
via porosity. Carcione et al. (2007) present a nice overview of
common relations. Engelmark (2010) emphasizes the importance
of background (shale) modeling for EM inversions and the depth
dependence of rock physics models.
Whatever the approach, the biggest problem remains: There is no

physical link between velocity and resistivity. A change in velocity
does not necessarily mean that there is a change in resistivity. That
means that any of these methods can introduce unwanted bias. Chen
and Dickens (2009) look at the effects of uncertainty involved in the
rock physics model itself (intrinsic) and their parameters (extrinsic),
and Myoung and Snieder (2011) show that the uncertainty of the
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rock physics model contributes more to the overall uncertainty than
the uncertainty in the data themselves.
The purpose of this work is to determine the range of resistivity

models that is consistent with known seismic velocities. This is not
fundamentally new: Constable and Srnka (2007), for instance,
present a 3D resistivity model that was “guided by 3D seismic data,
well-log data ( : : : ), and the CSEM data” but without explaining this
guidance at all. We bring together the work of many others, and we
include rock physics, depth trends, structural information, and un-
certainty analysis. It is a workflow that can be adjusted to personal
needs and preferences. We choose the Gassmann model to get from
velocity to porosity and the self-similar model to get from porosity
to resistivity, both as Carcione et al. (2007) present. Following En-
gelmark (2010), we use the dual-water model from Clavier et al.
(1984) to get depth-dependent brine resistivity. Other parameters
are either constant or a linear function of depth. Finally, we use
Chen and Dickens (2009) to estimate the related uncertainty.
The result is a transform that can be applied to seismic velocities
to get background resistivities. Once a transform is calibrated, it can
be applied to the whole depth extent of seismic velocities without
further interaction. Such a background model yields valuable infor-
mation about the subsurface background resistivity distributions.
It can be used for an integrated field analysis and for accurate
EM feasibility studies, and it provides a good model to generate
synthetic EM responses.
The paper is split into two parts. First, we explain the method-

ology, namely, the rock-physics models and their depth dependence
and the uncertainty analysis; all symbols with their units are listed in
Table 2. Second, we apply the theory to data from the North Sea
Harding field (Beckly et al., 2003), where a successful EM repeat-
ability experiment was carried out (Ziolkowski et al., 2010). In this
repeatability experiment, 1D inversion results were collated to form
a 2D resistivity section. However, this result is not very detailed,
and it is mainly limited by the chosen layer thicknesses (taken from
seismic structures). Furthermore, the 1D inversions resulted in an
unrealistically low resistivity contrast with target resistivity of ap-
proximately 5 Ωm, embedded in a background with resistivities of
approximately 1–3.5 Ωm. To apply the theory, we calibrate our
rock-physics model with a well log from Harding South, and we
apply it to seismic velocities at Harding Central. A comparison with
well data from Harding Central shows that the well-log resistivities

fall within the error bounds of our predicted background resistivity
model, which validates the accuracy of this approach. This ap-
proach yields a resistivity model, including uncertainties, assuming
brine in the pore fluids. Any deviation in our EM data from this
would be an indicator of the presence of hydrocarbons.

VELOCITY-TO-RESISTIVITY TRANSFORM

However tempting and desirable it is to analyze seismic data and
EM data together, they do not share a common physical property,
and hence they cannot be linked by any law of physics. This ab-
sence of a physical link is usually overcome with rock physics.
Rocks are generally inhomogeneous materials, a mixture of differ-
ent minerals and pores filled with fluids. Petrophysical mixture the-
ories try to estimate the property of a rock from its individual
components, for example, the P-wave velocity of a rock from the
P-wave velocities of its minerals and pore fluids. Hence, rock phys-
ics models are averages. The simplest ones use arithmetic and har-
monic means. (The harmonic mean of vf and vs is known as the
“time-average” or “Wyllie equation” [Wyllie et al., 1956]).
There are many different rock-physics models to relate velocity to

porosity and porosity to resistivity. Some are based on theoretical
assumptions, e.g., geometry, such as the self-similar model, the
Gassmann equation, or the Hashin-Shtrikman (HS) upper and lower
bounds. Others are derived empirically, e.g., Archie or the Raymer
equation. The simplest model of a rock is a model with two con-
stituents, one being the minerals of the rock (the solid fraction), and
the other being the fluid that occupies the pore space. In this simple
case, the volume fraction of the fluid is the porosity of the rock ϕ
and the volume fraction of the grains is 1 − ϕ.
A good introduction to mixture theories is given by Berryman

(1995), and an overview of velocity-to-resistivity cross-property re-
lations is given by Carcione et al. (2007) (which can be found in
Mavko et al., 2009). All petrophysical models assume some knowl-
edge of the subsurface in addition to the P-wave velocities gained

Table 2. Symbols used consistently throughout the paper.
Subscripts f , s, and m are used for the fluid fraction, solid
fraction, and matrix, respectively (e.g., ρf ). Superscripts +
and – stand for the upper and lower bounds, respectively
(e.g., ρ�).

Symbol Description Units

v P-wave velocity km∕s
ϱ Density g∕cm3

K Bulk modulus GPa

G Shear modulus GPa

ϕ Porosity —
ρ Resistivity Ωm
ε Electrical permittivity F∕m
μ Magnetic permeability H∕m
d Depth km

T Temperature °C

m Cementation exponent —
a Tortuosity factor —
κ Krief exponent —

Table 1. Physical properties of geophysical exploration
methods (adapted from Ziolkowski and Engelmark, 2009).

Technique and theory Physical properties

Gravity Density ϱ
Newton’s law of gravitation

Laplace’s equation
Seismics Bulk modulus K

Wave equation (Hooke’s law; Shear modulus G

Newton’s laws of mechanics) Density ϱ
Electromagnetics Magnetic permeability μ
Maxwell’s equations Electrical resistivity ρ

Electrical permittivity ε
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from well logs or seismic processing. Additional information may
come fromwell logs, from laboratory measurements on core samples,
from the literature, or from experience.
Most relations in the literature include electric conductivity, not

resistivity; conductivity is the reciprocal of resistivity. We are
searching for resistive rather than conductive bodies in the explo-
ration for hydrocarbons. We therefore express all equations in terms
of resistivity. We list in the following sections the models we use
later in our example. Any other relation that is mentioned or plotted
can be found in Appendix A. Table 2 gives a complete list of var-
iables, together with the applied units. The equations, as presented,
assume isotropic, linear, and elastic media.

