An Introduction to matplotlib

Hugh C. Pumphrey
August 29, 2005

Contents
11 Lecture 1: Getting Started| 1
I1.1 So, what is matplotlib? What can it do forme? | L. 1
[L.2 Starting it up| 2
1.3 irst Plotl . . o 0 o o e e e 2
[1.4 TImporting data] e 3
[2_Lecture 2: Programming in python and numarray| 4
1 Variables, data types| - v o o oo 4
2.2 Tastal . . .o e e 4
2.2.1 Numarray, and arrays|« . . ottt e e e e e e e 5
2.3 Flow Controll e e 5
2.3.1 The IF statement]. e 5
2.3.2 The for loop|« e 6
2.3.3 The WHILE loop|. e 7
2.3.4 Other flow control statementslo oL 7
[2.4 Array operations| 7
2.5 efining functions| L 7
I3 Lecture 3: More graphics| 8
[3.1 durface plots| 8
B2 Contour PIOTE . .« « v o ot e 8
B3 Coloursin IDII o e 9
B4 Maps in matplotlibl 9

[4 _Lecture 4: Images in matplotlib| 9
FET Greyscale Images] o o o 9

4.2 Colour images|. o 10

Abstract

These lectures are intended to provide you with an introduction to the matplotlib scientific plot-
ting package. They cover, in four short sessions, all that you need to know to get yourself started
using matplotlib (and python, the language on which it is built) and to begin producing useful
results. They certainly will not teach you everything that matplotlib can do. It is important to
remember that learning any computing language or package is largely a matter of practice. You will
not learn much by just listening to me. I can show you the sort of things that can be done and I can
show you how to get started. Becoming proficient is up to you — I hope these lectures stimulate you
to go away and do just that. These lectures do not assume any knowledge of python at all. They
do assume that you are comfortable using the Sun workstations and that you can program in some
reasonably modern programming language (e.g. C, Fortran, pascal, java ...).

1 Lecture 1: Getting Started

1.1 So, what is matplotlib? What can it do for me?

Matplotlib is a scientific plotting package, meaning that its aim is to turn your dull files of data into
interesting and informative pictures. Matplotlib is not a program that exists by itself — it is based on
the python programming language. Python on its own is not suited to working with the large arrays
of data found in many scientific fields. For this, an add-on package called numarray| is needed. Python
by itself is actually a rather small language, but is so easily extended that there are a vast number of
add-ons available for it — numarray and matplotlib are just two examples.

http://matplotlib.sourceforge.net/
http://www.python.org
http://www.stsci.edu/resources/software_hardware/numarray

Matplotlib is modelled on a commercial product called matlab. The usual way of interacting with it
is to use a set of plotting commands called pylab.

1.2 Starting it up

7

To start , type “python ” at the prompt in a terminal window. You should get a response like this:

Python 2.3.5 (#2, May 4 2005, 14:58:56)

[GCC 3.3.5 (Debian 1:3.3.5-12)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>>

If you get that, you are ready to go. If not, ask your instructor why not. The text >>> is the ipython
prompt at which you type commands. To get back to the operating system, type CTRL—dﬂ Before you
can use matplotlib, you need to ask python to make it available:

>>> from pylab import *

Nothing should appear to happen, if you get an error message at this point, you need to find out why.

1.3 A First Plot

Now that we have matplotlib working, let’s make a plot with it. Let’s suppose that we have several
points (each of which has horizontal and a vertical co-ordinate) and that we want to plot them on a
graph. We'll be traditional and call the horizontal co-ordinates x and the vertical co-ordinates y. We
can enter the data like this.

>>x=1[1, 2, 4, 5, 6.7, 7, 8, 10]
>>> y = [40, 30, 10, 20, 53, 20, 10, 5]

We now have two array variables called = and y, each containing eight numbers. Be careful not to insert
any spaces at the start of a line: these will cause a syntax error. To make a plot of x against y, we just
type this:

>>> plot(x,y)

and there it isﬂ It is a bit plain, but we have visualised our data. No-one else is going to know what it
means unless we label the axes, like this:

>>> xlabel(’Time in weeks’)
>>> ylabel(’Popularity’)
>>> title(’Should the president resign?’)

We suppose that the data is the popularity ratings of a politician as determined by a polling organisation.
Now let’s suppose that our politician’s popularity is being measured by two polling organisations.
We put both sets of measurements on the same plot:

>>> y2 = [30, 28, 8, 19, 50, 22, 12, 6]
>>> plot(x,y2)

Note how matplotlib automagically chooses a different colour for the second line.