Velocity to porosity

The P-wave velocity in terms of bulk modulus K, shear modulus
G, the densities of the solid and the fluid fraction ϱs and ϱf , and
porosity ϕ is given by

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K þ 4G∕3
ð1 − ϕÞϱs þ ϕϱf

s
: (1)

We use the Gassmann equation to calculate the moduli: Gass-
mann (1951) derives equations for fluid substitution in porous, elas-
tic media. The Gassmann bulk modulus KG, as Carcione et al.
(2007) give, is

KG ¼ Ks − Km þ ϕKmðKs∕Kf − 1Þ
1 − ϕ − Km∕Ks þ ϕKs∕Kf

; (2)

where Ks and Kf are the bulk moduli of the solid and the fluid
fraction, respectively. Krief’s relations (Krief et al., 1990) are used
to calculate the dry bulk and shear moduli, Km and Gm,

Km ¼ Ksð1 − ϕÞκ∕ð1−ϕÞ; (3)

Gm ¼ Gsð1 − ϕÞκ∕ð1−ϕÞ; (4)

where Gs is the shear modulus of the solid fraction, and Krief et al.
(1990) suggest that κ ¼ 3. We refer to κ as the Krief exponent. The
Gassmann equation does not provide a way of calculating porosities
directly from velocities. Equation 1 must be solved in an iterative
way with KG and Gm to calculate porosity from P-wave velocity.
Figure 1 shows the velocity-to-porosity transforms for the Gass-

mann equation, the Raymer equation, the acoustic formation factor
(AFF), and the HS bounds for rock parameters as given in Table 3.
The porosity range is from 0% to 45%. Note that the Raymer equa-
tion, in the form provided, is valid for porosities lower than 37%.
All transforms are within the HS bounds, except the AFF for high
porosities. It is important to realize that most relations have the real-
istic assumptions that porosity is 0% if velocity is equals vs, and it is
100% if velocity is equals vf .

Porosity to resistivity

The self-similar model from Sen et al. (1981) is based on the self-
consistent effective medium theory (Bruggeman, 1935; Hanai,
1960). In this model, the resistivity ρ is given by

ρ ¼
�
ρ − ρs
ρf − ρs

�
m
ρfϕ

−m; (5)

where ρs and ρf are the resistivities of the solid and the fluid
fraction, respectively, ϕ is the porosity, and m is the cementation
exponent.
Sen et al. (1981) take the formation fluid as host to derive the

relation, which has to be solved iteratively to yield resistivity,
whereas a similar model by Bussian (1983) takes the rock as host.
For two constituents, the results are the same. (Bussian additionally
uses a binomial expansion to provide a direct solution for resistivity,
with an approximate criterion for the validity). The self-similar
model reduces to the harmonic mean if m ¼ 1.
Figure 2 shows porosity-to-resistivity transforms for the self-

similar, Archie, and Hermance models, and upper and lower HS
bounds. All models are restricted to ρf ≤ ρ ≤ ρs; the Archie model
would otherwise predict resistivities ρ → ∞ for ϕ → 0.

Velocity to resistivity

Figure 3 shows a choice of cross-property relations: the Gass-
mann equation combined with the self-similar model, the Raymer
equation combined with the Hermance model, the Faust equation
(with d ¼ 0.2 km), and the HS bounds. The bounds were calculated
by combining the lower bound from velocity to porosity with the

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.0 0.1 0.2 0.3 0.4

Gassmann 

Raymer 

Figure 1. Different velocity-to-porosity transforms for 0 ≤ ϕ ≤
0.45 and vf ≤ v ≤ vs. Note that the AFF for the given parameters
falls outside the HS bounds for porosities higher than roughly 40%.
The models do not differ significantly. Well data could be fitted by
all of these models by calibrating (or adjusting) the rock parameters.
The assessment of the uncertainty of a model therefore appears to be
more important than the choice of model itself.

Table 3. Material properties used in Figures 1–4; see Table 2
for units (from Carcione et al. [2007], Table 2, shale).

ρs ρf Ks Kf Gs ϱs ϱf

5 0.067 25 2.25 20 2.65 1.03
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upper bound from porosity to resistivity, and vice versa. The gray
area shows where the intermediate porosity is larger than 45% in
the Gassmann/self-similar transform. (The area would be similar
for the Raymer/Hermance model; there is no intermediate porosity
in the Faust equation). The danger in cross-property relations is that
one does not see the porosity in the middle, and it is a good idea to
limit the possible porosity range; otherwise, the resulting resistivity
might look perfectly sensible when, in fact, it is nonsense.
We could have plotted any combination of the previously men-

tioned transforms. However, we are convinced that the choice of
rock physics model does not really matter because they have to
be calibrated to every case anyway. One only has to be careful with
relations such as Archie, Faust, and AFF. For example, the resistiv-

ity tends to infinity as the porosity tends to zero in Archie’s equa-
tion. The other relations have similar pitfalls for extreme porosities.

Depth dependence

A rock-physics model, as established in the previous section, pro-
vides a transform from seismic velocity to resistivity. Such a trans-
form is usually calibrated with a set of data, often from well logs, as
in our case, or from core samples. However, this transform then
holds only for this particular environment. That is because rock
properties (like velocity or resistivity) are a function of many param-
eters, such as pressure, temperature, wetability, residual oil and
water saturations, shaliness, porosity, and permeability. We can
ignore some of these parameters, such as wetability and residual
oil and water saturations, because we are looking for a background
model without any hydrocarbons. Others cannot be neglected, for
instance, temperature and pressure, which are functions of depth, as
a first-order approximation. This depth dependence of the transform
is one reason why the Faust equation, an empirically derived rela-
tion without a physical foundation, often works very well and is
widely used, just like the Archie model in the case of porosity
to resistivity.
To get a background resistivity model from seismic data, it is

desirable to have a transform that holds for the whole depth range,
that is, a transform that can be applied to the seismic velocity cube
as a whole. The simplest depth trend would be to calibrate the trans-
form at a shallow and a deep part of the section and establish a linear
depth trend. Engelmark (2010) shows that the change of brine re-
sistivity with changing temperature is likely to be the major influ-
ence. He successfully applied the dual-water model (Clavier et al.,
1984) for the transform from porosity to resistivity. The dual-water
model states that there are two kinds of resistivity in the rock: one
from the pore water (ionic) and one from the clay-bound water (cat-
ion exchange capacity [CEC]). The weight of these two resistivities
is a function of the concentration of NaCl and of the CEC. However,
Engelmark (2010) obtains good results by using the pore-water re-
sistivity in the shallow, unconsolidated section solely and the clay-
bound water resistivity in the deeper, consolidated section solely.
He uses the Archie model with the resistivity of sea water for
the top 525 m and Archie with the temperature-dependent clay-
bound water resistivity from Waxman and Thomas (1974), as given
in Dewan (1983, equation 7.22):

ρf ¼ ½6.8ð1þ 0.0545T0 − 1.127 × 10−4T2
0Þ�−1; (6)

where T0 ¼ T − 25, ρf is the brine resistivity, and T is the temper-
ature in degrees Celsius.
Instead of the resistivity of sea water, we can apply the model of

Sen and Goode (1992, equation 9), which provides temperature-
dependent pore-water resistivity, incorporating the molality (mol
solute per kilogram of solvent) of salt water:

ρf¼
�
ð5.6þ0.27T−1.5×10−4T2ÞM−

2.36þ0.099T
1.0þ0.214M

M3∕2
�

−1
:

(7)

Taken as the thermal gradient, this relationship provides basically
nothing other than a depth-dependent relation for the resistivity of
the pore fluid.

0.0 0.1 0.2 0.3 0.4

Porosity (–)

0.1

1.0

R
es

is
tiv

ity
(Ω

m
)

Self-similar

Archie 

Hermance 

HS+

HS–

5.0

0.067

Figure 2. Different porosity-to-resistivity transforms for 0 ≤ ϕ ≤
0.45 and ρf ≤ ρ ≤ ρs. These models differ mainly in the low-poros-
ity range. The Archie model is good for porous rocks, but it yields
ρ → ∞ for ϕ → 0. As in the case for velocity to porosity, the differ-
ent porosity-to-resistivity models do not differ significantly, and the
choice of model is up to personal preference and proper calibration.

2.0 2.5 3.0 3.5 4.0

Velocity (km/s)

0.1

1.0

R
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m
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Gassmann/Self-similar

Fa
us
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Raym
er/H

erm
ance

 
HS–/HS+

HS+/HS–

Figure 3. Different velocity-to-resistivity transforms for vf ≤ v ≤
vs and ρf ≤ ρ ≤ ρs. The gray area marks the zone where the inter-
mediate porosity would be greater than 45% in the Gassmann model
(as an example). Depth d ¼ 0.2 km for Faust.
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There are other factors that influence a velocity-to-resistivity
transform. One of these is resistivity anisotropy, which is known
to have a big impact for multitransient EM method (MTEM) mod-
eling (Werthmüller, 2009), but it is neglected in this study. The
available well logs commonly measure horizontal conductivity.
The procedure presented here therefore provides an estimate of
the available horizontal resistivities. If there is an anisotropy esti-
mate from data, modeling, or experience, it can be incorporated into
the final model. In any case, a slight resistivity anisotropy of λ ≈ 1.5

might be more realistic than the isotropic assumption (where λ is the
square root of the ratio of vertical over horizontal resistivity
λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ρv∕ρh
p

). Overpressure affects velocity and resistivity differ-
ently, as can be seen in Eaton’s pore pressure equations (Eaton,
1975). It is another factor that could improve a velocity-to-resistivity
transform and that could be implemented in the framework pre-
sented here.

Structural information

Seismic data provide more information than just seismic veloc-
ities. They are particularly good at detecting elastic and acoustic
impedance contrasts, which delineate geologic structures in 3D.
In addition to depth constraints, a velocity-to-resistivity transform
can be improved by using different transforms for different lithol-
ogies, e.g., one model for shaley sections and another model for
sandstone sections.

UNCERTAINTY

There exist many different rock-physics models to link seismic
velocity to electric resistivity, as we have seen. Some of them use an
intermediate variable, mostly porosity; others are a direct function.
Whatever the choice of the rock-physics model, we gain a resistivity
value derived from rock physics ρrp, which is a function of seismic
P-wave velocity v and other parameters,

ρrp ¼ fðv; θÞ; (8)

where the other parameters are here summarized by θ. In our ex-
ample, we use the relations given in equations 1–5; hence, we have
relations in the form of

ρrp ¼ fsðρs; ρf; m;ϕÞ; (9)

where

ϕ ¼ fGðKs; Kf; Gs; ϱs; ϱf; κ; vÞ: (10)

Here, fs stands for the self-similar model and fG for the Gassmann-
based relations.
Using rock-physics modeling to get resistivities from seismic

velocities introduces two kind of errors. The parameters in the
model (ρs, ρf , m, Ks, Kf, Gs, ϱs, ϱf , κ, v) have errors, and the
models (fs, fG) themselves have errors. These errors are likely
to be bigger than the errors in the data themselves, as Myoung
and Snieder (2011) show. We adapt the methodology of Chen
and Dickens (2009), who emphasize that parameter uncertainty
and model uncertainty have to be taken into account.
They describe the rock physics model as a gamma distribution

with error E:

fðρjv; θÞ ¼ βαρα−1

ΓðαÞ expð−βρÞ; (11)

where θ is a vector containing all model parameters, the shape
parameter α ¼ 1∕E2, and the scale parameter β ¼ ðα − 1Þ∕ρrp.
The parameters themselves are described as uniform distributions
of a defined error around our best estimate. To get the probability
density function (PDF) of the whole range of possible parameters,
one has to integrate over all values,

fðρjvÞ ¼
Z

fðρjv; θÞfðθjvÞdθ: (12)