This is getting to the stage where it might be tedious to re-type everything to correct a mistake we
made earlier. We can avoid this by putting a list of python commands into a file to make a program.
As an example, use your favourite text editor to create a file called dubya.py and put the following lines
in it:

#!/usr/bin/env python
Program to plot fake poll results
from pylab import *

1By which I mean hold down the Control key and press D
2If no figure appears, try typing show(). If that makes it appear, you need to edit the file /.matplotlib/matplotlibrc
so that it contains the lines
backend : TkAgg # the default backend
numerix : numarray # Numeric or numarray
interactive : True

x=1[1, 2, 4, 5, 6.7, 7, 8, 10] # horizontal co-ordinates
y = [40, 30, 10, 20, 53, 20, 10, 5] # vertical co-ordinates (1lst set)
y2 = [30, 28, 8, 19, 50, 22, 12, 6] # vertical co-ordinates (2nd set)

clf () ## clear the window

Blue line. Note how third arg uses simple codes to set colour/line type
plot(x,y,’b’,label="Mori")

xlabel(’Time in weeks’)

ylabel (’Popularity’)

title(’Should the president resign?’)

Add second line. Note how optional keyword args are used to set

line properties

plot(x,y2,’r’,label="Gallup",color="r’,linewidth=2,markerfacecolor="g’,
markeredgecolor="y’ ,marker=’d’)

Add legend

legend ()

If you are not in interactive mode nothing happens until you do this:

If you ARE in interactive mode, this causes the program to halt until

you close the graphics window

show ()

Note that the # character is used to indicate a comment — python ignores everything on a line after
the first #. Need to check whether recommended editor always has a python mode. There are several
ways to run your program:

e A the python prompt (>>>) type execfile("dubya.py")
e At the operating system prompt, type python dubya.py

e At the operating system prompt, type ./dubya.py — this last one makes use of the magic comment
in the first line of the file and requires that you have execute permission on the file.

The file also has to be in the directory from where you started ipython, or you have to give the path
to the directory where it is. Note the show() command at the end of the file: you may or may not want
to use this. If you have never used matplotlib before, why not take this program, run it, and then make
some changes to it. You should also try out the buttons below the window. Most of these allow you to
stretch and shrink the axes.

The right-hand button allows you to save the picture in various formats.If you give the file name as
something.eps you will get an encapsulated postscript file suitable for including in reports and printing
out. If you give the file name as something.png you will get an image suitable for including in a web
site, but which will NOT look as good when printed.

1.4 Importing data

You now know how to make a line plot of some data. In most cases you will have far too much data to
want to type it in. Typically the data will be in a file and you will want python to read it in and then
make a plot of it. As an example, we will use some numbers generated by the MODTRAN radiative
transfer package. The instructions for one of the MSc practicals show you how to run MODTRAN
and how to remove the header lines from the file. This leaves you with a file containing 14 columns of
numbers, like this:

14000. 0.714 7.97E-31 1.56E-26 2.10E-07 4.12E-03 4.11E-08 1.18E-07 2.32E-03 2.94E-08 3.29E-07 6.44E-03 1.64E-05 0.3950

14100. 0.709 4.95E-31 9.84E-27 2.13E-07 4.24E-03 4.15E-08 1.18E-07 2.35E-03 2.90E-08 3.31E-07 6.59E-03 4.96E-05 0.3940

14200. 0.704 3.05E-31 6.15E-27 2.11E-07 4.25E-03 4.17E-08 1.15E-07 2.32E-03 2.81E-08 3.26E-07 6.58E-03 8.22E-05 0.3887

14300. 0.699 1.84E-31 3.77E-27 1.90E-07 3.90E-03 4.06E-08 1.03E-07 2.11E-03 2.56E-08 2.93E-07 6.00E-03 1.12E-04 0.3734

14400. 0.694 1.13E-31 2.35E-27 1.87E-07 3.88E-03 4.05E-08 9.90E-08 2.05E-03 2.46E-08 2.86E-07 5.93E-03 1.40E-04 0.3664
14500. 0.690 6.53E-32 1.37E-27 1.60E-07 3.36E-03 3.74E-08 8.57E-08 1.80E-03 2.17E-08 2.46E-07 5.17E-03 1.65E-04 0.3446