We use a Markov chain Monte Carlo (MCMC) sampler to calculate
the distribution, as Chen and Dickens (2009) suggest (for more de-
tails, see Appendix B). The result of this methodology is resistivity
ρ as a PDF for any given set of model parameters, instead of a single
deterministic value ρrp, as shown in Figure 4. The gray line shows
the deterministic resistivity value resulting from the Gassmann/self-
similar equation with the parameters given in Table 3 and velocity
v ¼ 2.5 km∕s. The dashed curve shows the distribution if the model
has no uncertainty, but with the parameters uniformly distributed
with a range of �5%. The dashed-dotted curve shows the distribu-
tion if the parameters have no error, but the rock physics model is a
gamma distribution with E ¼ 0.05. And finally, the solid curve
shows the distribution if both uncertainties are taken into account.
The parameter uncertainty is more important than the model uncer-
tainty in this example. However, both contribute to the final PDF,
and their relative contributions vary from case to case.
Even though a seismic section never displays an error bar, seis-

mic data have errors too. To quantify the error in seismic data is
difficult, and one would have to take into account acquisition
and processing errors. In Figure 4, we assigned to the seismic veloc-
ities the same error as to all the other parameters. However, with the
real data, we estimate the uncertainty in seismic velocities from the
data themselves, using the same well logs we use to calibrate our
rock-physics model, which we show in the example section.

0.3 0.5 0.7 0.9 1.1

Resistivity (Ωm)

0

2

4

6

8

10

12

14

16

P
ro

ba
bi

lit
y 

de
ns

ity
 (

–
)

Deterministic value

Parameter only

Model only

Parameter and model

Figure 4. Example of the uncertainty analysis applied to the Gass-
mann/self-similar transform for velocity v ¼ 2.5 km∕s and the
parameters in Table 3. The applied error is 5% for the uncertainty
of each parameter and of the model.
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EXAMPLE: THE HARDING FIELD

Our study area is the North Sea Harding field, operated by BP
and Maersk. The field is a medium-size oil and gas field at a depth
of about 1.7 km; the water depth is approximately 110 m. See
Beckly et al. (2003) for a thorough description. Two CSEM surveys
with a transient source signal were carried out in 2007 and 2008 in a
successful EM repeatability experiment described by Ziolkowski
et al. (2010). MTEM is described in Ziolkowski et al. (2007).
The source dipole current signal in MTEM is a measured pseudo-
random binary sequence, which allows the impulse responses of the
subsurface to be recovered from the measured receiver responses.
The full spectrum of the earth response is recovered. Figure 5 shows
the outline of Harding Central and Harding South, the location of
the wells used, and the EM acquisition line, which passes the dis-
covery well 9/23b-7 and the dry well 9/23a-3. In this repeatability
experiment, 1D inversion results were collated to form a 2D resis-
tivity section, where the layer thicknesses were derived from the
seismic data. The result is mainly constrained by these chosen
layers. The resulting 1D models fit the EM data reasonably well;
however, we do not know if they are realistic or not, due to the
nonuniqueness of, specifically, 1D EM inversion.
First, we calibrate our rock-physics model with well 9/23b-8

from Harding South. Second, we check this transform with the other
well logs. Third, satisfied by this control, we apply this transform to
a seismic velocity section along the EM line to get a detailed model
of the background resistivities. The result is a 2D background re-
sistivity model. However, we can also apply the same transform to
the whole seismic cube, to get a 3D background resistivity model of
our area of interest. We do not do this here because it does not add
anything to the methodology described.
Figure 6 shows P-wave velocity versus resistivity from well

9/23b-8 for relatively clean shale sections, color-coded for different
depth intervals. The depth trend is clearly visible, with resistivities
becoming smaller and velocities higher for deeper sections. The
data indicate a weak relationship between velocity and resistivity.
This relation is what we try to capture with the rock-physics trans-

form from velocity to resistivity, incorporating the noticeable
depth trend.

Seismic velocity uncertainty

We assign our rock-physics model and all involved parameter
errors as described in the first part of the paper: The Gassmann/
self-similar transform is described as a gamma distribution with
an error of 5%, and the parameters are uniformly distributed around
our best estimate with an error of �5%. Exceptions to this are the
seismic velocities. Seismic sections and seismic velocities usually
come without a measure of the associated error. Errors in seismic
velocities come from acquisition and processing. However, it is not
an easy task to estimate this error. We use the well log data to get an
estimate of the variability of seismic velocities. Figure 7a shows the
velocity measurements of well 9/23b-8, where the gray curve (v)
is the original data and the black curve (vs) is the original data
smoothed using a Hanning window over 320 samples (≈48.8 m).
The smoothed curve reflects the expected resolution of CSEM data
better than the 15-cm (6-in) sampling of the well log. We now define
our velocity distribution as the difference between the log values
and the values of the smoothed log, vðzÞ − vsðzÞ. This method is
a good measure for the variability of velocities, and the resulting
distribution is thought to be wider than errors in seismic velocities
resulting from acquisition and processing of seismic data. The re-
sulting distribution is shown in Figure 7b, where the PDF of this
data distribution is found with a Gaussian kernel density estimation.
This approach should be replaced with a better estimate of seismic
velocity uncertainty, if it is available. The point is to estimate veloc-
ity uncertainty from the data.

Calibration and depth trend

Figure 8a and 8b shows the original (gray) and smoothed (black)
velocity and resistivity logs of our calibration well 9/23b-8 and the
mode and �1 and �2 standard deviations of our analysis in red,
cyan, and magenta, respectively. We wanted the transform to be
as simple as possible, yet be able to predict the whole depth range.

EM-Line

9/23b-7
9/23a-3

9/23b-11

9/23b-A01

9/23b-8

6570000

6575000

41
25

00

41
75

00

Central

South

Figure 5. Location of Harding Central and Harding South, the EM
survey outlines from 2007 and 2008, and the five wells we use in
our example. Well 9/23b-8 is our calibration well. Wells 9/23b-7, 9/
23b-11, 9/23b-A01, and 9/23a-3 are our control wells, where the
ultimate one is off-target.
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Figure 6. Velocity versus resistivity plot for some relatively clean
shale sections in well 9/23b-8. There seems to be a weak relation-
ship between velocity and resistivity, which rock physics tries to
predict. Note the depth trend; resistivity is generally decreasing
and velocity is increasing with increasing depth.
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One of the difficulties with rock-physics transforms is that they
usually hold for only a very specific environment, for instance,
for a specific depth range. The seismic velocities in Harding are
between 1.5 and 3 km∕s in the shallow part, but up to 6 km∕s
in the deeper part. We therefore model the bulk and shear moduli
of the solid fraction as linear functions of depth to allow velocities
to increase with increasing depth: The bulk modulus is defined as
Ks ¼ 10þ 15d GPa, and the shear modulus is defined as
Gs ¼ 5þ 13d GPa; d is depth in kilometers. Fixed parameters
are the density of the solid fraction ϱs ¼ 2.65 g∕cm3, the density
of the fluid fraction ϱf ¼ 1.03 g∕cm3, and the bulk modulus of
the fluid fraction Kf ¼ 2.25 GPa. Following Engelmark (2010),
we make the cementation exponent a function of porosity

m ¼ 2.1 − ϕ, and we furthermore define the Krief exponent as a
function of depth κ ¼ 3.2 − 0.4d. The resistivity of the solid frac-
tion is given by ρs ¼ 3þ 10d Ωm. The sum of the free-water re-
sistivity, equation 6, and the bound-water resistivity, equation 7,
yields in our case the best result for the fluid resistivity. However,
equation 6 yields unreasonable values for shallow depths (hence
low temperatures). We therefore apply it from 350 m below the
mudline downward, and we keep it constant above.
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Figure 7. Velocity log of well 9/23b-8. The gray curve (v) is the
original log, and the black curve (vs) is smoothed with a Hanning
window over 320 samples. We estimate the P-wave velocity distri-
bution from the well log data by taking the difference of the original
and the smoothed data vðzÞ − vsðzÞ.
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Figure 8. (a) Velocity and (b) resistivity log of well 9/23b-8. The
gray curve is the original log, and the black curve is smoothed with
a Hanning window over 320 samples. The red curve is the mode of
the PDFs from the uncertainty analysis using the Gassmann/
self-similar velocity-to-resistivity relation. The cyan and magenta
curves are �σ and �2σ, respectively. Plots (c, d, e) show all
depth-dependent parameters: Ks;Gs; ρs; ρf; m; and κ.
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Figure 9. Comparison of the rock physics model and uncertainty
analysis with well data. The plotted well data are from within
1424–1524-m depth of well 9/23b-8. The depth is set to
z ¼ 1.474 km for the depth-dependent parameters. The determin-
istic result of the transform is shown in gray, and the outcome
of the uncertainty analysis is shown in black. The well data are
within�2σ, except for some high-velocity outliers originating from
thin limestone layers.
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of the resistivity predictions calculated using the seismic velocities.
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applied to four wells on Harding Central shows a good match: Most
well measurements lie within �2σ. High resistive, hydrocarbon-
bearing formations are not predicted because we assume brine-filled
pores. Shallow, sandy sections are also poorly resolved, except for
the Grid sandstones, which we explicitly incorporated into our
model.
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We include an example of structural constraints in the form of the
Grid sandstones, which are outlined from picked horizons in the
seismic data. The same parameters are used for the Grid sandstones,
except that κ ¼ 2.6, and the fluid resistivity is given by the free
water resistivity solely because sands have no clay-bound water.
Figure 8c–8e shows all the depth-dependent values. This rock-phys-
ics transform is able to predict the resistivities for the whole depth
range of the well log. However, the predictions are a bit too high for
some shallow, sandy sections. These sand sections could be handled
in the same way as we treat the Grid sandstones.
Figure 9 shows a depth snapshot of the calibration of the trans-

formation for z ¼ 1.474 km, together with the well data of
z� 50 m. With the exception of some high-velocity values, result-
ing mostly from thin limestone layers, the mode of the uncertainty
analysis �2σ includes all the well samples.

Near-field scenario

We now use this calibration from Harding South and test it on a
field nearby, Harding Central. We apply the rock-physics transform

with the same parameters described before to the Harding Central
velocity cube, and we compare them first with well logs. Figure 10
shows the well logs and the mode as well as �2σ of the resistivity
calculated from the seismic velocities. The predicted resistivities
match the well logs very accurately, except for the hydrocarbon-
bearing formations. This is exactly what we want because we
are interested in a background resistivity model.
The result of our velocity-to-resistivity transform is shown in

Figure 11. Figure 11a shows the mode of our resistivity distribu-
tions, derived from the seismic velocities shown in Figure 11b.
It is a slice through the velocity cube along the EM line from
2007 and 2008, including some major horizons, such as the Grid
sandstones and the Balder formation, well 9/23b-7, and the start
and end points of these surveys. Figure 11c and 11d shows the
mode� one standard deviation of the resistivity distributions. Ap-
plying the transform to the velocity cube instead of just a slice yields
a 3D resistivity background model. Please note one limitation: The
transform is calibrated using well-log measurements from a vertical
well, which measure mainly horizontal resistivity. These models
therefore provide an estimate of horizontal resistivities. Reasonable
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Figure 11. (a) The mode of our background resistivity model, derived from the velocity model in (b); well 9/23b-7 and some major formations
are annotated. (c, d) The mode with −σ and þσ, respectively. These resistivities represent horizontal resistivities because they are calibrated
with a vertical well log, which mainly measures horizontal resistivities.
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anisotropy values have to be estimated independently of the ap-
proach presented here.