33800. 0.296 0.00E+00 0.00E+00 2.64E-10 3.01E-05 2.62E-10 2.91E-18 3.33E-13 1.99E-20 2.64E-10 3.01E-05 3.27E-03 0.0001
33900. 0.295 0.00E+00 0.00E+00 1.68E-10 1.93E-05 1.67E-10 1.52E-19 1.75E-14 1.05E-21 1.68E-10 1.93E-05 3.27E-03 0.0000
34000. 0.294 0.00E+00 0.00E+00 1.82E-10 2.10E-05 1.80E-10 1.83E-20 2.11E-15 1.26E-22 1.82E-10 2.10E-05 3.27E-03 0.0000

The columns are 201 rows long. Let us suppose that we want to plot the 12th column (which is total
radiance) against the 2nd column (which is wavelength). Here is a short program program which will
do this.

#!/usr/bin/python

from pylab import *
flarray=load("/home/hcp/wrk/idlcourse/modtran/pldat.dat")
Plot data

plot(flarrayl[:,1],flarray[:,11])
plot(flarrayl[:,1],flarrayl[:,3])
plot(flarrayl[:,1],flarray[:,5])
plot(flarrayl[:,1],flarrayl[:,8])

xlabel(’Wavelength / microns’)

ylabel(’Radiance ’)

##tshow ()

Note also that for an array with n elements, the individual elements are numbered from 0 to n — 1,
just as in C or Java. They are not numbered from 1 to n as in Fortran.

And that’s it for the first session. You can now make most of the 2-D graphs that you will need. In
the next session we’ll look at some more sophisticated programming techniques.

2 Lecture 2: Programming in python and numarray

This lecture covers the nuts and bolts of python programming and the numarray package. There won’t
be much graphics but we will look at many things which will help you to make good use of python. This
is the bit of the course where I assume that you can program in C or Fortran or some other language. I
will, for example, explain what sorts of variables there are in python, but I won’t explain what a variable
is in any detail. If you don’t like the way I present the material, there is plenty of introductory material
at the [python web site.

2.1 Variables, data types

As with most languages, python has several types of variables.

type range to define to convert
float numbers x=1.0 z=int (x)
integer numbers x=1 z=float (x)
complex | complex numbers x=1+3j z=complex(a,b)
string text strings x="flarp" z=str(x)
boolean True or False x=True z=bool(x)

Variable names can have letters, numbers and underscores in them. They are case-sensitive: foo,
Foo and FOO are all different variables. Python is a dynamically typed language. That means that you
don’t have to define your variables or say which variable is which type at the start of your program. You
can say gak=37.5 at any point in your program and a floating point variable called gak will spring into
existance and take on the value 37.5 . If you had a variable of a different type called gak at some earlier
point in your program, it will vanish when you create the double precision variable with the same name.

2.2 Lists

Python allows you to group values together into a list:
>>> mylist=[1,2,4.5,"span",3-2j,77]
Note that lists can contain elements of different types. You can index the list in various ways:

>>> mylist [0]

1

>>> mylist[1:3]
[2, 4.5]

>>> mylist[-1]
7

>>> mylist[0:5:2]
[1, 4.5, (3-2j)]

Note that you can use an index to get a single elementmylist[i] , or a sequence of elements mylist [n:m].
In the latter case, the sequence starts with the n-th element and ends on the element before the m-th
element. You can use negative indices to count from the end of the list. Fortran and R/S programmers
should note that the first element is numbered 0, not 1.

http://www.python.org

2.2.1 Numarray, and arrays

Lists are wonderfully flexible. But for the handling of large arrays of numbers, they are slow. The
numarray package adds a new type called an arrayﬂ An array is a numbered group of variables, all of
the same type. This makes it less flexible than a list, but faster. Unlike lists, arrays can have more than
one dimension. We used arrays in the first lecture to hold the data for the modtran line plots. You can
define an array by using the array function with a list as its argument:

>>> an_array=array([3, 5, 6, 2.5, 100, 27.7])

Note that we have mixed up floats and integers in this expression; numarray will coerce all the
integers to floats if there are any floats at all. If you define an array using integers only then numarray
will leave them as integers. You can find the type of a numarray object like this:

>>> an_array.type()
Float64

Note that numeric is more specific about precision than python itself: This array consists of 64-bit floats,
but you can use 32-bit floats and a variety of integer precisions.
You can refer to individual elements of the array just as with a list:

>>> an_array[-1]
27.699999999999999
>>> an_array[2:4]
array([6. , 2.5])

You can define a 2-dimensional array by giving the array function a list of lists:

>>> array_2d= array([[2,3,4],[10,20,30]1]1)
>>> array_2d
array([[2, 3, 4],

(10, 20, 30]11)

. and refer to parts of it like this:

>>> array_2d[:,1]
array([3, 20])

>>> array_2d[1,:]
array([10, 20, 30])

Note how a colon, :, is used to represent an entire column or row of the array. Finally, there are some
special functions to set up an array for later use.