CONCLUSIONS

We present a methodology to estimate the range of background
resistivity models that is consistent with known seismic velocities.
We apply and extend known methods. The approach uses depth-
dependent petrophysical cross-property relations and uncertainty
analysis of the data and the model. Our near-field exploration
example shows that this methodology yields a good estimate of
background resistivities away from our control point, and hence
it provides an excellent additional data set, which can be used
for integrated analysis or as a starting point for a detailed CSEM
feasibility study or (iterative) forward modeling. Using a probability
distribution instead of fixed values for the background model de-
creases the influence of unwanted bias that originates from the
different physical properties of the seismic and EM methods. Addi-
tionally, the uncertainty estimates yield error bars to this data set and
the PDFs can be incorporated into weighting functions for 3D in-
version schemes, in which the background resistivities would be
limited to these values.
This workflow needs fine tuning from case to case because it is

not always easy to find a single rock-physics model that fits a large
depth range. Every part of the scheme is disputable, and other mod-
els might fit better in other cases; it is also a function of personal
experience and preference. The Gassmann and the self-similar
model are two choices out of many, as is the gamma distribution
for the model uncertainty. The more that is known of the present
rock-physics parameters, the better are the estimates of their uncer-
tainties. An individual uncertainty for each parameter might there-
fore be more sensible than our approach of assigning a range of 5%
to each of them. Similar conclusions apply to the depth trend, where
we could choose many more horizons and include different rock
physics models for different lithologies in general. However, our
approach was to be as simple as possible, yet as complex as neces-
sary. The resulting background resistivity model is, in any case, a
much better resistivity model than a uniform half-space (often used
as a starting model in inversion), and it is corroborated by the good
match with the well logs. We have shown only a slice along the EM
line. However, we can apply the transform to the entire velocity
cube. This gives us the range of possible 3D background resistivity
models of the whole area.
Having well-log information for calibration is crucial. Our exam-

ple shows that this well log does not necessarily have to be from the
field of interest, but it should be from within the region of interest.
The calibration issue remains a problem above and below the depths
of available logs, where other information might help to improve the
calibration. Furthermore, the calibration with well logs also limits
us to predict horizontal resistivities. Reasonable anisotropy values
have to be found independently of this approach.
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APPENDIX A

ADDITIONAL ROCK-PHYSICS EQUATIONS

The following is a short description of rock physics models that
have been used in figures or mentioned in the main text but have not
been used in our real example nor explained in detail. To get from
velocity to resistivity, we are interested in porosity as a function of
velocity ϕðvÞ and resistivity as a function of porosity ρðϕÞ. We pro-
vide velocity as a function of porosity, too, vðϕÞ because this shows
more clearly how the average was derived, and hence it often helps
to understand the relationship. Furthermore, it is the way the rela-
tions are usually presented. All symbols and their units are declared
in Table 2 if not specifically given here.

Porosity from velocity

The Raymer equations are a set of empirical relations for different
ranges of porosity, given by Raymer et al. (1980). The relation for
porosities ϕ < 37% is given by

ϕ ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4vsðv − vfÞ þ v2f

q
þ 2vs − vf

2vs
;

v ¼ ð1 − ϕÞ2vs þ ϕvf: (A-1)

The AFF is a simpler version of the Raymer equation given in
equation A-1, neglecting the velocity of the fluid fraction:

ϕ ¼ 1 −
�
v
vs

�
1∕m

; v ¼ ð1 − ϕÞmvs; (A-2)

where m is the cementation exponent, again similar to the Ar-
chie model.
The HS Bounds provide a measure of the bulk and shear moduli

without specifying the shape of the grains. Hashin and Shtrikman
(1963) derive their bounds from mixture models of the elastic
moduli, rather than of the velocities. These bounds define the upper
and lower bounds of the physically possible values of these moduli,
and hence of velocity. Following Berryman (1995) for the two
constituents yields

K− ¼
�

ϕ

Kf
þ 1 − ϕ

Ks

�
−1
; (A-3)

Kþ ¼
�

1 − ϕ

Ks þ 4
3
Gs

þ ϕ

Kf þ 4
3
Gs

�
−1

−
4

3
Gs (A-4)

for the bulk moduli and

G− ¼ 0; (A-5)

Gþ ¼
�

1 − ϕ

Gs þ η
þ ϕ

η

�
−1

− η; η ¼ Gs

6

�
9Ks þ 8Gs

Ks þ 2Gs

�
(A-6)
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for the shear moduli. The HS bounds yield, together with equation 1,
the porosity for a given P-wave velocity in an iterative manner.

Resistivity from porosity

Archie’s law is an empirical relationship given by

ρ ¼ aρfϕ−m; (A-7)

where m is the cementation exponent and a is the tortuosity factor.
Archie (1942) finds this relationship empirically by analyzing
resistivity measurements in the laboratory. He examines clean res-
ervoir sandstones, and Archie’s law hence holds for shale-free,
porous sandstones, where m is close to two and a is one. The tor-
tuosity factor is often used to make Archie’s law work for shaley
sandstones.
The Hermance model is an adaptation of Archie’s law. It takes the

resistivity of the grains into account with the harmonic mean:

ρ ¼
�
ϕm

ρf
þ 1 − ϕm

ρs

�
−1
: (A-8)

The only difference between Hermance (1979) and the harmonic
mean is the cementation exponent m, which weights the solid frac-
tion higher than the fluid fraction. (Note that the harmonic mean of
resistivities equals the arithmetic mean of conductivities).
The HS bounds provide upper and lower limits if the geometry is

not specified (Hashin and Shtrikman, 1963). For the case of two
constituents, they are given by Berryman (1995)

ρ− ¼
��ð1 − ϕÞρfρs

ρf þ 2ρs
þ ϕρf

3

�−1
−

2

ρf

�−1
; (A-9)

ρþ ¼
��ð1 − ϕÞρs

3
þ ϕρfρs

2ρf þ ρs

�
−1

−
2

ρs

�
−1
: (A-10)

These bounds are true if ρf < ρs, which is generally the case if we
have conductive brines in the pores. The bounds are reversed if
ρs < ρf , and the upper bound becomes the lower, and vice versa.

Resistivity directly from velocity

The Faust equation is an oft-cited model that calculates resistivity
directly from velocity, without porosity as the connecting param-
eter, but with a depth dependence (Faust, 1953):

ρ ¼ ρf
d

�
v

2.289

�
6

; (A-11)

where d is the depth in kilometers. The reasons it is often used and
often works fairly well are first, its simplicity and second, the
depth trend.

APPENDIX B

PyMC

The uncertainty analysis was calculated using the PyMC module
in Python; see Patil et al. (2010). PyMC is an open-source project

under an Academic Free License with almost 10 years of develop-
ment; the aim of the authors is to make MCMC “more accessible
to nonstatisticians.” The source code can be found on github,
https://github.com/pymc-devs/pymc, along with extensive docu-
mentation, in addition to the afore-referenced paper. We calculated
50,000 samples without burn-in and a thinning factor of 25 because
the sampler could get stuck in the low-probability tails of the VP

distribution from the well log. The PDFs shown were then estimated
with a Gaussian kernel density estimation.

REFERENCES

Archie, G. E., 1942, The electrical resistivity log as an aid in determining
some reservoir characteristics: Transactions of the AIME, 54–62, doi: 10
.2118/942054-G.

Beckly, A. J., T. Nash, R. Pollard, C. Bruce, P. Freeman, and G. Page, 2003,
The Harding Field, block 9/23b, in J. G. Gluyas, and H. M. Hichens, eds.,
United Kingdom oil and gas fields commemorative millennium volume:
The Geological Society of London, Geological Society Memoir 20, 283–
290.

Berryman, J. G., 1995, Mixture theory for rock properties, in T. J. Ahrens,
ed., Rock physics & phase relations: A handbook of physical constants:
AGU, 3, 205–228.

Bruggeman, D. A. G., 1935, Berechnung verschiedener physikalischer
Konstanten von heterogenen Substanzen. I: Dielektrizitätskonstanten
und Leitfähigkeiten der Mischkörper aus isotropen Substanzen: Annalen
der Physik, 416, 636–664, doi: 10.1002/andp.19354160705.

Bussian, A. E., 1983, Electrical conductance in a porous medium: Geophys-
ics, 48, 1258–1268, doi: 10.1190/1.1441549.

Carcione, J. M., B. Ursin, and J. I. Nordskag, 2007, Cross-property relations
between electrical conductivity and the seismic velocity of rocks:
Geophysics, 72, no. 5, E193–E204, doi: 10.1190/1.2762224.

Chen, J., and T. A. Dickens, 2009, Effects of uncertainty in rock-physics
models on reservoir parameter estimation using seismic amplitude varia-
tion with angle and controlled-source electromagnetics data: Geophysical
Prospecting, 57, 61–74, doi: 10.1111/j.1365-2478.2008.00721.x.

Clavier, C., G. Coates, and J. Dumanoir, 1984, Theoretical and experimental
bases for the dual-water model for interpretation of shaly sands: Journal of
Petroleum Technology, 24, 153–168, doi: 10.2118/6859-PA.

Constable, S., and L. J. Srnka, 2007, An introduction to marine controlled-
source electromagnetic methods for hydrocarbon exploration: Geophys-
ics, 72, no. 2, WA3–WA12, doi: 10.1190/1.2432483.

Constable, S. C., R. L. Parker, and C. G. Constable, 1987, Occam’s inver-
sion: A practical algorithm for generating smooth models from electro-
magnetic sounding data: Geophysics, 52, 289–300, doi: 10.1190/1
.1442303.

Dewan, J. T., 1983, Essentials of modern open-hole log interpretation: Penn-
well Corp.

Eaton, B. A., 1975, The equation for geopressure prediction from well logs:
Society of Petroleum Engineers of AIME Technical Program, Expanded
Abstracts, 5544-MS.

Engelmark, F., 2010, Velocity to resistivity transform via porosity: 80th
Annual International Meeting, SEG, Expanded Abstracts, 2501–2505.

Faust, L. Y., 1953, A velocity function including lithologic variation:
Geophysics, 18, 271–288, doi: 10.1190/1.1437869.

Gallardo, L. A., and M. A. Meju, 2007, Joint two-dimensional cross-
gradient imaging of magnetotelluric and seismic traveltime data for struc-
tural and lithological classification: Geophysical Journal International,
169, 1261–1272, doi: 10.1111/j.1365-246X.2007.03366.x.

Gassmann, F., 1951, Über die Elastizität poröser Medien: Vierteljahrsschrift
der Naturforschenden Gesellschaft in Zürich, 96, 1–23.

Hanai, T., 1960, Theory of the dielectric dispersion due to the interfacial
polarization and its application to emulsions: Colloid & Polymer Science,
171, 23–31, doi: 10.1007/BF01520320.

Harris, P., Z. Du, L. MacGregor, W. Olsen, R. Shu, and R. Cooper, 2009,
Joint interpretation of seismic and CSEM data using well log constraints:
An example from the Luva Field: First Break, 27, 73–81.

Hashin, Z., and S. Shtrikman, 1963, A variational approach to the theory of
the elastic behaviour of multiphase materials: Journal of the Mechanics
and Physics of Solids, 11, 127–140, doi: 10.1016/0022-5096(63)90060-7.

Hermance, J. F., 1979, The electrical conductivity of materials containing
partial melt: A simple model from Archie’s law: Geophysical Research
Letters, 6, 613–616, doi: 10.1029/GL006i007p00613.

Hu, W., A. Abubakar, and T. M. Habashy, 2009, Joint electromagnetic and
seismic inversion using structural constraints: Geophysics, 74, no. 6,
R99–R109, doi: 10.1190/1.3246586.

E222 Werthmüller et al.

D
ow

nl
oa

de
d 

08
/0

8/
13

 to
 1

29
.2

15
.6

.1
62

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

https://github.com/pymc-devs/pymc
https://github.com/pymc-devs/pymc
http://dx.doi.org/10.2118/942054-G
http://dx.doi.org/10.2118/942054-G
http://dx.doi.org/10.1002/andp.19354160705
http://dx.doi.org/10.1002/andp.19354160705
http://dx.doi.org/10.1002/andp.19354160705
http://dx.doi.org/10.1190/1.1441549
http://dx.doi.org/10.1190/1.1441549
http://dx.doi.org/10.1190/1.1441549
http://dx.doi.org/10.1190/1.2762224
http://dx.doi.org/10.1190/1.2762224
http://dx.doi.org/10.1190/1.2762224
http://dx.doi.org/10.1111/j.1365-2478.2008.00721.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00721.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00721.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00721.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00721.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00721.x
http://dx.doi.org/10.2118/6859-PA
http://dx.doi.org/10.2118/6859-PA
http://dx.doi.org/10.1190/1.2432483
http://dx.doi.org/10.1190/1.2432483
http://dx.doi.org/10.1190/1.2432483
http://dx.doi.org/10.1190/1.1442303
http://dx.doi.org/10.1190/1.1442303
http://dx.doi.org/10.1190/1.1442303
http://dx.doi.org/10.1190/1.1437869
http://dx.doi.org/10.1190/1.1437869
http://dx.doi.org/10.1190/1.1437869
http://dx.doi.org/10.1111/j.1365-246X.2007.03366.x
http://dx.doi.org/10.1111/j.1365-246X.2007.03366.x
http://dx.doi.org/10.1111/j.1365-246X.2007.03366.x
http://dx.doi.org/10.1111/j.1365-246X.2007.03366.x
http://dx.doi.org/10.1111/j.1365-246X.2007.03366.x
http://dx.doi.org/10.1111/j.1365-246X.2007.03366.x
http://dx.doi.org/10.1007/BF01520320
http://dx.doi.org/10.1007/BF01520320
http://dx.doi.org/10.1016/0022-5096(63)90060-7
http://dx.doi.org/10.1016/0022-5096(63)90060-7
http://dx.doi.org/10.1029/GL006i007p00613
http://dx.doi.org/10.1029/GL006i007p00613
http://dx.doi.org/10.1190/1.3246586
http://dx.doi.org/10.1190/1.3246586
http://dx.doi.org/10.1190/1.3246586