>>> foo=zeros([3,3,3])
>>> bar=zeros([3,3,3],Float64)

will make foo a 3 x 3 x 3 element integer array with all elements initialised to 0.0, and bar a similar
floating point array.

2.3 Flow Control

Python has most of the constructs that you would expect for arranging loops, conditions and the like.

2.3.1 The IF statement

This is used when you want to do something if a condition is true and something else otherwise. The
statement looks like this:

if condition : statement 1

else : statement 2

This will execute statement 1 if the condition is true and statement 2 if the condition is false. Note
how a colon : is used to mark the end of the condition. (Note also that in these descriptions of what
a statement does I use typewriter font to show what you actually type and italics to indicate where
you have to put in your own stuff.) Here is an example if an ‘if” statement:

if i == : print ’T is two’
else: print ’i is not two’

3Vanilla python has arrays too, but they are rather limited.

Notice how the logical operators you need to set up the condition look like those from C, Java and
related languages (not like those in Fortran). Here is a table of relational and boolean operators which
you can use in the condition of an if statement.
Purpose Operator
Relational Operators
Equal to ==
Not equal to 1=
Less than or equal to <=
Less than <
Greater than or equal to >=
Greater than <
Boolean Operators
And &&
Not !
Or Il
If you want statement 1 and / or statement 2 to consist of more than one statement, then the if
construct looks like this:

if condition :
statement 1a
statement 1b
statement 1c

else:
statement 2a
statement 2b
statement 2c

rest of code

Note that the groups or blocks of statements that are affected by the if are grouped together by intenting
them. The end of a block is marked by a statement that is not indented. This is in contrast to C and
its derivatives in which the beginning and end of a block are marked by curly brackets { }. Opinions
are divided as to whether this is a Good Thing or not. It certainly forces you to lay your programs out
tidily, so that they are easy to read, because they won’t work if you don’t. As an aside, you can have one
statement on the same line as the if, but I think it looks tidier not to if you have a block of statements
following the if.

2.3.2 The for loop

If you have a statement or statements that you want to repeat a number of times, you can use the for
statement to do so. It looks like this:

for variable in sequence : statement

forwariable in sequence :
statement 1a
statement 1b
statement 1c

Here, sequence can be any python object that you can index with a single integer, such as a list or a 1-D
array. Try these examples at the python prompt.

>>> mylist=[20, 3.3, 4+5j, "Flarp", "Grault"]

>>> for i in mylist : print i

>>> for i in range(0,10) : print i,i*i, i*i*i

>>> for theta in arange(0,pi/2,0.1) : print theta,sin(theta),cos(theta)

You will notice that when you press return, the interpreter gives a new prompt consisting of 3 dots: .. .,
which indicates that you are typing a block of statements to be the body of the for loop. Press return
again, entering a blank line, and the loop will be executed.

The use of the functions range and arange to generate a sequence for a for loop is very common.
range (n,m) is built in to python and generates a sequence of integers between n and m~-1. arange(a,b,d)
is part of numarray and generates a sequence of floating point numbers from a to b with spacing d.

2.3.3 The WHILE loop

If you need a loop for which you don’t know in advance how many iterations there will be, you can use
the ‘while’ statement. It works like this:

while condition : statement

Again, if you are using this in a program you can replace statement with an indented block of statements

2.3.4 Other flow control statements

Like C, python has break and continue statements. These can be used in the body of a loop, usually
in conjunction with an if statement. The break statement abandons the loop altogether and jump to
the first statement after the loop. The continue statement abandons the current pass through the loop
and begins the next pass immediately.