Krief, M., J. Garat, J. Stellingwerff, and J. Ventre, 1990, A petrophysical
interpretation using the velocities of P and S waves (full-waveform sonic):
The Log Analyst, 31, 355–369.

Mavko, G., T. Mukerji, and J. Dvorkin, 2009, The rock physics handbook:
Cambridge University Press.

Myoung, J. K., and R. Snieder, 2011, Uncertainty analysis for the integration
of seismic and controlled source electro-magnetic data: Geophysical
Prospecting, 59, 609–626, doi: 10.1111/j.1365-2478.2010.00937.x.

Patil, A., D. Huard, and C. J. Fonnesbeck, 2010, PyMC: Bayesian stochastic
modelling in Python: Journal of Statistical Software, 35, 1–81.

Raymer, L. L., E. R. Hunt, and J. S. Gardner, 1980, An improved sonic
transit time-to-porosity transform: Presented at SPWLA 21st Annual
Logging Symposium.

Sen, P. N., and P. A. Goode, 1992, Influence of temperature on electrical
conductivity on shaly sands: Geophysics, 57, 89–96, doi: 10.1190/1
.1443191.

Sen, P. N., C. Scala, and M. H. Cohen, 1981, A self-similar model for
sedimentary-rocks with application to the dielectric constant of fused
glass-beads: Geophysics, 46, 781–795, doi: 10.1190/1.1441215.

Waxman, M. H., and E. C. Thomas, 1974, Electrical conductivities in shaly
sands — I: The relation between hydrocarbon saturation and resistivity

index; II: The temperature coefficient of electrical conductivity: Journal
of Petroleum Technology, 26, 213–225, doi: 10.2118/4094-PA.

Werthmüller, D., 2009, Inversion of multi-transient EM data from
anisotropic media: Master’s thesis, TU Delft.

Wyllie, M. R. J., A. R. Gregory, and L. W. Gardner, 1956, Elastic wave
velocities in heterogeneous and porous media: Geophysics, 21, 41–70,
doi: 10.1190/1.1438217.

Ziolkowski, A., and F. Engelmark, 2009, Use of seismic and EM data for
exploration, appraisal and reservoir characterization: CSPG CSEG SWLS
Joint Convention, Expanded Abstracts, 424–427.

Ziolkowski, A., B. Hobbs, and D. Wright, 2007, Multitransient electromag-
netic demonstration survey in France: Geophysics, 72, no. 4, F197–F209,
doi: 10.1190/1.2735802.

Ziolkowski, A., R. Parr, D. Wright, V. Nockles, C. Limond, E. Morris, and J.
Linfoot, 2010, Multi-transient electromagnetic repeatability experiment
over the North Sea Harding field: Geophysical Prospecting, 58, 1159–
1176, doi: 10.1111/j.1365-2478.2010.00882.x.

Ziolkowski, A., and D. Wright, 2012, The potential of the controlled source
electromagnetic method: A powerful tool for hydrocarbon exploration,
appraisal, and reservoir characterization: IEEE Signal Processing
Magazine, 29, no. 4, 36–52, doi: 10.1109/MSP.2012.2192529.

Resistivities from seismic velocities E223

D
ow

nl
oa

de
d 

08
/0

8/
13

 to
 1

29
.2

15
.6

.1
62

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1111/j.1365-2478.2010.00937.x
http://dx.doi.org/10.1111/j.1365-2478.2010.00937.x
http://dx.doi.org/10.1111/j.1365-2478.2010.00937.x
http://dx.doi.org/10.1111/j.1365-2478.2010.00937.x
http://dx.doi.org/10.1111/j.1365-2478.2010.00937.x
http://dx.doi.org/10.1111/j.1365-2478.2010.00937.x
http://dx.doi.org/10.1190/1.1443191
http://dx.doi.org/10.1190/1.1443191
http://dx.doi.org/10.1190/1.1443191
http://dx.doi.org/10.1190/1.1441215
http://dx.doi.org/10.1190/1.1441215
http://dx.doi.org/10.1190/1.1441215
http://dx.doi.org/10.2118/4094-PA
http://dx.doi.org/10.2118/4094-PA
http://dx.doi.org/10.1190/1.1438217
http://dx.doi.org/10.1190/1.1438217
http://dx.doi.org/10.1190/1.1438217
http://dx.doi.org/10.1190/1.2735802
http://dx.doi.org/10.1190/1.2735802
http://dx.doi.org/10.1190/1.2735802
http://dx.doi.org/10.1111/j.1365-2478.2010.00882.x
http://dx.doi.org/10.1111/j.1365-2478.2010.00882.x
http://dx.doi.org/10.1111/j.1365-2478.2010.00882.x
http://dx.doi.org/10.1111/j.1365-2478.2010.00882.x
http://dx.doi.org/10.1111/j.1365-2478.2010.00882.x
http://dx.doi.org/10.1111/j.1365-2478.2010.00882.x
http://dx.doi.org/10.1109/MSP.2012.2192529
http://dx.doi.org/10.1109/MSP.2012.2192529
http://dx.doi.org/10.1109/MSP.2012.2192529
http://dx.doi.org/10.1109/MSP.2012.2192529