2.4 Array operations

Numarray allows you to do many operations on whole arrays. Suppose, for example, you wanted to
make an array whose elemets were the squares of the elements in another array. You could use a for
loop, like this:

>>> xsquared = zeros(size(x))
>>> for i in range(0,size(x)) : xsquared[i]=x[i]=*x[i]

This is how you would have to go about it in C or Fortran. With numarray, however, you can do this:
>>> xsquared = x*X

This will clearly make your code shorter and clearer but it will also make it much faster. Many of
numarray’s mathematical functions will work on whole arrays, too:

>>> x=arange(0,2*pi,0.01)
>>> s=sin(x)
>>> plot(x,s)

2.5 Defining functions

Our examples so far have been too short to break up into sub-programs. However, any sizeable python
project will be easier to deal with if each specific task is put into its own sub-program, which your main
program can call. A function is defined like this:

def functonname(args)
statement 1

returnvalue

Here is an example of a function. This calculates sin(z)/x. For |z| > 0 this can be calculated directly
using the built-in function sin(), but for values near 0, we would be calculating 0/0, or something very
close to it, so we use the power series:

sin(x) x? 2t
— 1 [— + J— + e
x 3! 5l

Note the use of if, for and break.

def sinc(x):
""" Calculates sin(x)/x without blowing up at x=0.
A power series is used for small values of x. Does not
work for arrays """
if abs(x)> 0.1 :
s=sin(x)/x
else:
s=1
term=1
for j in range(3,100,2):
term=term* (-x*x)/(j*(j-1))
s=s+term
if (abs(term) < 1.e-10): break
return s

To use this, put the text into a file called (say) sinc.py. If you execute this, nothing will appear to
happen. However, you can now type:

>>> sinc(0.05)

and the value of sin(0.05)/0.05 will be printed out. Note also that the first thing in a function can be a
string enclosed in triple quotes. This is the string that gets printed out when you type

>>> help(sinc)

To summarise, we have learned about python’s programming features and that we should use nu-
marray’s array operations instead of loops where that is possible. In the next lecture we will learn how
to display two-dimensional data sets and how to make use of colour in matplotlib.

3 Lecture 3: More graphics

In this lecture we will learn how to display data that are a function of two variables. An example would
be the height of the ground above sea level as a function of distance East and distance North. There
are no figures in these notes — if you want to see what the plots look like, start python up and run the
examples. We will construct an example data set using this short program:

from pylab import *

x=arange(-2,2,0.1)

y=arange(-2,2,0.05)

X,Y=meshgrid(x,y)

z=exp (- (X*X + Y*Y)) + 0.6%exp(-((X+1.8)**2 + Y**2))

If you type this program into a file called example2d.py (or, if you are looking at the HTML version
of these notes with a web browser, cut and paste it) and then type:

>>> execfile("example2d.py")

you will be left with two 1-D arrays called x and y and a 2-d array called z. You can imagine that x
is distance East, y is distance North and z is height above sea level. We will investigate several ways of
displaying these data.

3.1 Surface plots
Matplotlib hs no equivalent of R’s persp or IDL’s surface. This section left blank.

3.2 Contour Plots

A useful way to display these data is as a contour plot:
>>> contour(x,y,z)

It’s a start, but we don’t know what each contour represents. You can use the optional fourth
argument to specify which contours you want, and the legend function to add a legend:

>>> clf ()
>>> contour(x,y,z,arange(0,1,0.1))
>>> legend ()

Note the use of c1f () to clear the graphics window. Plain contours are not very striking — it looks more
eye-catching if we fill the spaces between the contours with colours, like this:

>>> contourf(x,y,z,arange(0,1,0.1))

That makes the general form of the data clearer as you can see immediately where the highs and lows
are, but we have lost the detaled information that comes from the lines and legends. We can put it back
like this:

>>> colorbar()

>>> contour(x,y,z,arange(0,1,0.1),colors="white")

If you want to see your data without allowing the contouring algorithm to obscure it, try this:

>>> imshow(z,interpolation=’nearest’)

Notice that imshow does not accept arrays for the x and y co-ordinates. If the pixels are equally spaced,
you can get the axes to have the correct labels, like this:

>>> imshow(z,interpolation=’nearest’,extent=[-2,2,-2,2])

3.3 Colours in IDL

So far, we have accepted the default colours used by matplotlib. Now we’ll look at how to control these.
Individual colours can be specified in various ways:

>>> plot(x,x*x,color="darkgreen’) ## By Name
>>> plot(x,x*x,color=(1.0, 0.5, 0.0)) ## List or tuple of 3 numbers
>>> plot(x,x*x,color="#7f00ff") ## Hexaxecimal RGB values

A list of these can be used to specify contour colours:

>>> colz=[’red’,’black’,(0.5,0.0,1.0),"#££7£00","#7£££00", "#0000ff"]
>>> contour(x,y,z,arange(0,1.2,0.2),colors=colz)
>>> legend()

The colours used for the filled contours and images are less easy to control. Matplotlib supplies some
colour schemes, which you can choose:

>>> contourf(x,y,z,arange(0,1.2,0.05),cmap=cm.gray)
>>> contourf(x,y,z,arange(0,1.2,0.05),cmap=cm.hsv)

The grey scheme cm.gray is particularly useful, even if it is not very exciting.

3.4 Maps in matplotlib

The mapping capabilities of matplotlib are supplied by an additional toolkit called basemap. Here is an
example of its use:

>>> from matplotlib.toolkits.basemap import Basemap, shiftgrid
>>> from pylab import *

>>> m=Basemap(projection=’ortho’,lat_0=56,lon_0=-3)

>>> m.drawcoastlines()

>>> m.drawparallels(arange(-90,120,30),color="red’)

>>> draw()

[T am unconvinced by basemap. It appears to me to be grindingly slow and difficult to understand
and use]

4 Lecture 4: Images in matplotlib

To most computer systems a grayscale image is just a 2-D data set such as we looked at in the previous
lecture. The differences between images and other data sets are simply that:

e Images are (usually) bigger, perhaps several hundred data points in each direction.

e Images are (often) of type byte. This means that each pixel can have only 256 values.

...and that’s all. You can display and process greyscale images just like any other 2-dimensional
array. You will find that contour plots of an image of any size are not very useful and take a very long
time to draw. In this lecture we look at ways of reading, displaying and processing images in python.

4.1 Greyscale images

Matplotlib does not have a built-in capability to read common image file formats. To do this, one
needs (yet another) add-on package: The Python imaging library. This package provides a large range
of imaging tools, all of which treat an image as a special type of object. To use the image data as a
numarray array, we need to extract it, like this:

from pylab import *

import Image
im=Image.open("/home/hcp/wrk/idlcourse/light.pgm")
ivals=array(im.getdata() ,shape=(im.size[1],im.size[0]))
imshow(ivals,cmap=cm.gray,aspect="preserve")

This has read in a greyscale image from the file light.pgm, extracted the data into an nummaray
array called ivals, and then displayed it. The array can be operated on to produce new arrays as usual:

http://www.pythonware.com/products/pil/

>>> ivals2=ivals - ivals[:,::-1]
>>> imshow(ivals2,cmap=cm.gray,aspect="preserve")

To write the image out, we need to convert it from a numarray array into an Image object:

>>> im2=Image.new("L",im.size)

>>> im2.putdata(reshape(ivals2,(-1,)),
offset=-ivals2.min()*255.0/(ivals2.max()-ivals2.min()),
scale=255.0/(ivals2.max()-ivals2.min()))

>>> im2.save("bork.pgm")

Notice the use of reshape to convert the image data to a 1-D array, and the use of the scale and offset
arguments to make make the written pixels fall in the range between 0 and 255.

4.2 Colour images

A colour image is really three images, a red one, a green one and a blue one. If you want to do image
processing things to a colour image, smoothing for example, then you have to apply your algorithm to
the three colours separately. Colour images can be read in in a similar manner to greyscale ones:

from pylab import *

import Image
im=Image.open("/home/hcp/wrk/idlcourse/light.pnm")
ivals=array(im.getdata(),shape=(im.size[1],im.size[0],3))

The array ivals has three dimensions, the last one (which has a length of 3) selects the red, green or blue
planes of the image.

>>> imshow(ivals[:,:,0],aspect="preserve") ## View red plane
>>> imshow(ivals[:,:,2],aspect="preserve") ## View blue plane

Another problem: image.putdata seems to not work for colour images

	Lecture 1: Getting Started
	So, what is matplotlib? What can it do for me?
	Starting it up
	A First Plot
	Importing data

	Lecture 2: Programming in python and numarray
	Variables, data types
	Lists
	Numarray, and arrays

	Flow Control
	The IF statement
	The for loop
	The WHILE loop
	Other flow control statements

	Array operations
	Defining functions

	Lecture 3: More graphics
	Surface plots
	Contour Plots
	Colours in IDL
	Maps in matplotlib

	Lecture 4: Images in matplotlib
	Greyscale images
	Colour images

